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Product (N, pn) (C, 1) summability of a sequence
of Fourier coefficients
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Abstract

Purpose: The purpose of the present paper is to study the product (N, pn) (C, 1) summability of a sequence of
Fourier coefficients which extends a theorem of Prasad.

Methods: We use Np. C
1 summability methods with dropping monotonicity on the generating sequence {pn − k}

(that is, by weakening the conditions on the filter, we improve the quality of digital filter).

Results: Let Bn(x) denote the nth term of conjugate series of a Fourier series. Mohanty and Nanda were the first to
establish a result for C1 summability of the sequence {n Bn(x)}. Varshney improved the result for H1. C1 summability
which was generalized by various investigators using different summability methods with different sets of
conditions. In this paper, we extend a result of Prasad by dropping the monotonicity on the sequence {pn − k}.

Conclusions: Various results pertaining to the C1 and H1. C1 summabilities of the sequence {n Bn(x)} have been
reviewed and the condition of monotonicity on the means generating the sequence {pn − k} has been relaxed.
Moreover, a proper set of conditions have been discussed to rectify the errors pointed out in Remark 3.2 (1) and (2).

Keywords: Conjugate Fourier series, (C, 1) summability, (N, pn) summability and product, (N, pn) (C, 1) summability

Introduction
Let

X1
n¼0

un be a given infinite series with sequence of

its nth partial sums {sn}. If the {pn} be a nonnegative and
nondecreasing, which generates sequences of constants,
real or complex, let us write

Pn ¼
Xn
k¼0

Pk ≠ 0 ∀n ≥ 0; P�1 ¼ 0 ¼ P�1 and

Pn →1 as n→1:

The condition for regularity of Nörlund summability
are easily seen to be

lim
n→1

Pn

Pn
→0 and ð1:Þ

X1
k¼0

pkj j ¼ O Pnð Þ; as n→1: ð2:Þ

The sequence-to-sequence transformation

t Nn ¼ 1
Pn

X n

k¼0
pn�k sk : ð1:1Þ

defines the sequence {tn
N} of Nörlund means of the se-

quence {sn}, as generated by the sequence of coefficients
{pn}. The series

P
n = 0
∞ un is said to be summable (N, pn)

to the sum s if limn→1 t Nn exists and equal to s.
In the special case in which

pn ¼ nþ α� 1
α� 1

� �
¼ Г nþ αð Þ

Г nþ 1ð ÞГ αð Þ ; α > �1ð Þ

the Nörlund summability (N, pn) reduces to the familiar
(C, α) summability.
The product of Npsummability with a C1summability

defines Np.C
1 summability. Thus the Np.C

1 mean is

given by tN C
n xð Þ ¼ P�1

n

Xn

k¼1
pn�k Ck xð Þ:

If tn
NC→ s as n→∞ , then the infinite series

P
n = 0
∞ un

is said to be the summable Np.C
1 to the sum s if
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Let f (x) be a 2π-periodic function and Lebesgue inte-
grable. The Fourier series of f (x) at any point x is given by

f xð Þ∼ a0
2
þ
X1

k¼1
ak cosk xþ bk sink xð Þ≡

X1
k¼0

Ak xð Þ:
ð1:2Þ

With nth partial sum, sn(f; x) is called trigonometric
polynomial of degree (order) n of the first (n + 1) terms
of the Fourier series of f.
The conjugate series of Fourier series (1.2) is given by

X1
k¼1

bk cosk x� ak sink xð Þ≡
X1

k¼1
Bk xð Þ ð1:3Þ

The regularity conditions of Np . C
1 are as follows:

nB n→ s⇒C 1(nB n) = tn
C= n− 1

P
k=1
n kBk (x)→ s, as n→∞,

C 1 method is regular, ⇒Np {C
1(nBn)} = tn

NC= Pn
− 1P

k=1
n Pn−k

(k− 1
P

r=1
k rBr(x))→ s, as n→∞, Np method is also regular,

and ⇒ C1.Np method is regular. We note that tn
N and tn

NC

are also trigonometric polynomials of degree (order) n.

Abel’s transformation
The formula

Xn

k¼m
uk vk ¼

X n�1

k¼m
Uk vk � vkþ1ð Þ � Um�1 vm þ Un vn;

ð1:4Þ

where 0 ≤m ≤ n,Uk = u0 + u1 + u2+.... + uk, if k ≥ 0,U− 1 = 0,
which can be verified, is known as Abel’s transformation
and will be used extensively in the succeeding discussion.
If vm,vm+1, . . .,vn are nonnegative and nonincreasing, the

left hand side of (1.4) does not exceed 2vm maxm�1≤k≤n Ukj j
in the absolute value. In fact,

j
Xn

k¼m
uk vk j≤max Ukj j

X n�1

k¼m
vk � vkþ1ð Þ þ vm þ vn

n o
¼ 2vm max Ukj j:

Throughout in this paper, we use the following notations

ψ tð Þ ¼ ψx tð Þ ¼ f xþ tð Þ � f x� tð Þ � l;

Ψ tð Þ ¼
Z t

0
ψ uð Þj jdu;

Q n; tð Þ ¼ 1
πPn

Xn
k¼1

pn�k
sin k t
k t2

� cos k t
t

� �
;

Δk pn�k ¼ pn�k � pn�k�1; 0≤k≤n;

and τ = [1/t] is the largest integer contained in 1/t, where l
is a constant.
The (C, 1) and (H, 1) denotes the Cesàro and har-

monic summabilities respectively of order one. The

product summability (N, pn) (C, 1) is obtained by super-
imposing (N, pn) summability on (C, 1) summability, and
the product summability (N, pn) (C, 1) plays an import-
ant role in signal theory as a double digital filter in finite
impulse response in particular [1].

Methods
Known theorems
The theory of summability is a very extensive field.
Mohanty and Nanda [2] proved the following theorem
on C1 summability of the sequence {n Bn(x)}.

Theorem 2.1 [2] If

Ψ tð Þ ¼ ο t=log 1=tð Þð Þ; as t→þ 0 ð2:1Þ
and

an ¼ Ο n�δ
� �

; bn ¼ Ο n�δ
� �

; as t→þ 0; ð2:2Þ
then the sequence {n Bn(x)} is the summable C1 to the
value of l/π.

Varshney [3] improved Theorem 2.1 by extending it to
product H1.C1 summability. He has proved that

Theorem 2.2 [3] if

Ψ tð Þ ¼ ο t=log 1=tð Þð Þ; as t→þ 0; ð2:3Þ
then the sequence {n Bn(x)} is the summable H1.C1 to
the value of l/π.

Various investigators such as Sharma [4], Rhoades [5]
(cor. 19, p. 533), Pandey [6], Rai [7], Dwivedi [8], Mittal
and Prasad [9], Prasad [10], Mittal [11], Chandra [12],
Mittal et al. [13,14], and Mittal and Singh [1] used differ-
ent summability methods with different sets of condi-
tions. In particular, Prasad [10] has proved the following:

Theorem 2.3 [6] Let p(u) be monotonically decreasing
and strictly positive value with u ≥ 0. Let pn = p(n) and

P uð Þ ¼
Z u

0
p xð Þdx→1; as u→1: ð2:4Þ

Let α(t) be a positive and nondecreasing function of t. If

Ψ tð Þ ¼ ο t=α 1=tð Þð Þ; as t→þ 0; ð2:5Þ

then a sufficient condition that the sequence {n Bn(x)} be a
summable NP.C1 to the value of l/π is that

Z n

1

P xð Þ
xα xð Þ dx ¼ Ο P nð Þð Þ; as n→1: ð2:6Þ
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Results and discussion
Main theorem
In the present paper, we extend Theorem 2.3 by dropping
the monotonicity on the generating sequence {Pn − k} (that
is, by weakening the conditions on the filter, we improve
the quality of the digital filter). More precisely, we prove in
Theorem 3.1:

Theorem 3.1 Let {pk} be a nonnegative value such that

ði:Þ
Xn

k¼r
Δk pn�kj j ¼ Ο pn�rð Þ; ðii:Þ n pn ¼ Ο pnð Þ:

ð3:1Þ
Let α(t) be a positive and increasing function of t such

that

ΨðtÞ ¼ o t=α ð1=tÞð Þ; as t→ þ 0 ð3:2Þ
and

αðnÞ→1; as n→1 ð3:3Þ
then a sufficient condition for the sequence {nBn(x)} to be
as the summable (N, pn) (C, 1) to the value of l/π isZ n

1=δ

P xð Þ
xα xð Þ dx ¼ Ο P nð Þð Þ; as n→1: ð3:4Þ

Remark 3.2 (1) If pn − k ≤ pn − k − 1, ∀ 0 ≤ k < n, as used in
Theorem 2.3, then both the conditions (3.1) holds. Thus
Theorem 3.1 extends Theorem 2.3. (2) In the proof of
Theorem 2.3, author in [10] has used the condition (3.3)
but did not mention in his statement.

Lemmas. For the proof of our Theorem 3.1, we require
the following lemmas.

Lemma 4.1 [10] If 0 ≤ t ≤ 1/n, then

Q n; tð Þj j ¼ 0 nð Þ

Lemma 4.2 [15] For all values of n and t

Xn

k¼0

sin k þ 1ð Þt
k þ 1

����
���� ≤ 1þ π

2
: ð4:2Þ

Lemma 4.3 Under the regularity conditions of matrix
(N, pn) in satisfying (3.1), we get Q(n, t) =Ο(t− 1 P(τ)/Pn)
+Ο(t− 2 p1/Pn), for

1=n ≤ t ≤ δ: ð4:3Þ

Proof We have Q n; tð Þ ¼
Xn�1

k¼0
pn�k=πPn

�
sin n� kð Þt
n� kð Þt2

� cos n� kð Þt
t

�
¼ Q1 n; tð Þ þ Q2 n; tð Þ, as we say.

By using Abel’s transformation, Lemma 4.2, and condi-
tion (3.1), we have

Q1 n; tð Þj j ¼
Xn�1

k¼0
pn�k=πPn

sin n� kð Þt
n� kð Þt2

����
����

≤
Xτ�1

k¼0
pn�k=πPn

sin n� kð Þt
n� kð Þt2

����
����

þ
Xn�1

k¼τ
pn�k=πPn

sin n� kð Þt
n� kð Þt2

����
����

≤
	
t�1
Xτ�1

k¼0
pn�k

sin n� kð Þt
n� kð Þt

����
����

þt�2
Xn�1

k¼τ
pn�k

sin n� kð Þt
n� k

����
����


=πPn

≤
	
t�1
Xτ�1

k¼0
pn�k

þt�2
Xn�2

k¼τ
Δk pn�k

Xk

r¼0

sin n� rð Þt
n� r

� �����
����


=πPn

þt�2 pn�τ=πPn

Xτ�1

k¼0

sin n� kð Þt
n� k

����
����

þt�2 p1=πPn

Xn�1

k¼0

sin n� kð Þt
n� k

����
����

≤
	
t�1
Xτ

k¼0
pn�k þ t�2 1þ π

2

� �
�
Xn�2

k¼τ
Δkpn�kj j þ pn�τ þ p1

� �

=πPn

¼ Ο t�1ð Þ P τð Þ þ τ þ 1ð Þpn�τð Þ=Pnð Þ þΟ t�2 p1=Pnð Þ

¼ Ο t�1P τð Þ=Pnð Þ þΟ t�2 p1=Pnð Þ:
Again by using Abel’s transformation and condition

(3.1), we have

Q2 n; tð Þ ¼
Xn�1

k¼0
pn�k=πPn

cos n� kð Þt
t

¼ Ο t�1ð Þ
	
P τð Þ þ

Xn�2

k¼0
Δkpn�kð Þ

Xk

r¼0
cos n� rð Þ t

�pn�τ

Xτ�1

r¼0
cos n� rð Þ t



P�1
n

þΟ t�1ð ÞP�1
n p1

Xn

r¼0
cos n� rð Þ t

Q2 n; tð Þj j ¼ Ο t�1ð Þ
	
P τð Þ þ t�1

Xn�2

k¼τ
Δkpn�kj j

þt�1pn�τ þ t�1p1



=Pn

¼ Ο t�1P τð Þ=Pnð Þ þΟ t�2 p1=Pnð Þ:
By collecting Q1(n, t), Q2(n, t) and Q(n, t), we get

Q n; tð Þ ¼ Ο t�1P τð Þ=Pn
� �þΟ t�2 p1=Pn

� �
:

This completes the proof of Lemma 4.3.
Proof of Theorem 3.1 The C1 transform of the se-

quence {n Bn(x)} denoted by Cn(x) is defined by
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Cn xð Þ ¼ 1
n

Xn

k¼1
k Bk xð Þ:

The Np.C1 transform of the sequence {n Bn(x)}, which
is denoted by tN C

n (x), is given by

tN C
n xð Þ ¼ P�1

n

Xn

k¼1
pn�k Ck xð Þ

¼ P�1
n

Xn

k¼1
pn�k

1
k

Xk

r¼1
rBr xð Þ

� �
:

Therefore, following Mohanty and Nanda [2], we obtain

tN C
n xð Þ � l=π ¼ P�1

n

Xn

k¼1
pn�k

1
k

Xk

r¼1
r Br xð Þ � l=π

� �� �

¼ P�1
n

Xn
k¼1

pn�k
1
π

Z π

0
ψ tð Þ sinkt

kt2
� coskt

t

� �
dt þ ο 1ð Þ

� �

¼ 1
π

Z π

0
ψ tð ÞP�1

n

Xn

k¼1
pn�k

sinkt
kt2

� coskt
t

� �
dt þ ο 1ð Þ

¼ 1
π

Z 1=n

0
þ
Z δ

1=n
þ
Z π

δ

 !
ψ tð ÞQ n; tð Þdt þ ο 1ð Þ; where 0 < δ < π

¼ 1
π

I1 þ I2 þ I3ð Þ þ ο 1ð Þ; ð5:1Þ

where

I1 ¼
Z 1=n

0
ψ tð ÞQ n; tð Þdt ¼ Ο nð Þ

Z 1=n

0
ψ tð Þj jdt

¼ Ο nð ÞΨ 1=nð Þ ¼ Ο nð Þο 1=nα nð Þð Þ
¼ ο 1=α nð Þð Þ ¼ ο 1ð Þ; as n→1; ð5:2Þ

in view of Lemma 4.1, conditions (3.2), and (3.3).
Using Lemma 4.3, we have

I2 ¼
Z δ

1=n
ψ tð ÞQ n; tð Þdt

¼
Z δ

1=n
ψ tð Þj jP�1

n Ο t�2p1
� �þΟ t�1 P τð Þ� �
 �

dt

¼ I2;1 þ I2;2 as we say: ð5:3Þ

Now, using conditions (3.1-ii), (3.2), (3.3), and second
mean value theorem for integrals, we have

I2;1 ¼ Ο 1ð Þ
Z δ

1=n
t�2 P�1

n p1 ψ tð Þj jdt ¼ Ο P�1
n p1

� �Z δ

1=n
t�2 ψ tð Þj jdt

¼ Ο
1
n

� �
t�2Ψ tð Þð Þδ1=n þ

Z δ

1=n
t�3Ψ tð Þdt

( )

¼ ο
1
n

� �
1

tα 1=tð Þ
� �δ

1=n

þ ο
1
n

� �Z δ

1=n

dt
t2 α 1=tð Þ

¼ ο
1
n

� �
þ ο

1
α nð Þ
� �

þ ο
1

nα 1=δð Þ
� �Z δ

1=n

dt
t2

¼ ο
1
n

� �
þ ο

1
α nð Þ
� �

þ ο
1

nα 1=δð Þ
� �

δ � 1=nð Þ

¼ ο 1ð Þ; as n→1: ð5:4Þ

Using conditions (3.1-ii), (3.2), (3.3), and (3.4), we have

I2;2 ¼ Ο 1ð Þ
Z δ

1=n

ψ tð Þj j
t

P�1
n P τð Þdt ¼ Ο 1ð Þ Ψ tð ÞP�1

n
P τð Þ
t

� �δ

1=n

þ Ο 1ð Þ
Z δ

1=n
Ψ tð ÞP�1

n
P τð Þ
t2

dt þΟ 1ð Þ
Z δ

1=n

Ψ tð Þ
t

d P�1
n P τð Þ� �

¼ ο 1ð Þ þ ο
P�1
n Pn

α nð Þ
� �

þ ο 1ð Þ
Z δ

1=n

P�1
n P τð Þ
tα 1=tð Þ dt

þ Ο P�1
n

� �Z δ

1=n
Ψ tð Þ d P 1=tð Þα 1=tð Þ

tα 1=tð Þ
� �

¼ ο 1ð Þ þ ο
P�1
n Pn
α nð Þ

� �
þ ο 1ð Þ

Z δ

1=n

P�1
n P τð Þ
tα 1=tð Þ dt

þ Ο P�1
n

� �Z δ

1=n
o

t
α 1=tð Þ

� �
d

P 1=tð Þ
t α 1=tð Þ
� �

α 1=tð Þ

þ Ο P�1
n

� �Z δ

1=n
o

t
α 1=tð Þ

� �
P 1=tð Þ
t α 1=tð Þ d α 1=tð Þð Þ

¼ ο 1ð Þ þ ο
1

α nð Þ
� �

þ ο 1ð Þ
Z δ

1=n

P�1
n P τð Þ
tα 1=tð Þ dt

þ o P�1
n

� �Z δ

1=n
t d

P 1=tð Þ
tα 1=tð Þ
� �

þ o 1ð Þ
Z δ

1=n

d α 1=tð Þð Þ
α 1=tð Þf g2

¼ ο 1ð Þ þ ο
1

α nð Þ
� �

þ ο 1ð Þ
Z δ

1=n

P�1
n P τð Þ
tα 1=tð Þ dt

þ o P�1
n

� � t P 1=tð Þ
tα 1=tð Þ
	 
δ

1=n

�
Z δ

1=n

P 1=tð Þ
t α 1=tð Þ dt

( )

þ o 1ð Þ � 1
α 1=tð Þ

	 
δ
1=n

¼ ο 1ð Þ þ ο
1

α nð Þ
� �

þ ο 1ð Þ
Z δ

1=n

P�1
n P τð Þ
tα 1=tð Þ dt

¼ ο 1ð Þ þ ο 1ð Þ
Z n

1=δ

P�1
n P xð Þ
xα xð Þ dx

¼ ο 1ð Þ þ ο 1ð ÞΟ P�1
n P nð Þ� � ¼ ο 1ð Þ; as n→1: ð5:5Þ
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On combining (5.3), (5.4) and (5.5), we get

I2 ¼ ο 1ð Þ; as n→1 ð5:6Þ

Finally, by Riemann-Lebesgue Theorem, we have

I3 ¼
Z π

δ
ψ tð ÞQ n; tð Þdt ¼ ο 1ð Þ; as n→1 ð5:7Þ

By collecting (5.2), (5.6), and (5.7), we get

tN C
n xð Þ � l=π ¼ ο 1ð Þ; as n→1:

This completes the proof of Theorem 3.1.

Conclusions
Various results pertaining to the C1 and H1 C1 summabi-
lities of the sequence {n Bn(x)} have been reviewed, and
the condition of monotonicity on the means of generat-
ing the sequence {pn−k} has been relaxed. Moreover, a
proper set of conditions have been discussed to rectify
the errors pointed out in Remark 3.2 (1) and (2).
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