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Abstract

not a supersoluble subgroup of G.

H=WxX,andK =W x V.

Purpose: In this paper, We determine the finite group G = HK such that K is a supersoluble subgroup of G, and H is

Methods: Letp, g, r be primes such that p < g < r,and p, g are not a divisor of r — 1, and p is not a divisor of g — 1.
Let X be a group of order p, and let f = GF(g) and L = GF(r) such that the filed F contains a primitive pth root of
unity. Let V be a simple FX-module, and let Y = V x X and W also be a faithful simple LY-module. Let G = W x Y,

Results: Then, we determine that K is a supersoluble subgroup of G, and H is not a supersoluble subgroup of G.
Conclusions: We characterize the supersoluble residual of group G.

Keywords: Supersoluble, Formation, X-residual, Supersoluble residual, FX-module

Introduction

This paper continues a thread of research in finite
soluble groups initiated by Ballester-Bolinhes et al.
[1]. It is shown in [2] that a finite group .G, which
is the product of two normal supersoluble sub-
groups, is supersoluble if and only if G’ is nilpotent.
Asaad and Shaalan (Theorem 3.8 in [3]) proved the
following generalization of Baer’s result:

Assume that a finite group G is the product of the
supersoluble subgroups H and K. Assume further that
G’ is nilpotent. If H commutes with every subgroup of
K and K commutes with every subgroup of H, then G is
supersoluble.

They also prove an analogous result by considering K
nilpotent instead of G’ (Theorem 3.2). Later, Carocca [4]
presented extensions of the preceding result consider-
ing p-supersolubility instead of supersolubility. Following
Carocca [4], we say that the subgroups H and K of a group
G are mutually permutable if H commutes with every
subgroup of K and K commutes with every subgroup of
H.1If G = HK and H and K are mutually permutable,
we say that G is the mutually permutable product of the
subgroups H and K.
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It is known that the class 4 of all finite supersoluble
groups is a formation. This means that if a finite group G is
supersoluble and N is a normal subgroup of G, then G/N
is supersoluble, and if M and N are two normal subgroups
of a finite group G, then G/(M N N) is supersoluble, pro-
vided that G/M and G/N are supersoluble. Consequently,
every finite group G has a smallest normal subgroup
with a supersoluble quotient. This subgroup is called the
supersoluble residual of G, and it is denoted by G*. It
is clear that G¥ is epimorphism-invariant, and so, it is a
characteristic subgroup of G (see Lemma 2.4, Chapter II
in [5]).

This paper focuses on the study of supersoluble sub-
groups and the supersoluble residual of the group G =
[ W] [ V] X as a semidirect product and considers the sub-
groups H = W x X and K = W x V of G such that X
is the cyclic group of order p, and V' is an irreducible and
faithful X-module over GF(g), and Y = V x X is the cor-
responding semidirect product, and W is an irreducible
and faithful Y-module over GF(r) such that p,q and r are
primes. We determine that G is the mutually permutable
product of the subgroups H and K. Moreover, H is not a
supersoluble subgroup of G. On the other hand, K € 4
and H* < W. However, G* = W.

© 2012 Naraghi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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Methods

Preliminaries

Whenever possible, we follow the notation and terminol-
ogy of [5,6]. All groups considered are finite.

Definition 2.1. [4]. Let G be a group and H and K be
subgroups of G. We say that H and K are mutually per-
mutable if H commutes with every subgroup of K and K
commutes with every subgroup of H.

Definition 2.2. [5]. A class of groups is a collection X of
groups with the property that if G € X and if H = G, then
H e X. We will often use the term X-group to describe a
group belonging to X.

Class 4l denotes the class of finite supersoluble groups.

Definition 2.3. [5]. If X and J are classes of groups, we
define their class product XJ as follows:

X3=(G : G has a normal subgroup N € X with G/N € 7).

If X = QorJ = 0, we have the obvious interpretation
XJ = §. For powers of a class, we set X° = (1), and for
n € N, make the inductive definition X" = & hHx,

Definition 2.4. [5].

(a) A class map c is called a closure operationif, for all
classes X and J, the following three conditions are
satisfied:

Col: X C cX (we say c is expanding);

Co2: cX = c(cX) (wessay ¢ is idempotent);

Co3: IfX C 7, then cX C cJ (we say is
monotonic).

(b) A class X is said to be c-closed if X = cX. (Ifc is a
closure operation, it is clear from Co2 that c7J is
c-closed for any class J.) We adopt the convention
that the empty class § is c-closed for every closure
operation c.

(c) The product AB of two class maps is defined by
composition; thus,

(AB) X = A(BX)
for all classes X.
Definition 2.5. [5]. For a class of groups, we define:
0X=(G: 3H € X and an epimorphism from H onto G);
r
RoX=(G: 3N; < G(i=1,...,r) with G/N; € X and ()

i=1
N; =1);
Eq)%:(G: AN < Gwith N < ®(G) and G/N € X).
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Definition 2.6. [5]. A formation is a class of groups that
is closed under both Q and Ry.

Corollary 2.7. Let X be a class of groups, then X is a
formation if and only if the following two conditions are
satisfied for the class X:

(1) IfG € X andN < G, then G/N € X.

(2) IfNjand N, are normal subgroups of group G such
that G/N; € X and G/Ny € X and N1 N Ny = 1,
then G € X.

Proof. Straightforward. O

Definition 2.8. [5]. An Ey—closed classs is called satu-
rated.

Corollary 2.9. Let X be a formation. Then, X is satu-
rated if and only if for all finite groups G, G/P(G) € X
implies G € X.

Proof. Straightforward. O
Some properties of the supersoluble formation
We study in this section some properties of the supersol-
uble formation 4. The next result includes the definition
of the X-residual G* of a group G; it always exists if the
class X(# 0) is Rp-closed, and it is epimorphism-invariant
when X is a formation.

Corollary 3.1. The class I\ is a saturated formation.

Proof. By Huppert’s Theorem [7], it is straightforward.
O

Lemma 3.2. (Lemma 2.4, Chapter II in [5]). Let X be
an Ro-closed class and G a finite group. Then the set L =
{N <4 G: G/N e X}, partially ordered by inclusion, has
a unique minimal element, denoted by G* and called the
X-residual of G. It is a characteristic subgroup, and if X is
a formation and ¢ : G — ¢(G) is an epimorphism, then
e(G)X = e(G%).

Corollary 3.3. Let G be a finite group. Then,

(1) IfH < G and G/H € 4, then G < H;
(2) IfA < GandH < G, then (HA)% = H1A,
(3) IfH < G, then H¥ < GY.

Proof. Straightforward. O

Lemma 3.4. Let G be a finite group and H be a subgroup
of G such that (%)u = (%)11 where A is a normal sub-
group of G. Then, GYA = HYA. Moreover, if A < GY, then
GY = HYA.



Naraghi Mathematical Sciences 2012, 6:39
http://www.iaumath.com/content/6/1/39

Proof. By Corollary 3.3, (]'IIT“‘)Ll = #. On the other

hand, (%)u = (%)Ll = %. So, # = #, and then,
GYA = HYA. If A < GY, then GY = GYA. Therefore,

GY = HYA. O

Proposition 3.5. Let G be a finite group, A be a minimal
normal subgroup of G, and H be a subgroup of G. If (%)Ll =

(HTA)H, then either A < G% or H¥ = G¥,

Proof. By Lemma 3.4, G¥A = H¥A. So HY(A N GY) =
HYANGY = GMA N GY = GY; therefore, H* (AN GY) =
G¥. Ontheotherhand, 1 < ANG¥ < Aand ANGH < G.
So, either AN GY = A or AN GY = 1, and the proof is
completed. O

The supersoluble residual of a group
All modules are right modules unless the contrary is
stated.

Definition 4.1. A module is said to be simple (irre-
ducible) if

(1) itis non-zero, and
(2) the only proper submodule that it possesses is the
zero submodule.

An R-module M is called R-semisimple if M is a direct
product of finitely many simple R-submodules.

Definition 4.2. [8]. If G is a group and R is any ring with
an identity element, the group ring RG is defined to be the

set of all formal sums Y, ryx where ry € R and ry= 0 with
x€G
finitely many exceptions, together with therules of addition

and multiplication
O rex) + Q_ry=> (ret rm
X X X

and

O rQ_rh) =D (O nrla.

x  yz=x
It is very simple to verify with these rules that RG is a

ring with identity element 1g1g, which is simply written
as 1.

Remark 4.3. IfF is a field, then FG, in addition to being
a ring, has a natural F-module structure given by

FO_fex) =Y (o (f € F).

Thus, FG is a vector space over F and Dimp(FG) = |G|.
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Definition 4.4. The product of all the abelian mini-
mal normal subgroups of a group G is called the abelian
component of the socle and is denoted by Soc(G).

Theorem 4.5. (Theorem 10.3, Chapter B in [5]). Let G be
a finite group and K an arbitrary field. Then, the following
conditions are equivalent:

(a) G has a faithful simple module over K;
(b) Socy((G) has a subgroup N such that

(1) Coreg(N)=1, and
(2) Socy(G)/N is cyclic and is a p’-group if
char(K) =p > 0.

Corollary 4.6. Let p,q be primes and X be a group of
order p. Let F be the Galois field F = FG(q). Then, X has a
Sfaithful simplemodule over E

Lemma 4.7. Let F be a field and X be a finite group. If V
is a irreducible FX-module, then V is a vector space over F
of finite dimension.

Proof. Straightforward. O

Proposition 4.8. (Lemma 9.2, Chapter B in [5]). Let G
be an abelian group of order n, let K be a field, and let V be
a simple KG-module. If either

(1) the polynomial x” — 1 splits into a product of linear
factors in K[x](in particular, if K contains a primitive
nth root of unity), or

(2) Visabsolutely irreducible,

then Dimg (V) = 1.

Corollary 4.9. Let p,q be primes and X be a group of
order p, let F=GF(q) and F contain a primitive pth root
of unity. If V is a simple FX-module, then Dimp(V)=1.
Moreover, |V| = q.

Lemma 4.10. Let K be a field of prime characteristic p
and G be a finite group. Let W be a KG-module. Then, W
is an elementary abelian p-group.

Proof. For every w € W, pw = wH..+w =
———

p times
w(lrlg) + ... + w(lplg) = w(lplg + ..1rlg) = w((1f +
——————
p times
.. + 1p)1g) = 0. So, the abelian group (W,+) is a
p-elementary abelian group. O

Results and discussion
Theorem 5.1. Let p,q,r be distinct primes such that p <
q < r. Let X be a group of order p, and let F = GF(q) and
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K = GF(r) such that the field F contains a primitive pth
root of unity. Let V be a simple FX-module over E and let
Y =V Xy X such that for all x € X and forallv € V,
vy = Vu(= v(1px)) where ¢, € Aut(V) and W also be a
simple KY-module over K. If G = W x1y, Y = such that for
ally € Y, ¥ (y) = ¥y, and for all w € W, wir, = wy and
H=WxXand K = W x V. Then, G is the product of
the mutually permutable subgroups H and K.

Proof. It is easy to verify that ¢ and v are well defined
because, by Lemma 4.7, V is a vector space over F of
finite dimension, and W is a vector space over K of finite
dimension. By Lemma 4.10, |W| = r* such that o is a
nonnegative integer. On the other hand, by Corollary 4.9,
|V| = q. Thus, |G| = pgr* and |H| = pr* and |K| = gr®.
Therefore, |G : K| = p and K < G. Therefore, K com-
mutes with every subgroup of H. Let x be an arbitrary
element of X and w be an arbitrary element of W. Let
V =< v >; then, O

0, (v, 0)) + W, (0,%)) = (WY—(,0), (v, 0) + (0,x))
= W¥_@,0), (V,%)).
Now, let t € Z,w' € W and x’ € X. Then,
W, (0,2))+ (0, (£v,0)) = (W + 0Y_(0x), (0, ") + (t1,0))
= (W, (tV)g_x,%)).

Let &' = x and W = wy_(,0). There is a't € Z such
that vpx = tv, (tv)p, I = y; this means that (tV)g_, = .
Therefore,

0, (v,0)) + W, (0,x)) = WY_,0), (V;¥))

= (W, (tV)¢_x,%)) = W, (0,%)) 4(0, (tv,0))
= W¥_@,0), (0,%))+ (0, (£v,0))

= W¥_@,0), (0,x)) + £(0, (v, 0)).

Let h € Hand vy € V, then vy = mv where m € Z, so
vi+h = mv+h. Consequently, vi +h = (m— 1)v+v+h;
therefore, vi + h = m — 1)v + h' + tv where t € 7Z
and #/ € H. There is a s € Z such that tv = s(mv), so
vi+h = m—1)v+Hh +s(mv). Therefore, vi+h = h1+5'v1
where 11 € H and s’ € Z. Now, let K; < K and |K7| = qrﬁ
where 0 < B8 < «. We prove that H commutes with Kj.
Let W' = {(w, (0,0))]w € W}and V' = {(0, (v,0))|v € V}
and X' = {(0, (0,x))|x € X}. We know that W’ < G. Let
T € Syl,(Ky), then n,(K;) = 1. This means that 7 < K.
Let S € Syly(Ky), then S € Syl;(K). Therefore, S = vk
where k € K. On the other hand, K = W’ + V’. So,
k = w; + v; such that vi € V' and w; € W/; there-
fore, V'K = —vi — w1 + V' + w1 + v1. We know that
w1 +v1 = vy + w) where w) € W, so (VHk = —(wy +
v)+ Vi +wi+v) =—-(+w)+V + 0 +w) =
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Wi+ V' +vi+w =w +V 4w = (V')"1. There-
fore, S = (V)".SNT =1,s0 K] =S+ T = T +8.
Leth € H,t € T,and s € S, then T is a r-subgroup of G
and T < Ng(H). Therefore, s +t) +h =s+ (t+h) =
s+ +t) = -wi+ W +s—wh+w+ U +0),
where /' € H. Let iy = w) + K} where h; € H, then
G+ +h=-wi+W +s—w)+h+t=-w +
Wy +mw, +s—w)) +twhere i € Hand m € Z,.
On the other hand, m(w] + s — w}) = w] + ms — w}
and ms — wy = w” 4 ms where w’ € W’. Therefore,
+t+h=—-w+h+w +w +ms+teH+Ki.
This implies that K; + H < H + Kj. Consequently,
K + H = H + Kj; this means that H commutes with Kj.
Let L < Kand |L| = rsuch thatQ < m < «, then Lisa
r-subgroup of Gand L < W' < H < Ng(H). Therefore,
L+H = H+L.Now,let L < Kand|L| = ¢, then L = (V')
where k € K. We know that K = W' + V'(= V' + W),
solet k = x4+ wysuchthat x € V' and w; € W'
Therefore, (V% = (V/)**"1 = (V)" Let t € L and
heHthenl+h=—w+wW+Il—w)+w+h=
—wi1 + (w1 + I — wy) + hy, where h; € H. Therefore,
Il+h=-w +W +mwi +1—wy), where /' € H and
m € Zg.Sopl+h = —wi+ W +w—1+ml— w.
This yields [ + 7 = —wy + i + w1 + w| + ml where
w) € W' Therefore, |+ h = —w1 + W + w1 +w| +ml €
H + L; this means that H commutes with L. Consequently,
H commutes with every subgroup of K. Let (w, (v,x)) €
G, then (Wx (V’ 0)) + (0: (0: x)) = (W + Ow—(V,O)’ (Vx 0) +
0,%)) = (w, (v,x)), where (w, (+,0)) € K and (0, (0,x)) €
H. This implies G = H + K, and the proof is
completed.

Theorem 5.2. Let the conditions of Theorem 5.1 be valid
and p, q to be not a divisor of r — 1 and p to be not a divisor
of g — 1. If the simple KY -module W will be faithful over K,
then H is not a supersoluble subgroup of G.

Proof. Let H be supersoluble. We also let |W| = r®
where o is a non-negative integer. If |[W| = 1, then
Aut(W) = 1; this means that Y = keryy = 1 (because
W is a faithful simple KY-module over K), a contradic-
tion. Let |W| = r, then Aut(W) = Z,_1. Therefore,
ﬁ <> Z,—1. This implies that Y < Z,_;, a contra-
diction. Thus, |W| = r* where o > 2. If X is a maximal
subgroup of H, then by Huppert’s Theorem [7], |H : X]|
is a prime, a contradiction. Therefore, X is not a maximal
subgroup of H . Let M be a maximal subgroup H such
that M contains X. Let |H : M| = p; where p; is a prime,
and let |[M| = pk where k € Z, then|H : M| = p,
so p1|r®. This implies that p; = r. So, |M| = pr*~L.
Let |Corey(M)| = r"p” where 0 < n < 1land 0 <
m < a — 1. On the other hand, W > S|H:M|
where S|zr.a7 is the symmetric group on |H : M| letters.
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Therefore, r""mpl’”lr!. Ifo —m > 2, then r2|r""mp1’”|r!,
a contradiction. So, « — m = 1; this means that
|Corey(M)| = r*“1p". If n = 1, then M = Corey(M).
This yields M < H. If n = 0, then |Corey(M)| = r*~ 1.
So, Iﬁml = pr. On the other hand, |%H(M)| =p

Therefore, %H(NI) € Sylp(ﬁ(m) and np(m)m
then ”P(%H(M)) 1; this implies that m
%}[(M). So, M < H. Therefore, M is supersoluble. If
a = 2, then [M| = pr. We know that X € Syl,(M) and
npy(M) = 1, then X < H, a contradiction. So, ¢ > 3.
X is not a maximal subgroup of M. Therefore, M has
a maximal subgroup M; such that X < M;j. Similarly,
we prove that s|M;| = 10q""2 and M; < M. Let My(=
M), ... My_3 be subgroups of G such that X < M; and
M; < M;_1 and |M;| = pr*= L (i = 1,..,a — 2). So,
|My—2| = pr. Therefore, ny,(My—2) = 1and X < My »,
then X € syl,(My_2). This means that XchMy_5 I My _3,
so X < M,_3. Inductively, we have XchM < H. So, X <
H, a contradiction. Consequently, we imply that H is not
supersoluble. O

Theorem 5.3. Let p,q be primes such thatp < q. Let G
be a finite group and W, X be subgroups of G such that G =
WX and |W| = q*(x € N) and | X| = p. Also, let W be an
abelian subgroup of G. If[ W, X] < W, then G* < W.

Proof. Let T =[ W, X],so T =[ W, X] << W, X >= G.
Let w € W and x e T; therefore, [ wT,xT] = T. Thus,
[%, 2= 1, then ¥ < CG(XT) If | X N T| = p, then
X N T = X; this means thatX < Tya contradiction. Con-
sequently, |X N T| = 1. This yields |XT| = p, then XT is
abelian. So, AT < CG( ). On the other hand, nq(G) =1

T
(XTT ) &5,

_ML
\X/ehaveT— T 7 < Cg

7 g % So, & 7 €4l therefore, GY < T < W, and the
proof is completed. O

this yields € 7=C g

Proposition 5.4. Let p be a prime, K = GF(p), H be a
finite group, and W be an irreducible KH-module. Then,
G = W gy H is a group such that for all h € H, p(h) =
and for allw € W wey = wh(= w(lgh)), and W also is a
minimal normal subgroup of G.

Proof. It is easy to verify that the ¢ is well defined; this
means that for every 1 € H,¢y € Aut(W). Thus, G is a
group, and W = {(w,0)|w € W} is a normal subgroup
of G.Let T < Gand T < W/ and also W7 = {w €
W|(w,0) € T}; this implies that W; < W.G; = T+ H; <
G where Hy = {(0,h)|h € H}. Let w € Wy and h € H.
So, (0,—h) + (w,0) = (wey, —h) € Gi, and this yields
(wen,0) € T, so wpy, € Wi. Let a be an arbitrary element
of K.w(Axh+ ...+ 1xh) = w(lgh) + ...+ (1xh) = woy, +

a times
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.+ woy € W1.So, w(ah) € Wi. Now,letw; € Wand A =
Y. aph € KH,thenwi = ) wh,suchthat i, = ) bjh

heH xeH heH
axh = x

where b’;l = . So, wAy = w(a,x); therefore,
0h # x

S why = Y w(agx) = w()_ awx) = whi. This means

xeh xeH xeh

that forevery w € Wand A = ) aux, wh = ) w(ax).

xeH xeH

Thus, for all x € H and for all w € W1, w(ayx) € Wi. So,
wl € Wi; this means that W7 is a KH-module. So, either
W1 = 0 or W7 = W because W is an irreducible KH-
module and W; < W. Therefore, either T = 0or T = W’;
this implies that W’ is a-minimal normal subgroup of
G. O

Theorem 5.5. By hypothesis of Theorem 5.1, G* = W'
such that W' ={(w, (0,0))|w € W}.

Proof. We know that |Y| = pg, then if M is a maxi-
mal subgroup of Y, then either |M| = p or |M| = q. By
Huppert’s Theorem [7], Y is supersoluble. On the other
hand, % =Y,so % is supersoluble, and then, Gt <w.
We know that GY # 1(because by Theorem 5.2, H is not
a supersoluble subgroup of G), by Proposition 5.4, W is a
minimal subgroup of G, then G% = w'. O

Proposition 5.6. [5]. Let V be a simple KG-module, let
N < G, and let W be a simple submodule of V. Then, the
subset Wy = {wglw € W} of Vis a simple submodule of

VN, and V. = @ W,. In particular, Vy is a semisimple
geG
KN-module.

Proposition 5.7. (Proposition 3.2 in [9]). Let M be an
R-module. Then, the following statements are equivalent:

(a) M has a family {S;}ies of simple submodules such
that M = @ S;(d.s);

iel
(b) M has a family of simple submodules whose sum is
M itself;
(a) every submodule of M is a direct summand of M.

Theorem 5.8. Let the hypothesis of Theorem 5.1 be
valid. Then, K € L.

Proof. We know that |K| = r*q where ¢ € N. If ¢ = 1,
then by Huppert’s Theorem [7], K € 4. Let @ > 2 and W
be a simple KV-module of Wy where Wy is a semisim-
ple KV-module. By Proposition 4.8, Dimxg(W7) = 1.
Therefore, |W;| = r. By Clifford’s Theorem [5,10], W =
@ Wiy such that for all y € Y, Wiy is a simple KV-

yeY
module of Wy . By Proposition 5.7, W = @ W1y;(d.s)
iel
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where {y;]i € I} € Y.So |[W| = | @ Wiy;| = 1L If | W] =
iel
r%, then |I| = a. Therefore, Wy has a KV-module W’ such
that |[W’'| = r*~1. Now, let M be a maximal subgroup of K
such that [M| = q”rﬂ where0 < f <aoand0 <y < 1.
If y = 0, then |M| = rP. We know that #,(K) = 1 and M
is a r-subgroup of K, then M < W; = {(w, (0,0))|w € W}.
Therefore, M = W;. Consequently, |[K : M| =q.If y =1,
then M| = rq. Let B = 0, then |M| = q,s0 M = Vf
where V; = {(0,(,0))|v € V} and k € K. Therefore, V;
is a maximal subgroup of K. Let W] = {(w, (0,0))|w €
Wi}, then G; = W7 + Vj is a subgroup of K. Conse-
quently, V; < Gy, a contradiction. Therefore, 8 > 1. Let
W € Syl.(M) and V1 € Syly(M), then M = W 4 V1.
This implies that M = W” + (V;)X where k € K. We
know that #,(K) = 1, then W’ < Wp; on the other
hand, M=% = (W")™F 4 V. Let S = {w|(w, (0,0)) €
(W")~k). Letw € Sand v € V. (0, (—=v,0)) + (w, (0,0)) =
W0, (—1,0) + (0,0) = (W0, (—1,0)) € M ¥
Therefore, there are w; € S and v; € V such that
W0y, (=v,0)) = (w1, (0,0)) + (0, (v1,0)). On the other
hand, (w1,(0,0)) + (0,(1,0)) = (w1,(0,0) + (v1,0)) =
(w1, (11,0)). So, w(,,0p = w1 € S. Consequently, there
exists i € I such that (W1y;)" = {(w, (0,0))|lw € Wiy} £
(W”)~k. Since, if for every i € I, {(w, (0,0)|w € Wiy} <
(WK then W; < (W”)~*. Therefore, W')~% = Wj.
This yields 8 = «, and this means that M™% = K, a
contradiction. Since (Wyy;)" £ (W' )%, this implies that
Wiy’ 0 (W)= = 1. So, [(Wiy)' + (W) =K'= P51
Let G' = (Wiy:) + (W")™%) + Vv ; the G'is a subgroup
of K. We know that |G'| = rftlgM% < G and M~*
is a maximal subgroup of K. Consequently, G = K and
B+1=a So, IM*| = *lgand |K : M| = r. By
Huppert’s Theorem [7], K is supersoluble; and the proof is
completed. O

Conclusions

All our previous results show that the subgroup K of the
finite group G = HK is a supersoluble subgroup of G, and
the subgroup H is not a supersoluble subgroup of G. Let
P, q,r be primes such that p < ¢ < r, and p, g are not a
divisor of r — 1, and p is not a divisor of g — 1. Let X be a
group of order p, and let F = GF(g) and L = GF(r) such
that the filed F contains a primitive pth root of unity. Let V
be a simple FX-module, and let Y = V' x X and W also be
a faithful simple LY-module.Let G = W x Y, H = W x X,
and K = W x V. Then, we determine that K is a supersol-
uble subgroup of G, and H is not a supersoluble subgroup
of G, and we also characterize the supersoluble residual of
group G.
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