

ORIGINAL RESEARCH

Open Access

Some properties of the supersoluble formation and the supersoluble residual of a group

Hassan Naraghi

Abstract

Purpose: In this paper, We determine the finite group G = HK such that K is a supersoluble subgroup of G, and H is not a supersoluble subgroup of G.

Methods: Let p, q, r be primes such that p < q < r, and p, q are not a divisor of r - 1, and p is not a divisor of q - 1. Let X be a group of order p, and let F = GF(q) and L = GF(r) such that the filed F contains a primitive pth root of unity. Let V be a simple FX-module, and let $Y = V \rtimes X$ and W also be a faithful simple LY-module. Let $G = W \rtimes Y$, $H = W \rtimes X$, and $K = W \rtimes V$.

Results: Then, we determine that *K* is a supersoluble subgroup of *G*, and *H* is not a supersoluble subgroup of *G*.

Conclusions: We characterize the supersoluble residual of group *G*.

Keywords: Supersoluble, Formation, \mathfrak{X} -residual, Supersoluble residual, FX-module

Introduction

This paper continues a thread of research in finite soluble groups initiated by Ballester-Bolinhes et al. [1]. It is shown in [2] that a finite group G, which is the product of two normal supersoluble subgroups, is supersoluble if and only if G' is nilpotent. Asaad and Shaalan (Theorem 3.8 in [3]) proved the following generalization of Baer's result:

Assume that a finite group G is the product of the supersoluble subgroups H and K. Assume further that G' is nilpotent. If H commutes with every subgroup of K and K commutes with every subgroup of H, then G is supersoluble.

They also prove an analogous result by considering K nilpotent instead of G' (Theorem 3.2). Later, Carocca [4] presented extensions of the preceding result considering p-supersolubility instead of supersolubility. Following Carocca [4], we say that the subgroups H and K of a group G are mutually permutable if H commutes with every subgroup of H and H and H and H are mutually permutable, we say that H is the mutually permutable product of the subgroups H and H.

It is known that the class $\mathfrak U$ of all finite supersoluble groups is a formation. This means that if a finite group G is supersoluble and N is a normal subgroup of G, then G/N is supersoluble, and if M and N are two normal subgroups of a finite group G, then $G/(M\cap N)$ is supersoluble, provided that G/M and G/N are supersoluble. Consequently, every finite group G has a smallest normal subgroup with a supersoluble quotient. This subgroup is called the supersoluble residual of G, and it is denoted by $G^{\mathfrak U}$. It is clear that $G^{\mathfrak U}$ is epimorphism-invariant, and so, it is a characteristic subgroup of G (see Lemma 2.4, Chapter II in [5]).

This paper focuses on the study of supersoluble subgroups and the supersoluble residual of the group G = [W][V]X as a semidirect product and considers the subgroups $H = W \rtimes X$ and $K = W \rtimes V$ of G such that X is the cyclic group of order p, and Y is an irreducible and faithful X-module over GF(q), and $Y = V \rtimes X$ is the corresponding semidirect product, and W is an irreducible and faithful Y-module over GF(r) such that p,q and r are primes. We determine that G is the mutually permutable product of the subgroups H and K. Moreover, H is not a supersoluble subgroup of G. On the other hand, $K \in \mathfrak{U}$ and $H^{\mathfrak{U}} < W$. However, $G^{\mathfrak{U}} = W$.

Correspondence: naraghi@mail.aiau.ac.ir Department of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian, Iran

Methods

Preliminaries

Whenever possible, we follow the notation and terminology of [5,6]. All groups considered are finite.

Definition 2.1. [4]. Let G be a group and H and K be subgroups of G. We say that H and K are mutually permutable if H commutes with every subgroup of K and K commutes with every subgroup of H.

Definition 2.2. [5]. A class of groups is a collection \mathfrak{X} of groups with the property that if $G \in \mathfrak{X}$ and if $H \cong G$, then $H \in \mathfrak{X}$. We will often use the term \mathfrak{X} -group to describe a group belonging to \mathfrak{X} .

Class $\mathfrak U$ denotes the class of finite supersoluble groups.

Definition 2.3. [5]. If \mathfrak{X} and \mathfrak{I} are classes of groups, we define their class product \mathfrak{XI} as follows:

 $\mathfrak{XI} = (G : G \text{ has a normal subgroup } N \in \mathfrak{X} \text{ with } G/N \in \mathfrak{I}).$

If $\mathfrak{X} = \emptyset$ or $\mathfrak{I} = \emptyset$, we have the obvious interpretation $\mathfrak{X}\mathfrak{I} = \emptyset$. For powers of a class, we set $\mathfrak{X}^0 = (1)$, and for $n \in \mathbb{N}$, make the inductive definition $\mathfrak{X}^n = (\mathfrak{X}^{n-1})\mathfrak{X}$.

Definition 2.4. [5].

(a) A class map c is called a closure operation if, for all classes $\mathfrak X$ and $\mathfrak I$, the following three conditions are satisfied:

Co1: $\mathfrak{X} \subseteq c\mathfrak{X}$ (we say c is expanding); Co2: $c\mathfrak{X} = c(c\mathfrak{X})$ (we say c is idempotent); Co3: If $\mathfrak{X} \subseteq \mathfrak{I}$, then $c\mathfrak{X} \subseteq c\mathfrak{I}$ (we say is monotonic).

- (b) A class \mathfrak{X} is said to be \mathtt{c} -closed if $\mathfrak{X} = \mathtt{c}\mathfrak{X}$. (If \mathtt{c} is a closure operation, it is clear from Co2 that $\mathtt{c}\mathfrak{I}$ is \mathtt{c} -closed for any class \mathfrak{I} .) We adopt the convention that the empty class \emptyset is \mathtt{c} -closed for every closure operation \mathtt{c} .
- (c) The product AB of two class maps is defined by composition; thus,

$$(AB) \mathfrak{X} = A(B\mathfrak{X})$$

for all classes \mathfrak{X} .

Definition 2.5. [5]. For a class of groups, we define: $Q\mathfrak{X}=(G:\exists H\in\mathfrak{X} \text{ and an epimorphism from } H \text{ onto } G);$

$$R_0\mathfrak{X}=(G:\exists N_i \leq G(i=1,\ldots,r) \text{ with } G/N_i \in \mathfrak{X} \text{ and } \bigcap_{i=1}^r N_i=1);$$

 $E_{\phi}\mathfrak{X}=(G:\exists N \subseteq G \text{ with } N \subseteq \Phi(G) \text{ and } G/N \in \mathfrak{X}).$

Definition 2.6. [5]. A formation is a class of groups that is closed under both Q and R_0 .

Corollary 2.7. Let \mathfrak{X} be a class of groups, then \mathfrak{X} is a formation if and only if the following two conditions are satisfied for the class \mathfrak{X} :

- (1) If $G \in \mathfrak{X}$ and $N \subseteq G$, then $G/N \in \mathfrak{X}$.
- (2) If N_1 and N_2 are normal subgroups of group G such that $G/N_1 \in \mathfrak{X}$ and $G/N_2 \in \mathfrak{X}$ and $N_1 \cap N_2 = 1$, then $G \in \mathfrak{X}$.

Proof. Straightforward.

Definition 2.8. [5]. An E_{ϕ} -closed classs is called saturated.

Corollary 2.9. Let \mathfrak{X} be a formation. Then, \mathfrak{X} is saturated if and only if for all finite groups G, $G/\Phi(G) \in \mathfrak{X}$ implies $G \in \mathfrak{X}$.

Proof. Straightforward.

Some properties of the supersoluble formation

We study in this section some properties of the supersoluble formation $\mathfrak U$. The next result includes the definition of the $\mathfrak X$ -residual $G^{\mathfrak X}$ of a group G; it always exists if the class $\mathfrak X (\neq \emptyset)$ is R_0 -closed, and it is epimorphism-invariant when $\mathfrak X$ is a formation.

Corollary 3.1. *The class* \mathfrak{U} *is a saturated formation.*

Proof. By Huppert's Theorem [7], it is straightforward.

Lemma 3.2. (Lemma 2.4, Chapter II in [5]). Let \mathfrak{X} be an R_0 -closed class and G a finite group. Then the set $L = \{N \leq G : G/N \in \mathfrak{X}\}$, partially ordered by inclusion, has a unique minimal element, denoted by $G^{\mathfrak{X}}$ and called the \mathfrak{X} -residual of G. It is a characteristic subgroup, and if \mathfrak{X} is a formation and $\varepsilon : G \to \varepsilon(G)$ is an epimorphism, then $\varepsilon(G)^{\mathfrak{X}} = \varepsilon(G^{\mathfrak{X}})$.

Corollary 3.3. *Let G be a finite group. Then,*

- (1) If $H \subseteq G$ and $G/H \in \mathfrak{U}$, then $G^{\mathfrak{U}} \leq H$;
- (2) If $A \leq G$ and $H \leq G$, then $(\frac{HA}{A})^{\mathfrak{U}} = \frac{H^{\mathfrak{U}}A}{A}$;
- (3) If H < G, then $H^{\mathfrak{U}} < G^{\mathfrak{U}}$.

Proof. Straightforward.

Lemma 3.4. Let G be a finite group and H be a subgroup of G such that $(\frac{G}{A})^{\mathfrak{U}} = (\frac{HA}{A})^{\mathfrak{U}}$ where A is a normal subgroup of G. Then, $G^{\mathfrak{U}}A = H^{\mathfrak{U}}A$. Moreover, if $A \leq G^{\mathfrak{U}}$, then $G^{\mathfrak{U}} = H^{\mathfrak{U}}A$.

Proof. By Corollary 3.3, $(\frac{HA}{A})^{\mathfrak{U}} = \frac{H^{\mathfrak{U}}A}{A}$. On the other hand, $(\frac{G}{A})^{\mathfrak{U}} = (\frac{GA}{A})^{\mathfrak{U}} = \frac{G^{\mathfrak{U}}A}{A}$. So, $\frac{G^{\mathfrak{U}}A}{A} = \frac{H^{\mathfrak{U}}A}{A}$, and then, $G^{\mathfrak{U}}A = H^{\mathfrak{U}}A$. If $A \leq G^{\mathfrak{U}}$, then $G^{\mathfrak{U}} = G^{\mathfrak{U}}A$. Therefore, $G^{\mathfrak{U}} = H^{\mathfrak{U}}A$.

Proposition 3.5. Let G be a finite group, A be a minimal normal subgroup of G, and H be a subgroup of G. If $(\frac{G}{A})^{\mathfrak{U}} = (\frac{HA}{A})^{\mathfrak{U}}$, then either $A \leq G^{\mathfrak{U}}$ or $H^{\mathfrak{U}} = G^{\mathfrak{U}}$.

Proof. By Lemma 3.4, $G^{\mathfrak{U}}A = H^{\mathfrak{U}}A$. So $H^{\mathfrak{U}}(A \cap G^{\mathfrak{U}}) = H^{\mathfrak{U}}A \cap G^{\mathfrak{U}} = G^{\mathfrak{U}}A \cap G^{\mathfrak{U}} = G^{\mathfrak{U}}$; therefore, $H^{\mathfrak{U}}(A \cap G^{\mathfrak{U}}) = G^{\mathfrak{U}}$. On the other hand, $1 \leq A \cap G^{\mathfrak{U}} \leq A$ and $A \cap G^{\mathfrak{U}} \leq G$. So, either $A \cap G^{\mathfrak{U}} = A$ or $A \cap G^{\mathfrak{U}} = 1$, and the proof is completed.

The supersoluble residual of a group

All modules are right modules unless the contrary is stated.

Definition 4.1. A module is said to be simple (irreducible) if

(1) it is non-zero, and

and multiplication

(2) the only proper submodule that it possesses is the zero submodule.

An R-module M is called R-semisimple if M is a direct product of finitely many simple R-submodules.

Definition 4.2. [8]. If G is a group and R is any ring with an identity element, the group ring RG is defined to be the set of all formal sums $\sum_{x \in G} r_x x$ where $r_x \in R$ and $r_x = 0$ with finitely many exceptions, together with the rules of addition

$$(\sum_{x} r_x x) + (\sum_{x} r'_x x) = \sum_{x} (r_x + r'_x) x;$$

$$d$$

and

$$(\sum_{x} r_x x)(\sum_{x} r'_x x) = \sum_{x} (\sum_{yz=x} r_y r'_z) x.$$

It is very simple to verify with these rules that RG is a ring with identity element 1_R1_G , which is simply written as 1.

Remark 4.3. If F is a field, then FG, in addition to being a ring, has a natural F-module structure given by

$$f(\sum_{x} f_{x}x) = \sum_{x} (ff_{x})x, \qquad (f \in F).$$

Thus, FG is a vector space over F and $Dim_F(FG) = |G|$.

Definition 4.4. The product of all the abelian minimal normal subgroups of a group G is called the abelian component of the socle and is denoted by Soc(G).

Theorem 4.5. (Theorem 10.3, Chapter B in [5]). Let G be a finite group and K an arbitrary field. Then, the following conditions are equivalent:

- (a) *G* has a faithful simple module over *K*;
- (b) $Soc_{\mathfrak{U}}(G)$ has a subgroup N such that
 - (1) $Core_G(N)=1$, and
 - (2) $Soc_{\mathfrak{U}}(G)/N$ is cyclic and is a p'-group if char(K) = p > 0.

Corollary 4.6. Let p,q be primes and X be a group of order p. Let F be the Galois field F = FG(q). Then, X has a faithful simple module over F.

Lemma 4.7. Let F be a field and X be a finite group. If V is a irreducible FX-module, then V is a vector space over F of finite dimension.

Proposition 4.8. (Lemma 9.2, Chapter B in [5]). Let G be an abelian group of order n, let K be a field, and let V be a simple KG-module. If either

- (1) the polynomial $x^n 1$ splits into a product of linear factors in K[x] (in particular, if K contains a primitive K nth root of unity), or
- (2) V is absolutely irreducible,

then $Dim_K(V) = 1$.

Corollary 4.9. Let p,q be primes and X be a group of order p, let F=GF(q) and F contain a primitive pth root of unity. If V is a simple FX-module, then $Dim_F(V)=1$. Moreover, |V|=q.

Lemma 4.10. Let K be a field of prime characteristic p and G be a finite group. Let W be a KG-module. Then, W is an elementary abelian p-group.

Proof. For every
$$w \in W$$
, $pw = \underbrace{w + ... + w}_{p \ times} = w(1_F1_G) + ... + w(1_F1_G) = w(\underbrace{1_F1_G + ...1_F1_G}_{p \ times}) = w((1_F + ... + 1_F)1_G) = 0$. So, the abelian group $(W, +)$ is a p-elementary abelian group.

Results and discussion

Theorem 5.1. Let p,q,r be distinct primes such that p < q < r. Let X be a group of order p, and let F = GF(q) and

 $\overline{K} = GF(r)$ such that the field F contains a primitive pth root of unity. Let V be a simple FX-module over F, and let $Y = V \rtimes_{\varphi} X$ such that for all $x \in X$ and for all $v \in V$, $v\varphi_x = v_x (=v(1_Fx))$ where $\varphi_x \in Aut(V)$ and W also be a simple KY-module over \overline{K} . If $G = W \rtimes_{\psi} Y = \text{such that for}$ all $y \in Y$, $\psi(y) = \psi_y$, and for all $w \in W$, $w\psi_y = wy$ and $H = W \rtimes X$ and $K = W \rtimes V$. Then, G is the product of the mutually permutable subgroups H and K.

Proof. It is easy to verify that φ and ψ are well defined because, by Lemma 4.7, V is a vector space over \overline{K} of finite dimension, and W is a vector space over \overline{K} of finite dimension. By Lemma 4.10, $|W| = r^{\alpha}$ such that α is a nonnegative integer. On the other hand, by Corollary 4.9, |V| = q. Thus, $|G| = pqr^{\alpha}$ and $|H| = pr^{\alpha}$ and $|K| = qr^{\alpha}$. Therefore, |G:K| = p and $|K| = qr^{\alpha}$. Therefore, |G:K| = p and $|K| = qr^{\alpha}$ are unitary element of $|K| = qr^{\alpha}$. Let $|K| = qr^{\alpha}$ be an arbitrary element of $|K| = qr^{\alpha}$.

$$(0, (\nu, o)) + (\nu, (0, x)) = (\psi\psi_{-(\nu, 0)}, (\nu, 0) + (0, x))$$
$$= (\psi\psi_{-(\nu, 0)}, (\nu, x)).$$

Now, let $t \in \mathbb{Z}$, $w' \in W$ and $x' \in X$. Then,

$$(w', (0, x')) + (0, (tv, 0)) = (w' + 0\psi_{-(0, x')}, (0, x') + (tv, 0))$$

= $(w', ((tv)\varphi_{-x'}, x')).$

Let x' = x and $w' = w\psi_{-(\nu,0)}$. There is a $t \in \mathbb{Z}$ such that $\nu\varphi_x = t\nu$, $(t\nu)\varphi_x^{-1} = \nu$; this means that $(t\nu)\varphi_{-x} = \nu$. Therefore,

$$(0, (v, o)) + (w, (0, x)) = (w\psi_{-(v,0)}, (v, x))$$

$$= (w', ((tv)\varphi_{-x}, x)) = (w', (0, x)) + (0, (tv, 0))$$

$$= (w\psi_{-(v,0)}, (0, x)) + (0, (tv, 0))$$

$$= (w\psi_{-(v,0)}, (0, x)) + t(0, (v, 0)).$$

Let $h \in H$ and $v_1 \in V$, then $v_1 = mv$ where $m \in \mathbb{Z}_q$, so $v_1 + h = mv + h$. Consequently, $v_1 + h = (m-1)v + v + h$; therefore, $v_1 + h = (m-1)v + h' + tv$ where $t \in \mathbb{Z}$ and $h' \in H$. There is a $s \in \mathbb{Z}$ such that tv = s(mv), so $v_1 + h = (m-1)v + h' + s(mv)$. Therefore, $v_1 + h = h_1 + s'v_1$ where $h_1 \in H$ and $s' \in \mathbb{Z}$. Now, let $K_1 \leq K$ and $|K_1| = qr^{\beta}$ where $0 \le \beta \le \alpha$. We prove that *H* commutes with K_1 . Let $W' = \{(w, (0, 0)) | w \in W\}$ and $V' = \{(0, (v, 0)) | v \in V\}$ and $X' = \{(0, (0, x)) | x \in X\}$. We know that $W' \subseteq G$. Let $T \in Syl_r(K_1)$, then $n_r(K_1) = 1$. This means that $T \subseteq K_1$. Let $S \in Syl_q(K_1)$, then $S \in Syl_q(K)$. Therefore, $S = V'^k$ where $k \in K$. On the other hand, K = W' + V'. So, $k = w_1 + v_1$ such that $v_1 \in V'$ and $w_1 \in W'$; therefore, $V'^k = -\nu_1 - w_1 + V' + w_1 + \nu_1$. We know that $w_1 + v_1 = v_1 + w'_1$ where $w'_1 \in W'$, so $(V')^k = -(w_1 + w_1)^k = -(w_1 + w_2)^k =$ $(v_1) + V' + (w_1 + v_1) = -(v_1 + w'_1) + V' + (v_1 + w'_1) =$

 $-w'_1 - v_1 + V' + v_1 + w'_1 = w'_1 + V' + w_1 = (V')^{w'_1}$. Therefore, $S = (V')^{w'_1}$. $S \cap T = 1$, so $K_1 = S + T = T + S$. Let $h \in H$, $t \in T$, and $s \in S$, then T is a r-subgroup of Gand $T \leq \mathcal{N}_G(H)$. Therefore, (s+t) + h = s + (t+h) = $s + (h' + t) = -w'_1 + (w'_1 + s - w'_1) + w'_1 + (h' + t),$ where $h' \in H$. Let $h_1 = w'_1 + h'_1$ where $h_1 \in H$, then $(s+t) + h = -w'_1 + (w'_1 + s - w'_1) + h_1 + t = -w'_1 + t$ $h'_1 + m(w'_1 + s - w'_1) + t$ where $h'_1 \in H$ and $m \in \mathbb{Z}_q$. On the other hand, $m(w'_1 + s - w'_1) = w'_1 + ms - w'_1$ and $ms - w'_1 = w'' + ms$ where $w'' \in W'$. Therefore, $(s+t)+h=-w_1'+h_1'+w_1'+w''+ms+t\in H+K_1.$ This implies that $K_1 + H \subseteq H + K_1$. Consequently, $K_1 + H = H + K_1$; this means that H commutes with K_1 . Let $L \leq K$ and $|L| = r^m$ such that $0 \leq m \leq \alpha$, then L is a r-subgroup of G and $L \leq W' \leq H \leq \mathcal{N}_G(H)$. Therefore, L+H=H+L. Now, let $L \leq K$ and |L|=q, then $L=(V')^k$ where $k \in K$. We know that K = W' + V' (= V' + W'), so let $k = x + w_1$ such that $x \in V'$ and $w_1 \in W'$. Therefore, $(V')^k = (V')^{x+w_1} = (V')^{w_1}$. Let $t \in L$ and $h \in H$, then $l + h = -w_1 + (w_1 + l - w_1) + w_1 + h =$ $-w_1 + (w_1 + l - w_1) + h_1$, where $h_1 \in H$. Therefore, $l + h = -w_1 + h' + m(w_1 + l - w_1)$, where $h' \in H$ and $m \in \mathbb{Z}_q$. So, $l + h = -w_1 + h' + w - 1 + ml - w_1$. This yields $l + h = -w_1 + h' + w_1 + w'_1 + ml$ where $w_1' \in W'$. Therefore, $l + h = -w_1 + h' + w_1 + w_1' + ml \in$ H+L; this means that H commutes with L. Consequently, H commutes with every subgroup of K. Let $(w, (v, x)) \in$ G, then $(w, (v, 0)) + (0, (0, x)) = (w + 0\psi_{-(v,0)}, (v, 0) +$ (0,x)) = (w,(v,x)), where $(w,(v,0)) \in K$ and $(0,(0,x)) \in$ H. This implies G = H + K, and the proof is completed.

Theorem 5.2. Let the conditions of Theorem 5.1 be valid and p, q to be not a divisor of r-1 and p to be not a divisor of q-1. If the simple KY-module W will be faithful over K, then H is not a supersoluble subgroup of G.

Proof. Let H be supersoluble. We also let $|W| = r^{\alpha}$ where α is a non-negative integer. If |W| = 1, then Aut(W) = 1; this means that $Y = ker\psi = 1$ (because W is a faithful simple KY-module over K), a contradiction. Let |W| = r, then $Aut(W) \cong \mathbb{Z}_{r-1}$. Therefore, $\frac{Y}{keryl} \hookrightarrow \mathbb{Z}_{r-1}$. This implies that $Y \hookrightarrow \mathbb{Z}_{r-1}$, a contradiction. Thus, $|W| = r^{\alpha}$ where $\alpha \geq 2$. If X is a maximal subgroup of H, then by Huppert's Theorem [7], |H:X|is a prime, a contradiction. Therefore, X is not a maximal subgroup of H. Let M be a maximal subgroup H such that M contains X. Let $|H:M|=p_1$ where p_1 is a prime, and let |M| = pk where $k \in \mathbb{Z}$, then $|H| : M| = p_1$, so $p_1|r^{\alpha}$. This implies that $p_1 = r$. So, $|M| = pr^{\alpha-1}$. Let $|Core_H(M)| = r^m p^n$ where $0 \le n \le 1$ and $0 \le$ $m \leq \alpha - 1$. On the other hand, $\frac{H}{Core_H(M)} \hookrightarrow S_{|H:M|}$ where $S_{|H:M|}$ is the symmetric group on |H|: M letters.

Therefore, $r^{\alpha-m}p^{1-n}|r!$. If $\alpha-m \ge 2$, then $r^2|r^{\alpha-m}p^{1-n}|r!$, a contradiction. So, $\alpha - m = 1$; this means that $|Core_H(M)| = r^{\alpha-1}p^n$. If n = 1, then $M = Core_H(M)$. This yields $M \leq H$. If n = 0, then $|Core_H(M)| = r^{\alpha - 1}$. So, $|\frac{H}{Core_{H}(M)}| = pr$. On the other hand, $|\frac{M}{Core_{H}(M)}| = p$. Therefore, $\frac{M}{Core_{H}(M)} \in Syl_{p}(\frac{H}{Core_{H}(M)})$ and $n_{p}(\frac{H}{Core_{H}(M)})|r$, then $n_{p}(\frac{H}{Core_{H}(M)}) = 1$; this implies that $\frac{M}{Core_{H}(M)} \leq \frac{H}{Core_{H}(M)}$ $\frac{H}{Core_H(M)}$. So, $M \leq H$. Therefore, M is supersoluble. If $\alpha = 2$, then |M| = pr. We know that $X \in Syl_p(M)$ and $n_p(M) = 1$, then $X \leq H$, a contradiction. So, $\alpha \geq 3$. X is not a maximal subgroup of M. Therefore, M has a maximal subgroup M_1 such that $X \leq M_1$. Similarly, we prove that $s|M_1| = pq^{\alpha-2}$ and $M_1 \le M$. Let $M_0(=$ M), ..., $M_{\alpha-2}$ be subgroups of G such that $X \leq M_i$ and $M_i \leq M_{i-1}$ and $|M_i| = pr^{\alpha-i-1}$, $(i = 1, ..., \alpha - 2)$. So, $|M_{\alpha-2}| = pr$. Therefore, $n_p(M_{\alpha-2}) = 1$ and $X \leq M_{\alpha-2}$, then $X \in syl_p(M_{\alpha-2})$. This means that $XchM_{\alpha-2} \subseteq M_{\alpha-3}$, so $X \subseteq M_{\alpha-3}$. Inductively, we have $XchM \subseteq H$. So, $X \subseteq$ H, a contradiction. Consequently, we imply that H is not supersoluble.

Theorem 5.3. Let p,q be primes such that p < q. Let G be a finite group and W,X be subgroups of G such that G = WX and $|W| = q^{\alpha}(\alpha \in \mathbb{N})$ and |X| = p. Also, let W be an abelian subgroup of G. If [W,X] < W, then $G^{\mathfrak{U}} < W$.

Proof. Let T = [W,X], so $T = [W,X] \le \langle W,X \rangle = G$. Let $w \in W$ and $x \in T$; therefore, [wT,xT] = T. Thus, $[\frac{W}{T},\frac{XT}{T}] = 1$, then $\frac{W}{T} \le \mathcal{C}_{\frac{G}{T}}(\frac{XT}{T})$. If $|X \cap T| = p$, then $X \cap T = X$; this means that $X \le T$, a contradiction. Consequently, $|X \cap T| = 1$. This yields $|\frac{XT}{T}| = p$, then $\frac{XT}{T}$ is abelian. So, $\frac{XT}{T} \le \mathcal{C}_{\frac{G}{T}}(\frac{XT}{T})$. On the other hand, $n_q(G) = 1$. We have $\frac{G}{T} = \frac{W}{T}\frac{XT}{T} \le \mathcal{C}_{\frac{G}{T}}(\frac{XT}{T})$; this yields $\frac{G}{T} = \mathcal{C}_{\frac{G}{T}}(\frac{XT}{T})$, so $\frac{XT}{T} \le \frac{G}{T}$. So, $\frac{G}{T} \in \mathfrak{U}$; therefore, $G^{\mathfrak{U}} \le T < W$, and the proof is completed.

Proposition 5.4. Let p be a prime, K = GF(p), H be a finite group, and W be an irreducible KH-module. Then, $G = W \rtimes_{\varphi} H$ is a group such that for all $h \in H$, $\varphi(h) = \varphi_h$ and for all $w \in W$ $w\varphi_h = wh(= w(1_K h))$, and W also is a minimal normal subgroup of G.

Proof. It is easy to verify that the φ is well defined; this means that for every $h \in H, \varphi_h \in Aut(W)$. Thus, G is a group, and $W' = \{(w,0)|w \in W\}$ is a normal subgroup of G. Let $T \subseteq G$ and $T \subseteq W'$ and also $W_1 = \{w \in W | (w,0) \in T\}$; this implies that $W_1 \subseteq W$. $G_1 = T + H_1 \subseteq G$ where $H_1 = \{(0,h)|h \in H\}$. Let $w \in W_1$ and $h \in H$. So, $(0,-h)+(w,0)=(w\varphi_h,-h)\in G_1$, and this yields $(w\varphi_h,0)\in T$, so $w\varphi_h\in W_1$. Let a be an arbitrary element of K. $w(1_Kh+...+1_Kh)=w(1_Kh)+...+(1_Kh)=w\varphi_h+$

Theorem 5.5. By hypothesis of Theorem 5.1, $G^{\mathfrak{U}} = W'$ such that $W' = \{(w, (0, 0)) | w \in W\}$.

Proof. We know that |Y| = pq, then if M is a maximal subgroup of Y, then either |M| = p or |M| = q. By Huppert's Theorem [7], Y is supersoluble. On the other hand, $\frac{G}{W'} \cong Y$, so $\frac{G}{W'}$ is supersoluble, and then, $G^{\mathfrak{U}} \leq W'$. We know that $G^{\mathfrak{U}} \neq 1$ (because by Theorem 5.2, H is not a supersoluble subgroup of G), by Proposition 5.4, W' is a minimal subgroup of G, then $G^{\mathfrak{U}} = w'$.

Proposition 5.6. [5]. Let V be a simple KG-module, let $N \subseteq G$, and let W be a simple submodule of V_N . Then, the subset $W_g = \{wg | w \in W\}$ of V is a simple submodule of V_N , and $V = \bigoplus_{g \in G} W_g$. In particular, V_N is a semisimple KN-module.

Proposition 5.7. (Proposition 3.2 in [9]). Let M be an R-module. Then, the following statements are equivalent:

- (a) M has a family $\{S_i\}_{i\in I}$ of simple submodules such that $M=\bigoplus_{i\in I}S_i(d.s);$
- (b) M has a family of simple submodules whose sum is M itself:
- (a) every submodule of M is a direct summand of M.

Theorem 5.8. Let the hypothesis of Theorem 5.1 be valid. Then, $K \in \mathfrak{U}$.

Proof. We know that $|K| = r^{\alpha}q$ where $\alpha \in \mathbb{N}$. If $\alpha = 1$, then by Huppert's Theorem [7], $K \in \mathfrak{U}$. Let $\alpha \geq 2$ and W_1 be a simple $\overline{K}V$ -module of W_V where W_V is a semisimple $\overline{K}V$ -module. By Proposition 4.8, $Dim_K(W_1) = 1$. Therefore, $|W_1| = r$. By Clifford's Theorem [5,10], $W = \bigoplus_{y \in Y} W_1 y$ such that for all $y \in Y$, $W_1 y$ is a simple $\overline{K}V$ -module of W_V . By Proposition 5.7, $W = \bigoplus_{i \in I} W_1 y_i(d.s)$

where $\{y_i|i\in I\}\subseteq Y$. So $|W|=|\bigoplus_{i\in I}W_1y_i|=r^{|I|}$. If |W|= r^{α} , then $|I| = \alpha$. Therefore, W_V has a KV-module W' such that $|W'| = r^{\alpha - 1}$. Now, let M be a maximal subgroup of K such that $|M| = q^{\gamma} r^{\beta}$ where $0 \le \beta \le \alpha$ and $0 \le \gamma \le 1$. If $\gamma = 0$, then $|M| = r^{\beta}$. We know that $n_r(K) = 1$ and M is a *r*-subgroup of *K*, then $M < W_I = \{(w, (0, 0)) | w \in W\}.$ Therefore, $M = W_I$. Consequently, |K:M| = q. If $\gamma = 1$, then $|M| = r^{\beta}q$. Let $\beta = 0$, then |M| = q, so $M = V_L^k$ where $V_I = \{(0, (\nu, 0)) | \nu \in V\}$ and $k \in K$. Therefore, V_I is a maximal subgroup of K. Let $W_1' = \{(w, (0, 0)) | w \in \mathbb{R}^n\}$ W_1 }, then $G_1 = W'_1 + V_I$ is a subgroup of K. Consequently, $V_I \leq G_1$, a contradiction. Therefore, $\beta \geq 1$. Let $W'' \in Syl_r(M)$ and $V_1 \in Syl_q(M)$, then $M = W'' + V_1$. This implies that $M = W'' + (V_I)^k$ where $k \in K$. We know that $n_r(K) = 1$, then $W'' \leq W_I$; on the other hand, $M^{-k} = (W'')^{-k} + V_I$. Let $S = \{w | (w, (0,0)) \in V \}$ $(W'')^{-k}$. Let $w \in S$ and $v \in V$. (0, (-v, 0)) + (w, (0, 0)) = $(w\psi_{(\nu,0)},(-\nu,0)+(0,0))=(w\psi_{(\nu,0)},(-\nu,0))\in M^{-k}.$ Therefore, there are $w_1 \in S$ and $v_1 \in V$ such that $(w\psi_{(v,0)},(-v,0))=(w_1,(0,0))+(0,(v_1,0))$. On the other hand, $(w_1, (0,0)) + (0, (v,0)) = (w_1, (0,0) + (v_1,0)) =$ $(w_1, (v_1, 0))$. So, $w\psi_{(v,0)} = w_1 \in S$. Consequently, there exists $i \in I$ such that $(W_1y_i)' = \{(w, (0,0)) | w \in W_1y_i\} \nleq$ $(W'')^{-k}$. Since, if for every $i \in I$, $\{(w, (0,0)|w \in W_1y_i\} \le$ $(W'')^{-k}$ then $W_I \leq (W'')^{-k}$. Therefore, $(w'')^{-k} = W_I$. This yields $\beta = \alpha$, and this means that $M^{-k} = K$, a contradiction. Since $(W_1y_i)' \nleq (W')^{-k}$, this implies that $(W_1 y_i)' \cap (W'')^{-k} = 1$. So, $|(W_1 y_i)' + (W'')^{-k}| = r^{\beta+1}$. Let $G' = ((W_1 y_i)' + (W'')^{-k}) + V_I$; the G' is a subgroup of K. We know that $|G'| = r^{\beta+1}q$, $M^{-k} \leq G'$ and M^{-k} is a maximal subgroup of K. Consequently, G' = K and $\beta + 1 = \alpha$. So, $|M^{-k}| = r^{\alpha - 1}q$ and |K| : M| = r. By Huppert's Theorem [7], *K* is supersoluble, and the proof is completed.

Conclusions

All our previous results show that the subgroup K of the finite group G = HK is a supersoluble subgroup of G, and the subgroup H is not a supersoluble subgroup of G. Let p,q,r be primes such that p < q < r, and p,q are not a divisor of r-1, and p is not a divisor of q-1. Let X be a group of order p, and let F = GF(q) and L = GF(r) such that the filed F contains a primitive pth root of unity. Let V be a simple FX-module, and let $Y = V \rtimes X$ and W also be a faithful simple LY-module. Let $G = W \rtimes Y$, $H = W \rtimes X$, and $K = W \rtimes V$. Then, we determine that K is a supersoluble subgroup of G, and we also characterize the supersoluble residual of group G.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The Author would like to thank the referee for his/her useful and valuable suggestions and comments, which improved the quality of the paper.

Received: 28 June 2012 Accepted: 21 July 2012 Published: 19 September 2012

References

- Ballester-Bolinhes, A, Pedraza-Aguilera, MC, Pe'rez-Ramps, MD: On finite products of totally permutable group. Bull. Austral. Math. Soc. 53 441–445 (1996)
- Baer, R: Classes of finite groups and their properties. Illinois J. Math. 1, 115–187 (1957)
- Asaad, M, Shaalan, A: On the supersolvability of finite groups. Arch. Math. 53, 318–326 (1989)
- Carocca, A: p-supersolvability of factorized finite groups. Hokkaido Math. J. 21, 395–403 (1992)
- 5. Doerk, K, Hawkes, T: Finite soluble groups. De Gruyter, New York (1992)
- Ghalandarzadeh, SH, Malakoti Rad, P, Shirinkam, S: Multiplication modules and Cohens theorem. Mathematical Sci: QJ. 2(3), 251–260 (2008)
- Huppert, B: Normalteiler und maximale Untergruppen endlicher Gruppen. Math. Z. 60, 409–434 (1954)
- 8. Robinson, DJS: A course in the theory of groups. 2nd edn. Springer, New York (1996)
- Sharpe, DW, Vamos, P: Injective module. Cambridge University Press, Cambridge (1972)
- Mohamadzadeh, B, Yousofzadeh, A: A note on weak amenability of semigroup algebras. Mathematical Sci.: Q. J. 3(3), 241–246 (2009)

doi:10.1186/2251-7456-6-39

Cite this article as: Naraghi: Some properties of the supersoluble formation and the supersoluble residual of a group. *Mathematical Sciences* 2012 **6**:39.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com