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Abstract

In this paper, we obtain some fixed point results on subgraphs of directed graphs. We show that the Caristi fixed point
theorem and a version of Knaster-Tarski fixed point theorem are special cases of our results.
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Introduction
In 2005, Echenique started combining fixed point theory
and graph theory by giving a short constructive proof for
the Tarski fixed point theorem using graphs [1]. After-
wards, Espinola and Kirk applied fixed point results in
graph theory [2]. A considerable contribution was made
by Jachymski [3] and Beg et al. [4]. More recently, the
authors, by providing a new notion of (P)-graphs and
using arguments similar to those of Reich et al. [5-8], pre-
sented some iterative scheme results for G-contractive
and G-nonexpansive maps on graphs [9]. In this paper, we
obtain some fixed point results on subgraphs of directed
graphs. As some consequences of our results, we obtain
the Caristi fixed point theorem and Knaster-Tarski fixed
point theorem.

Let (X, d) be a metric space and G a directed graph G
such that V (G) = X and the set E(G) of its edges contains
all loops. We denote the conversion of a graph G by G−1,
that is, the graph obtained from G by reversing the direc-
tion of the edges. A mapping f : X → X preserves the
edges of G whenever (x, y) ∈ E(G) implies (fx, fy) ∈ E(G)

for all x, y ∈ X [3]. Since G is a directed graph, the direc-
tion of edge (x, y) is the inverse of the direction of edge
(y, x), that is, (x, y) �= (y, x). Let G be the directed graph.
A finite path of length n in G from x to y is a sequence
{xi}n

i=0 of distinct vertices such that x0 = x, xn = y, and
(xi, xi+1) ∈ E(G) for i = 0, 1, ..., n − 1 [9]. In fixed point
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theory, we like to deal with infinite graphs (see [9]). For
this reason, we consider infinite paths. In fact, B ⊆ E(G)

is an infinite path whenever there is a finite path between
any of its two vertices. Throughout this paper, a path could
be finite or infinite, and the vertices of the path are pair-
wise distinct. Also, we consider cycles as finite paths. We
denote by [ x]G the set of all vertices in G wherein there is
a (finite or infinite) path from those to x.

Let G′ be a subgraph of the directed graph G and x ∈ G′.
We emphasize that [x]G denotes the set of all vertices in
G wherein there is a path from those to x via the edges in
G. Also, we remind here that V (G′) ⊆ V (G) and E(G′) ⊆
E(G). Let G′ be a subgraph of the directed graph G. We say
that b ∈ G is an upper bound for G′ whenever g′ ∈ [b]G
for all g′ ∈ G′. Also, we say that c ∈ G is a supremum of
G′ whenever c ∈ [b]G for all upper bounds b. In fact, c is a
least upper bound in a sense.

Example 1.1. Let G be the directed graph via the
vertices V (G) = {a, b, c, d} and the edges E(G) =
{(a, b), (b, c), (c, d), (d, a)}. Suppose that G′ is a sub-
graph of G denied by V (G′) = {a, b, c} and E(G′) =
{(a, b), (b, c)}, then c, d are upper bounds of G′. Thus, an
upper bound is not unique in a subgraph necessarily.

Example 1.2. Let G be the directed graph via the vertices
V (G) = {0, 2, 1

n : n ≥ 1} and the edges E(G) = {( 1
n , 1

n+1 ) :
n ≥ 1}⋃{( 1

n , 0)}⋃
(0, 2)

⋃{( 1
n , 2) : n ≥ 1}. If V (G′) =

{0, 1
n : n ≥ 1} and E(G′) = {( 1

n , 1
n+1 )}, then 0 and 2 are

the supremum of G′. Thus, a supremum is not unique in a
subgraph necessarily.
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Let G be a directed graph and x0 ∈ G. We say that x0
is an end point whenever there is no x ∈ G such that
(x0, x) ∈ G and x �= x0. There are many directed graphs
via end points. In the following result, we give a class of
directed graphs which have end points. The proof of this
result is straightforward.

Lemma 1.1. Let G be the directed graph, X = V (G),
ϕ : X → R a function, E(G) = {(x, y) : d(x, y) ≤ ϕ(x) −
ϕ(y)}, and d a metric on X. If there exists x0 ∈ X such that
ϕ(x0) = infx∈X ϕ(x), then x0 is an end point of G.

Main results
Now we are ready to state and prove our main results. Let
G be the directed graph and M the set of all paths in G.
Then ⊆ is a partial order onM. By using Hausdorff ’s max-
imum principle, M has a maximal element. This means
that G has a maximal path. We use this subject in our
results.

Theorem 2.1. Let G be a directed graph such that every
path in G has an upper bound. Then G has an end point or
a cycle.

Proof. Suppose that G has no cycle. Let B be the max-
imal path in G and u an upper bond of B. If u is not
an end point, there exists x ∈ G such that x �= u and
(u, x) ∈ E(G). Thus, B

⋃{x} is a path in G and B ⊂ B
⋃{x}.

This contradiction shows that u is an end point of G.

Let G be a directed graph and T a selfmap on G. We say
that T is a self-path map whenever x ∈ [Tx]G for all x ∈ G.

Theorem 2.2. Let G be a directed graph. Then G has an
end point if and only if each self-path map on G has a fixed
point.

Proof. Suppose that G has an end point x0 and T is a self-
path map. We prove that x0 is a fixed point of T. Since x0 ∈
[Tx0]G, there is a (finite or infinite) path {λi}i≥0 between
x0 and Tx0. Since x0 is the end point of G and λ0 = x0, we
have x0 = λ1. By continuing this process, it is easy to see
that x0 = λi for all i. Thus, x0 = Tx0. Now assume that G
is a directed graph and each self-path map on G has a fixed
point but has no end point. Then for each x ∈ G, there
exists y ∈ G such that y �= x and (x, y) ∈ E(G). By using
the selection principle, we can define a selfmap T on G by
Tx = y. Note that T is a self-path map which has no fixed
point.

Example 2.1. Let G be the directed graph via the vertices
V (G) = {0, 1

n : n ≥ 1} and the edges E(G) = {( 1
n , 1

n+1 ) :
n ≥ 1} ⋃{( 1

n , 0)}⋃
(0, 1). Define the selfmap T on G by

T0 = 1 and T 1
n = 1

n+1 for all n ≥ 1. Then x ∈ [Tx]G for all
x ∈ G; T has no fixed point and G has no end point.

Theorem 2.3. Let G be a directed graph such that every
path in G has a supremum and T a selfmap on G such that
Tx ∈ [Ty]G for all x ∈ [y]G, G′ = {x ∈ G : x ∈ [Tx]G } �= ∅,
and G′ has no cycle. Then T has a fixed point in G′.

Proof. Suppose that B is a path in G and b is the supre-
mum of B in G. Since c ∈ [b]G for all c ∈ B, Tc ∈ [Tb]G and
so c ∈ [Tb]G. It follows that Tb is an upper bound for B.
Since b is the supremum, b ∈ Tb. Thus, b ∈ G′. By using
Theorem 2.1, G′ has an end point. Since x ∈ [Tx] for all
x ∈ G′, Tx ∈ [T2x]G and so T is a self-path map on G′.
Now by using Theorem 2.2, T has a fixed point in G′.

Now we show that a version of Knaster-Tarski fixed
point theorem is a consequence of Theorem 2.3.

Theorem 2.4. Let (X, �) be a partially ordered set such
that each chain in X has a supremum and T a monotone
selfmap on X. Assume that there exists a ∈ X such that
a � Ta. Then T has a fixed point.

Proof. Define the graph G by V (G) = X and E(G) =
{(x, y) : x � y and x �= y}. Then Tx ∈ [Ty]G for all x ∈ [y]G.
Since G′ = {x ∈ G : x ∈ [Tx]G } �= ∅ and G′ has no cycle,
by using Theorem 2.3, T has a fixed point.

Let X be a set and ϕ : X → (−∞, ∞) a map. Suppose
that G is the directed graph defined by V (G) = X and
E(G) = {(x, y) : d(x, y) ≤ ϕ(x) − ϕ(y)}. We say that ϕ

is lower semi-continuous whenever ϕ(x) ≤ ϕ(xn) for all
sequence {xn} in X with xn → x.

Lemma 2.5. Let X be a complete metric space and ϕ :
X → (−∞, ∞) a map bounded from below. Suppose
that G is the directed graph defined by V (G) = X and
E(G) = {(x, y) : d(x, y) ≤ ϕ(x) − ϕ(y)}. If ϕ is lower
semi-continuous, then G has an end point.

Proof. First we prove that G has no cycle. If G has a cycle,
then there exists a path {λi}n

i=1 in G such that λ1 = λn.
It is easy to check that d(λ1, λi) ≤ ϕ(λ1) − ϕ(λi) and
d(λi, λn) ≤ ϕ(λi) − ϕ(λn) for all i = 2, 3, ..., n − 1, and so
λi = λ1 for i ≥ 2. This contradiction shows that G has
no cycle. Now we prove that each path in G has an upper
bound. Let {xα}α∈� be a path in G. Then {ϕ(xα)}� is a
decreasing net of real numbers. Since ϕ is bounded from
below, there is an increasing sequence {αn}n≥1 in � such
that limn→∞ ϕ(xαn) = infα∈� ϕ(xα). One can easily show
that {xαn}n≥1 is a Cauchy sequence and so converges to
some x ∈ X. Since ϕ is lower semi-continuous, xαn ∈ [x]G
for all n ≥ 1. Thus, x is an upper bound for {xαn}n≥1.
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Now we show that x is an upper bound for {xα}α∈�. If
there exists β ∈ � such that xαn ∈ [xβ ]G for all n ≥ 1,
then ϕ(xβ) ≤ ϕ(xαn) for all n ≥ 1 which implies that
ϕ(xβ) = infα∈� ϕ(xα). Since d(xαn , xβ) ≤ ϕ(xαn) − ϕ(xβ),
we get xαn → xβ which implies that xβ = x. Hence,
ϕ(x) = infα∈� ϕ(xα). Now we claim that xα ∈ [x]G, and
so x is an upper bound for {xαn}n≥1. In fact if there is
α ∈ � such that x ∈ [xα]G, then d(x, xα) ≤ ϕ(x)−ϕ(xα) ≤
ϕ(xα) − ϕ(xα) = 0, and so x = xα . Since {xα}α∈� is a path
in G, if the last case does not hold, then for each α ∈ �

there exists n ≥ 1 such that xα ∈ [xαn ]G. Hence, xα ∈ [x]G
for all α ∈ �. Thus, x is an upper bound for {xα}α∈�. Now
by using Theorem 2.1, G has an end point.

Now we can consequent the Caristi fixed point theorem.

Theorem 2.5. Let X be a complete metric space, ϕ :
X → (−∞, ∞) a map bounded from below and lower
semi-continuous, and T : X → X a selfmap satisfying
d(x, Tx) ≤ ϕ(x) − ϕ(Tx) for all x ∈ X. Then T has a fixed
point.

Proof. Suppose that G is the directed graph via the ver-
tices V (G) = X and the edges E(G) = {(x, y) : d(x, y) ≤
ϕ(x) − ϕ(y)}. By using Lemma 2.5, G has an end point. It
is easy to see that T is a self-path map on G. Now by using
Theorem 2.2, T has a fixed point.
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