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Abstract

Purpose: In this paper, We determine the finite group G = HK such that K is a supersoluble subgroup of G, and H is
not a supersoluble subgroup of G.

Methods: Let p, q, r be primes such that p < q < r, and p, q are not a divisor of r − 1, and p is not a divisor of q − 1.
Let X be a group of order p, and let F = GF(q) and L = GF(r) such that the filed F contains a primitive pth root of
unity. Let V be a simple FX-module, and let Y = V � X and W also be a faithful simple LY-module. Let G = W � Y ,
H = W � X , and K = W � V .

Results: Then, we determine that K is a supersoluble subgroup of G, and H is not a supersoluble subgroup of G.

Conclusions: We characterize the supersoluble residual of group G.

Keywords: Supersoluble, Formation, X-residual, Supersoluble residual, FX-module

Introduction
This paper continues a thread of research in finite
soluble groups initiated by Ballester-Bolinhes et al.
[1]. It is shown in [2] that a finite group G, which
is the product of two normal supersoluble sub-
groups, is supersoluble if and only if G′ is nilpotent.
Asaad and Shaalan (Theorem 3.8 in [3]) proved the
following generalization of Baer’s result:

Assume that a finite group G is the product of the
supersoluble subgroups H and K . Assume further that
G′ is nilpotent. If H commutes with every subgroup of
K and K commutes with every subgroup of H , then G is
supersoluble.

They also prove an analogous result by considering K
nilpotent instead of G′ (Theorem 3.2). Later, Carocca [4]
presented extensions of the preceding result consider-
ing p-supersolubility instead of supersolubility. Following
Carocca [4], we say that the subgroups H and K of a group
G are mutually permutable if H commutes with every
subgroup of K and K commutes with every subgroup of
H . If G = HK and H and K are mutually permutable,
we say that G is the mutually permutable product of the
subgroups H and K .
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Department of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian,
Iran

It is known that the class U of all finite supersoluble
groups is a formation. This means that if a finite group G is
supersoluble and N is a normal subgroup of G, then G/N
is supersoluble, and if M and N are two normal subgroups
of a finite group G, then G/(M ∩ N) is supersoluble, pro-
vided that G/M and G/N are supersoluble. Consequently,
every finite group G has a smallest normal subgroup
with a supersoluble quotient. This subgroup is called the
supersoluble residual of G, and it is denoted by GU. It
is clear that GU is epimorphism-invariant, and so, it is a
characteristic subgroup of G (see Lemma 2.4, Chapter II
in [5]).

This paper focuses on the study of supersoluble sub-
groups and the supersoluble residual of the group G =
[ W ] [ V ] X as a semidirect product and considers the sub-
groups H = W � X and K = W � V of G such that X
is the cyclic group of order p, and V is an irreducible and
faithful X-module over GF(q), and Y = V � X is the cor-
responding semidirect product, and W is an irreducible
and faithful Y -module over GF(r) such that p, q and r are
primes. We determine that G is the mutually permutable
product of the subgroups H and K . Moreover, H is not a
supersoluble subgroup of G. On the other hand, K ∈ U

and HU < W . However, GU = W .

© 2012 Naraghi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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Methods
Preliminaries
Whenever possible, we follow the notation and terminol-
ogy of [5,6]. All groups considered are finite.

Definition 2.1. [4]. Let G be a group and H and K be
subgroups of G. We say that H and K are mutually per-
mutable if H commutes with every subgroup of K and K
commutes with every subgroup of H.

Definition 2.2. [5]. A class of groups is a collection X of
groups with the property that if G ∈ X and if H ∼= G, then
H ∈ X. We will often use the term X-group to describe a
group belonging to X.

Class U denotes the class of finite supersoluble groups.

Definition 2.3. [5]. If X and I are classes of groups, we
define their class product XI as follows:

XI=(G : G has a normal subgroup N ∈ Xwith G/N ∈ I).

If X = ∅ or I = ∅, we have the obvious interpretation
XI = ∅. For powers of a class, we set X0 = (1), and for
n ∈ N, make the inductive definition Xn = (Xn−1)X.

Definition 2.4. [5].

(a) A class map c is called a closure operation if, for all
classes X and I, the following three conditions are
satisfied:

Co1: X ⊆ cX (we say c is expanding);
Co2: cX = c(cX) (we say c is idempotent);
Co3: If X ⊆ I, then cX ⊆ cI (we say is

monotonic).

(b) A class X is said to be c-closed if X = cX. (If c is a
closure operation, it is clear from Co2 that cI is
c-closed for any class I.) We adopt the convention
that the empty class ∅ is c-closed for every closure
operation c.

(c) The product AB of two class maps is defined by
composition; thus,

(AB)X = A(BX)

for all classes X.

Definition 2.5. [5]. For a class of groups, we define:
QX=(G: ∃H ∈ X and an epimorphism from H onto G);

R0X=(G: ∃Ni � G(i=1,. . . ,r) with G/Ni ∈ X and
r⋂

i=1
Ni = 1);
EφX=(G: ∃N � G with N ≤ �(G) and G/N ∈ X).

Definition 2.6. [5]. A formation is a class of groups that
is closed under both Q and R0.

Corollary 2.7. Let X be a class of groups, then X is a
formation if and only if the following two conditions are
satisfied for the class X:

(1) If G ∈ X and N � G, then G/N ∈ X.
(2) If N1and N2 are normal subgroups of group G such

that G/N1 ∈ X and G/N2 ∈ X and N1 ∩ N2 = 1,
then G ∈ X.

Proof. Straightforward.

Definition 2.8. [5]. An Eφ–closed classs is called satu-
rated.

Corollary 2.9. Let X be a formation. Then, X is satu-
rated if and only if for all finite groups G, G/�(G) ∈ X

implies G ∈ X.

Proof. Straightforward.
Some properties of the supersoluble formation
We study in this section some properties of the supersol-
uble formation U. The next result includes the definition
of the X-residual GX of a group G; it always exists if the
class X( 
= ∅) is R0-closed, and it is epimorphism-invariant
when X is a formation.

Corollary 3.1. The class U is a saturated formation.

Proof. By Huppert’s Theorem [7], it is straightforward.

Lemma 3.2. (Lemma 2.4, Chapter II in [5]). Let X be
an R0-closed class and G a finite group. Then the set L =
{N � G : G/N ∈ X}, partially ordered by inclusion, has
a unique minimal element, denoted by GX and called the
X-residual of G. It is a characteristic subgroup, and if X is
a formation and ε : G → ε(G) is an epimorphism, then
ε(G)X = ε(GX).

Corollary 3.3. Let G be a finite group. Then,

(1) If H � G and G/H ∈ U, then GU ≤ H ;
(2) If A � G and H ≤ G, then (HA

A )U = HUA
A ;

(3) If H ≤ G, then HU ≤ GU.

Proof. Straightforward.

Lemma 3.4. Let G be a finite group and H be a subgroup
of G such that (G

A )U = (HA
A )U where A is a normal sub-

group of G. Then, GUA = HUA. Moreover, if A ≤ GU, then
GU = HUA.
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Proof. By Corollary 3.3, (HA
A )U = HUA

A . On the other
hand, (G

A )U = (GA
A )U = GUA

A . So, GUA
A = HUA

A , and then,
GUA = HUA. If A ≤ GU, then GU = GUA. Therefore,
GU = HUA.

Proposition 3.5. Let G be a finite group, A be a minimal
normal subgroup of G, and H be a subgroup of G. If (G

A )U =
(HA

A )U, then either A ≤ GU or HU = GU.

Proof. By Lemma 3.4, GUA = HUA. So HU(A ∩ GU) =
HUA ∩ GU = GUA ∩ GU = GU; therefore, HU(A ∩ GU) =
GU. On the other hand, 1 ≤ A∩GU ≤ A and A∩GU � G.
So, either A ∩ GU = A or A ∩ GU = 1, and the proof is
completed.

The supersoluble residual of a group
All modules are right modules unless the contrary is
stated.

Definition 4.1. A module is said to be simple (irre-
ducible) if

(1) it is non-zero, and
(2) the only proper submodule that it possesses is the

zero submodule.

An R-module M is called R-semisimple if M is a direct
product of finitely many simple R-submodules.

Definition 4.2. [8]. If G is a group and R is any ring with
an identity element, the group ring RG is defined to be the
set of all formal sums

∑
x∈G

rxx where rx ∈ R and rx = 0 with

finitely many exceptions, together with the rules of addition
and multiplication

(
∑

x
rxx) + (

∑
x

r′
xx) =

∑
x

(rx + r′
x)x;

and

(
∑

x
rxx)(

∑
x

r′
xx) =

∑
x

(
∑
yz=x

ryr′
z)x.

It is very simple to verify with these rules that RG is a
ring with identity element 1R1G, which is simply written
as 1.

Remark 4.3. If F is a field, then FG, in addition to being
a ring, has a natural F-module structure given by

f (
∑

x
fxx) =

∑
x

(ffx)x, (f ∈ F).

Thus, FG is a vector space over F and DimF(FG) = |G|.

Definition 4.4. The product of all the abelian mini-
mal normal subgroups of a group G is called the abelian
component of the socle and is denoted by Soc(G).

Theorem 4.5. (Theorem 10.3, Chapter B in [5]). Let G be
a finite group and K an arbitrary field. Then, the following
conditions are equivalent:

(a) G has a faithful simple module over K;
(b) SocU(G) has a subgroup N such that

(1) CoreG(N)=1, and
(2) SocU(G)/N is cyclic and is a p′-group if

char(K) = p > 0.

Corollary 4.6. Let p,q be primes and X be a group of
order p. Let F be the Galois field F = FG(q). Then, X has a
faithful simple module over F.

Lemma 4.7. Let F be a field and X be a finite group. If V
is a irreducible FX-module, then V is a vector space over F
of finite dimension.

Proof. Straightforward.

Proposition 4.8. (Lemma 9.2, Chapter B in [5]). Let G
be an abelian group of order n, let K be a field, and let V be
a simple KG-module. If either

(1) the polynomial xn − 1 splits into a product of linear
factors in K[x](in particular, if K contains a primitive
nth root of unity), or

(2) V is absolutely irreducible,

then DimK (V ) = 1.

Corollary 4.9. Let p,q be primes and X be a group of
order p, let F=GF(q) and F contain a primitive pth root
of unity. If V is a simple FX-module, then DimF(V )=1.
Moreover, |V | = q.

Lemma 4.10. Let K be a field of prime characteristic p
and G be a finite group. Let W be a KG-module. Then, W
is an elementary abelian p-group.

Proof. For every w ∈ W , pw = w + ... + w︸ ︷︷ ︸
p times

=

w(1F 1G) + ... + w(1F 1G) = w(1F 1G + ...1F 1G︸ ︷︷ ︸
p times

) = w((1F +

... + 1F)1G) = 0. So, the abelian group (W , +) is a
p-elementary abelian group.

Results and discussion
Theorem 5.1. Let p,q,r be distinct primes such that p <

q < r. Let X be a group of order p, and let F = GF(q) and
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K = GF(r) such that the field F contains a primitive pth
root of unity. Let V be a simple FX-module over F, and let
Y = V �ϕ X such that for all x ∈ X and for all v ∈ V ,
vϕx = vx(= v(1F x)) where ϕx ∈ Aut(V ) and W also be a
simple KY-module over K. If G = W �ψ Y = such that for
all y ∈ Y , ψ(y) = ψy, and for all w ∈ W , wψy = wy and
H = W � X and K = W � V . Then, G is the product of
the mutually permutable subgroups H and K.

Proof. It is easy to verify that ϕ and ψ are well defined
because, by Lemma 4.7, V is a vector space over F of
finite dimension, and W is a vector space over K of finite
dimension. By Lemma 4.10, |W | = rα such that α is a
nonnegative integer. On the other hand, by Corollary 4.9,
|V | = q. Thus, |G| = pqrα and |H| = prα and |K | = qrα .
Therefore, |G : K | = p and K � G. Therefore, K com-
mutes with every subgroup of H . Let x be an arbitrary
element of X and w be an arbitrary element of W . Let
V =< v >; then,

(0, (v, o)) + (w, (0, x)) = (wψ−(v,0), (v, 0) + (0, x))

= (wψ−(v,0), (v, x)).

Now, let t ∈ Z, w′ ∈ W and x′ ∈ X. Then,
(w′, (0, x′))+(0, (tv, 0)) = (w′ + 0ψ−(0,x′), (0, x′) + (tv, 0))

= (w′, ((tv)ϕ−x′ , x′)).

Let x′ = x and w′ = wψ−(v,0). There is a t ∈ Z such
that vϕx = tv, (tv)ϕ−1

x = v; this means that (tv)ϕ−x = v.
Therefore,

(0, (v, o)) + (w, (0, x)) = (wψ−(v,0), (v, x))

= (w′, ((tv)ϕ−x, x)) = (w′, (0, x)) + (0, (tv, 0))

= (wψ−(v,0), (0, x)) + (0, (tv, 0))

= (wψ−(v,0), (0, x)) + t(0, (v, 0)).

Let h ∈ H and v1 ∈ V , then v1 = mv where m ∈ Zq, so
v1 +h = mv+h. Consequently, v1 +h = (m−1)v+ v+h;
therefore, v1 + h = (m − 1)v + h′ + tv where t ∈ Z
and h′ ∈ H . There is a s ∈ Z such that tv = s(mv), so
v1+h = (m−1)v+h′+s(mv). Therefore, v1+h = h1+s′v1
where h1 ∈ H and s′ ∈ Z. Now, let K1 ≤ K and |K1| = qrβ

where 0 ≤ β ≤ α. We prove that H commutes with K1.
Let W ′ = {(w, (0, 0))|w ∈ W } and V ′ = {(0, (v, 0))|v ∈ V }
and X′ = {(0, (0, x))|x ∈ X}. We know that W ′ � G. Let
T ∈ Sylr(K1), then nr(K1) = 1. This means that T � K1.
Let S ∈ Sylq(K1), then S ∈ Sylq(K). Therefore, S = V ′k
where k ∈ K . On the other hand, K = W ′ + V ′. So,
k = w1 + v1 such that v1 ∈ V ′ and w1 ∈ W ′; there-
fore, V ′k = −v1 − w1 + V ′ + w1 + v1. We know that
w1 + v1 = v1 + w′

1 where w′
1 ∈ W ′, so (V ′)k = −(w1 +

v1) + V ′ + (w1 + v1) = −(v1 + w′
1) + V ′ + (v1 + w′

1) =

−w′
1 −v1 +V ′ +v1 +w′

1 = w′
1 +V ′ +w1 = (V ′)w′

1 . There-
fore, S = (V ′)w′

1 . S ∩ T = 1, so K1 = S + T = T + S.
Let h ∈ H , t ∈ T , and s ∈ S, then T is a r-subgroup of G
and T ≤ NG(H). Therefore, (s + t) + h = s + (t + h) =
s + (h′ + t) = −w′

1 + (w′
1 + s − w′

1) + w′
1 + (h′ + t),

where h′ ∈ H . Let h1 = w′
1 + h′

1 where h1 ∈ H , then
(s + t) + h = −w′

1 + (w′
1 + s − w′

1) + h1 + t = −w′
1 +

h′
1 + m(w′

1 + s − w′
1) + t where h′

1 ∈ H and m ∈ Zq.
On the other hand, m(w′

1 + s − w′
1) = w′

1 + ms − w′
1

and ms − w′
1 = w′′ + ms where w′′ ∈ W ′. Therefore,

(s + t) + h = −w′
1 + h′

1 + w′
1 + w′′ + ms + t ∈ H + K1.

This implies that K1 + H ⊆ H + K1. Consequently,
K1 + H = H + K1; this means that H commutes with K1.
Let L ≤ K and |L| = rm such that 0 ≤ m ≤ α, then L is a
r-subgroup of G and L ≤ W ′ ≤ H ≤ NG(H). Therefore,
L+H = H+L. Now, let L ≤ K and |L| = q, then L = (V ′)k

where k ∈ K . We know that K = W ′ + V ′(= V ′ + W ′),
so let k = x + w1 such that x ∈ V ′ and w1 ∈ W ′.
Therefore, (V ′)k = (V ′)x+w1 = (V ′)w1 . Let t ∈ L and
h ∈ H , then l + h = −w1 + (w1 + l − w1) + w1 + h =
−w1 + (w1 + l − w1) + h1, where h1 ∈ H . Therefore,
l + h = −w1 + h′ + m(w1 + l − w1), where h′ ∈ H and
m ∈ Zq. So, l + h = −w1 + h′ + w − 1 + ml − w1.
This yields l + h = −w1 + h′ + w1 + w′

1 + ml where
w′

1 ∈ W ′. Therefore, l + h = −w1 + h′ + w1 + w′
1 + ml ∈

H +L; this means that H commutes with L. Consequently,
H commutes with every subgroup of K . Let (w, (v, x)) ∈
G, then (w, (v, 0)) + (0, (0, x)) = (w + 0ψ−(v,0), (v, 0) +
(0, x)) = (w, (v, x)), where (w, (v, 0)) ∈ K and (0, (0, x)) ∈
H . This implies G = H + K , and the proof is
completed.

Theorem 5.2. Let the conditions of Theorem 5.1 be valid
and p, q to be not a divisor of r −1 and p to be not a divisor
of q −1. If the simple KY -module W will be faithful over K,
then H is not a supersoluble subgroup of G.

Proof. Let H be supersoluble. We also let |W | = rα

where α is a non-negative integer. If |W | = 1, then
Aut(W ) = 1; this means that Y = kerψ = 1 (because
W is a faithful simple KY -module over K), a contradic-
tion. Let |W | = r, then Aut(W ) ∼= Zr−1. Therefore,

Y
kerψ ↪→ Zr−1. This implies that Y ↪→ Zr−1, a contra-
diction. Thus, |W | = rα where α ≥ 2. If X is a maximal
subgroup of H , then by Huppert’s Theorem [7], |H : X|
is a prime, a contradiction. Therefore, X is not a maximal
subgroup of H . Let M be a maximal subgroup H such
that M contains X. Let |H : M| = p1 where p1 is a prime,
and let |M| = pk where k ∈ Z, then|H : M| = p1,
so p1|rα . This implies that p1 = r. So, |M| = prα−1.
Let |CoreH(M)| = rmpn where 0 ≤ n ≤ 1 and 0 ≤
m ≤ α − 1. On the other hand, H

CoreH (M)
↪→ S|H :M|

where S|H :M| is the symmetric group on |H : M| letters.
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Therefore, rα−mp1−n|r!. If α−m ≥ 2, then r2|rα−mp1−n|r!,
a contradiction. So, α − m = 1; this means that
|CoreH(M)| = rα−1pn. If n = 1, then M = CoreH(M).
This yields M � H . If n = 0, then |CoreH(M)| = rα−1.
So, | H

CoreH (M)
| = pr. On the other hand, | M

CoreH (M)
| = p.

Therefore, M
CoreH (M)

∈ Sylp(
H

CoreH (M)
) and np(

H
CoreH (M)

)|r,
then np(

H
CoreH (M)

) = 1; this implies that M
CoreH (M)

�
H

CoreH (M)
. So, M � H . Therefore, M is supersoluble. If

α = 2, then |M| = pr. We know that X ∈ Sylp(M) and
np(M) = 1, then X � H , a contradiction. So, α ≥ 3.
X is not a maximal subgroup of M. Therefore, M has
a maximal subgroup M1 such that X ≤ M1. Similarly,
we prove that s|M1| = pqα−2 and M1 � M. Let M0(=
M), ..., Mα−2 be subgroups of G such that X ≤ Mi and
Mi � Mi−1 and |Mi| = prα−i−1, (i = 1, ..., α − 2). So,
|Mα−2| = pr. Therefore, np(Mα−2) = 1 and X ≤ Mα−2,
then X ∈ sylp(Mα−2). This means that XchMα−2 � Mα−3,
so X � Mα−3. Inductively, we have XchM � H . So, X �
H , a contradiction. Consequently, we imply that H is not
supersoluble.

Theorem 5.3. Let p,q be primes such that p < q. Let G
be a finite group and W,X be subgroups of G such that G =
WX and |W | = qα(α ∈ N) and |X| = p. Also, let W be an
abelian subgroup of G. If [ W , X] < W , then GU < W .

Proof. Let T =[ W , X], so T =[ W , X]�< W , X >= G.
Let w ∈ W and x ∈ T ; therefore, [ wT , xT] = T . Thus,
[ W

T , XT
T ] = 1, then W

T ≤ CG
T
(XT

T ). If |X ∩ T | = p, then
X ∩ T = X; this means that X ≤ T , a contradiction. Con-
sequently, |X ∩ T | = 1. This yields |XT

T | = p, then XT
T is

abelian. So, XT
T ≤ CG

T
(XT

T ). On the other hand, nq(G) = 1.
We have G

T = W
T

XT
T ≤ CG

T
(XT

T ); this yields G
T = CG

T
(XT

T ),
so XT

T � G
T . So, G

T ∈ U; therefore, GU ≤ T < W , and the
proof is completed.

Proposition 5.4. Let p be a prime, K = GF(p), H be a
finite group, and W be an irreducible KH-module. Then,
G = W �ϕ H is a group such that for all h ∈ H, ϕ(h) = ϕh
and for all w ∈ W wϕh = wh(= w(1K h)), and W also is a
minimal normal subgroup of G.

Proof. It is easy to verify that the ϕ is well defined; this
means that for every h ∈ H , ϕh ∈ Aut(W ). Thus, G is a
group, and W ′ = {(w, 0)|w ∈ W } is a normal subgroup
of G. Let T � G and T ≤ W ′ and also W1 = {w ∈
W |(w, 0) ∈ T}; this implies that W1 ≤ W . G1 = T +H1 ≤
G where H1 = {(0, h)|h ∈ H}. Let w ∈ W1 and h ∈ H .
So, (0, −h) + (w, 0) = (wϕh, −h) ∈ G1, and this yields
(wϕh, 0) ∈ T , so wϕh ∈ W1. Let a be an arbitrary element
of K. w (1K h + ... + 1K h)︸ ︷︷ ︸

a times

= w(1K h)+ ... + (1K h) = wϕh +

...+wϕh ∈ W1. So, w(ah) ∈ W1. Now, let w1 ∈ W and λ =∑
h∈H

ahh ∈ KH , then wλ = ∑
x∈H

wλx such that λx = ∑
h∈H

bx
hh

where bx
h =

{
axh = x
0h 
= x

. So, wλx = w(axx); therefore,∑
x∈h

wλx = ∑
x∈H

w(axx) = w(
∑
x∈h

axx) = wλ. This means

that for every w ∈ W and λ = ∑
x∈H

axx, wλ = ∑
x∈H

w(axx).

Thus, for all x ∈ H and for all w ∈ W1, w(axx) ∈ W1. So,
wλ ∈ W1; this means that W1 is a KH-module. So, either
W1 = 0 or W1 = W because W is an irreducible KH-
module and W1 ≤ W . Therefore, either T = 0 or T = W ′;
this implies that W ′ is a minimal normal subgroup of
G.

Theorem 5.5. By hypothesis of Theorem 5.1, GU = W ′
such that W ′ = {(w, (0, 0))|w ∈ W }.

Proof. We know that |Y | = pq, then if M is a maxi-
mal subgroup of Y, then either |M| = p or |M| = q. By
Huppert’s Theorem [7], Y is supersoluble. On the other
hand, G

W ′ ∼= Y , so G
W ′ is supersoluble, and then, GU ≤ W ′.

We know that GU 
= 1(because by Theorem 5.2, H is not
a supersoluble subgroup of G), by Proposition 5.4, W ′ is a
minimal subgroup of G, then GU = w′.

Proposition 5.6. [5]. Let V be a simple KG-module, let
N � G, and let W be a simple submodule of VN . Then, the
subset Wg = {wg|w ∈ W } of V is a simple submodule of
VN , and V = ⊕

g∈G
Wg. In particular, VN is a semisimple

KN-module.

Proposition 5.7. (Proposition 3.2 in [9]). Let M be an
R-module. Then, the following statements are equivalent:

(a) M has a family {Si}i∈I of simple submodules such
that M = ⊕

i∈I
Si(d.s);

(b) M has a family of simple submodules whose sum is
M itself;

(a) every submodule of M is a direct summand of M.

Theorem 5.8. Let the hypothesis of Theorem 5.1 be
valid. Then, K ∈ U.

Proof. We know that |K | = rαq where α ∈ N. If α = 1,
then by Huppert’s Theorem [7], K ∈ U. Let α ≥ 2 and W1
be a simple KV -module of WV where WV is a semisim-
ple KV -module. By Proposition 4.8, DimK (W1) = 1.
Therefore, |W1| = r. By Clifford’s Theorem [5,10], W =⊕
y∈Y

W1y such that for all y ∈ Y , W1y is a simple KV -

module of WV . By Proposition 5.7, W = ⊕
i∈I

W1yi(d.s)
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where {yi|i ∈ I} ⊆ Y . So |W | = | ⊕
i∈I

W1yi| = r|I|. If |W | =
rα , then |I| = α. Therefore, WV has a KV -module W ′ such
that |W ′| = rα−1. Now, let M be a maximal subgroup of K
such that |M| = qγ rβ where 0 ≤ β ≤ α and 0 ≤ γ ≤ 1.
If γ = 0, then |M| = rβ . We know that nr(K) = 1 and M
is a r-subgroup of K , then M ≤ WI = {(w, (0, 0))|w ∈ W }.
Therefore, M = WI . Consequently, |K : M| = q. If γ = 1,
then |M| = rβq. Let β = 0, then |M| = q, so M = V k

I
where VI = {(0, (v, 0))|v ∈ V } and k ∈ K . Therefore, VI
is a maximal subgroup of K . Let W ′

1 = {(w, (0, 0))|w ∈
W1}, then G1 = W ′

1 + VI is a subgroup of K . Conse-
quently, VI ≤ G1, a contradiction. Therefore, β ≥ 1. Let
W ′′ ∈ Sylr(M) and V1 ∈ Sylg(M), then M = W ′′ + V1.
This implies that M = W ′′ + (VI)k where k ∈ K . We
know that nr(K) = 1, then W ′′ ≤ WI ; on the other
hand, M−k = (W ′′)−k + VI . Let S = {w|(w, (0, 0)) ∈
(W ′′)−k}. Let w ∈ S and v ∈ V . (0, (−v, 0)) + (w, (0, 0)) =
(wψ(v,0), (−v, 0) + (0, 0)) = (wψ(v,0), (−v, 0)) ∈ M−k .
Therefore, there are w1 ∈ S and v1 ∈ V such that
(wψ(v,0), (−v, 0)) = (w1, (0, 0)) + (0, (v1, 0)). On the other
hand, (w1, (0, 0)) + (0, (v, 0)) = (w1, (0, 0) + (v1, 0)) =
(w1, (v1, 0)). So, wψ(v,0) = w1 ∈ S. Consequently, there
exists i ∈ I such that (W1yi)′ = {(w, (0, 0))|w ∈ W1yi} �
(W ′′)−k . Since, if for every i ∈ I, {(w, (0, 0)|w ∈ W1yi} ≤
(W ′′)−k then WI ≤ (W ′′)−k . Therefore, (w′′)−k = WI .
This yields β = α, and this means that M−k = K , a
contradiction. Since (W1yi)′ � (W ′)−k , this implies that
(W1yi)′ ∩ (W ′′)−k = 1. So, |(W1yi)′ + (W ′′)−k| = rβ+1.
Let G′ = ((W1yi)′ + (W ′′)−k) + VI ; the G′is a subgroup
of K . We know that |G′| = rβ+1q, M−k ≤ G′ and M−k

is a maximal subgroup of K . Consequently, G′ = K and
β + 1 = α. So, |M−k| = rα−1q and |K : M| = r. By
Huppert’s Theorem [7], K is supersoluble, and the proof is
completed.

Conclusions
All our previous results show that the subgroup K of the
finite group G = HK is a supersoluble subgroup of G, and
the subgroup H is not a supersoluble subgroup of G. Let
p, q, r be primes such that p < q < r, and p, q are not a
divisor of r − 1, and p is not a divisor of q − 1. Let X be a
group of order p, and let F = GF(q) and L = GF(r) such
that the filed F contains a primitive pth root of unity. Let V
be a simple FX-module, and let Y = V �X and W also be
a faithful simple LY -module. Let G = W �Y , H = W �X,
and K = W �V . Then, we determine that K is a supersol-
uble subgroup of G, and H is not a supersoluble subgroup
of G, and we also characterize the supersoluble residual of
group G.
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