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In this paper, we obtain some fixed point results on subgraphs of directed graphs. We show that the Caristi fixed point
theorem and a version of Knaster-Tarski fixed point theorem are special cases of our results.

Introduction

In 2005, Echenique started combining fixed point theory
and graph theory by giving a short constructive proof for
the Tarski fixed point theorem using graphs [1]. After-
wards, Espinola and Kirk applied fixed point results in
graph theory [2]. A considerable contribution was made
by Jachymski [3] and Beg et al. [4]. More recently, the
authors, by providing a new notion of (P)-graphs and
using arguments similar to those of Reich et al. [5-8], pre-
sented some iterative scheme results for G-contractive
and G-nonexpansive maps on graphs [9]. In this paper, we
obtain some fixed point results onsubgraphs of directed
graphs. As some consequences of our results, we obtain
the Caristi fixed point theorem and Knaster-Tarski fixed
point theorem.

Let (X,d) be a metric space and G a directed graph G
such that V(G) = X and the set E(G) of its edges contains
all loops. We denote the conversion of a graph G by G,
that is, the graph obtained from G by reversing the direc-
tion of the edges. A mapping f : X — X preserves the
edges of G whenever (x,y) € E(G) implies (fx,fy) € E(G)
for all x,y € X [3]. Since G is a directed graph, the direc-
tion of edge (x,y) is the inverse of the direction of edge
(y,%), that is, (x,¥) # (y,x). Let G be the directed graph.
A finite path of length # in G from x to y is a sequence
{wi}iL of distinct vertices such that xo = x, x, = ¥, and
(x5, xi+1) € E(G) fori = 0,1,..,n — 1 [9]. In fixed point
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theory, we like to deal'with infinite graphs (see [9]). For
this reason, we consider infinite paths. In fact, B € E(G)
is an infinite path whenever there is a finite path between
any of its two vertices. Throughout this paper, a path could
be finite or infinite, and the vertices of the path are pair-
wise distinct. Also, we consider cycles as finite paths. We
denote by [ x]¢ the set of all vertices in G wherein there is
a (finite or infinite) path from those to x.

Let G’ be a subgraph of the directed graph Gandx € G'.
We emphasize that [x]g denotes the set of all vertices in
G wherein there is a path from those to x via the edges in
G. Also, we remind here that V(G') € V(G) and E(G) C
E(G). Let G’ be a subgraph of the directed graph G. We say
that b € G is an upper bound for G’ whenever g’ € [b]g
for all g’ € G'. Also, we say that ¢ € G is a supremum of
G’ whenever ¢ € [b]¢ for all upper bounds b. In fact, c is a
least upper bound in a sense.

Example 1.1. Let G be the directed graph via the
vertices V(G) = {a,b,c,d} and the edges E(G) =
{(a,b), (b,c), (c,d),(d,a)}. Suppose that G’ is a sub-
graph of G denied by V(G') = {a,b,c} and E(G) =
{(a, b), (b, c)}, then ¢, d are upper bounds of G'. Thus, an
upper bound is not unique in a subgraph necessarily.

Example 1.2. Let G be the directed graph via the vertices
V(G) ={0,2,% : n > 1} and the edges E(G) = {(5, 717) :
n = UG 01UODUIG,2) : n = 1L V(G) =
{0,% :n > 1} and E(G) = {(%, n%rl)}, then 0 and 2 are
the supremum of G'. Thus, a supremum is not unique in a
subgraph necessarily.
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Let G be a directed graph and xp € G. We say that xg
is an end point whenever there is no x € G such that
(x0,%) € G and x # xg. There are many directed graphs
via end points. In the following result, we give a class of
directed graphs which have end points. The proof of this
result is straightforward.

Lemma 1.1. Let G be the directed graph, X = V(G),
¢ : X = Roa function, E(G) = {(x,y) : d(x,y) < ¢(x) —
0}, and d a metric on X. If there exists xo € X such that
@ (x0) = infyex ¢ (x), then xg is an end point of G.

Main results

Now we are ready to state and prove our main results. Let
G be the directed graph and M the set of all paths in G.
Then C is a partial order on M. By using Hausdorff’s max-
imum principle, M has a maximal element. This means
that G has a maximal path. We use this subject in our
results.

Theorem 2.1. Let G be a directed graph such that every
path in G has an upper bound. Then G has an end point or
a cycle.

Proof. Suppose that G has no cycle. Let B be the max-
imal path in G and u an upper bond of B. If u is not
an end point, there exists x € G such that x # u and
(#,x) € E(G). Thus, B| J{x} is a path in G and B'C B J{x}.
This contradiction shows that « is an end pointof G. [

Let G be a directed graph and T a selfmap on G. We say
that T is a self-path map wheneverw € [Tx]¢ for allx € G.

Theorem 2.2. Let G be a directed graph. Then G has an
end point if and only if each self-path map on G has a fixed
point.

Proof. Suppose that G has an end pointxg and 7 is a self-
path map. We prove thatxy is a fixed point of 7. Since xy €
[Txo]G, there is a (finite or infinite) path {};};>0 between
x0 and Txy. Since xy is the end point of G and A9 = xp, we
have xop = 1. By continuing this process, it is easy to see
that xg = A; for all i. Thus, x9 = Txo. Now assume that G
is a directed graph and each self-path map on G has a fixed
point but has no end point. Then for each x € G, there
exists ¥y € G such that y # x and (x,y) € E(G). By using
the selection principle, we can define a selfmap 7 on G by
Tx = y. Note that T is a self-path map which has no fixed
point. O

Example 2.1. Let G be the directed graph via the vertices
V(G) = {0, : n > 1} and the edges E(G) = {(3;, ;57 :
n > 1} U{(%,O)} (J(0,1). Define the selfmap T on G by
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To = 1and T% = —L_foralln > 1. Then x € [Tx]g for all

n+1
x € G; T has no fixed point and G has no end point.

Theorem 2.3. Let G be a directed graph such that every
path in G has a supremum and T a selfmap on G such that
Tx € [Tyl forallx €[ylg, G ={x € G:x €[Txlg} # ¥,
and G' has no cycle. Then T has a fixed point in G'.

Proof. Suppose that B is a path in G and b is the supre-
mum of B in G. Since ¢ € [b]g for all c € B, Tc € [Th]g and
so ¢ € [Th]g. It follows that Tbh is an upper bound for B.
Since b is the supremum, b € Th. Thus, b € G'. By using
Theorem 2.1, G’ has an end point. Since x € [Tx] for all
x € G, Tx €[T%x]g and so T is a self-path map on G'.
Now by using Theorem 2.2, T has a fixed pointin G'. [

Now we show that a version of Knaster-Tarski fixed
point theorem is a consequence of Theorem 2.3.

Theorem 2.4. Let (X, <) be a partially ordered set such
that each chain in X has a supremum and T a monotone
selfmap on X. Assume that there exists a € X such that
a X Ta. Then T has a fixed point.

Proof. Define the graph G by V(G) = X and E(G) =
{(x,9) : x < yand x # y}. Then Tx € [T¥]; for all x € [y]g.
Since G’ = {x € G : x €[Tx]g} # ¥ and G’ has no cycle,
by using Theorem 2.3, T has a fixed point. O

Let X be asetand ¢ : X — (—00,00) a map. Suppose
that G is the directed graph defined by V(G) = X and
EG) = {(%y) : dxy) < ¢x) — ¢()}. We say that ¢
is lower semi-continuous whenever ¢(x) < ¢(x,) for all
sequence {x,} in X with x, — x.

Lemma 2.5. Let X be a complete metric space and ¢ :
X — (—00,00) a map bounded from below. Suppose
that G is the directed graph defined by V(G) = X and
EG) = {(xy) : dxy) < 9@ — o). If ¢ is lower
semi-continuous, then G has an end point.

Proof. First we prove that G has no cycle. If G has a cycle,
then there exists a path {A;}7 ; in G such that 1; = .
It is easy to check that d(A1,X;)) < @(Ad1) — @(X;) and
dhi, Ay) < (X)) — @(Ay) foralli = 2,3,...,n — 1, and so
Ai = A1 for i > 2. This contradiction shows that G has
no cycle. Now we prove that each path in G has an upper
bound. Let {xy}yecq be a path in G. Then {p(x,)}q is a
decreasing net of real numbers. Since ¢ is bounded from
below, there is an increasing sequence {a,},>1 in Q such
that lim,,_, o ¢ (%y,) = infyeq ¢(#y). One can easily show
that {xy,},>1 is a Cauchy sequence and so converges to
some x € X. Since ¢ is lower semi-continuous, x,, € [*]g
for all » > 1. Thus, x is an upper bound for {xq, },>1.
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Now we show that x is an upper bound for {xy}yecq. If
there exists 8 € Q such that x,, €[xglg foralln > 1,
then ¢(xg) < @(xy,) for all # > 1 which implies that
p(xp) = infyeq @(xq). Since d(xq,, %) < @(Xa,) — @(xp),
we get x4, — xg which implies that x5 = x. Hence,
¢x) = infyecq p(xy). Now we claim that x, € [x]g, and
so x is an upper bound for {xy,},>1. In fact if there is
o € Qsuchthatx € [xy]G, then d(x, xy) < @(x) —p(xy) <
©(xy) — @(xy) = 0, and so x = x. Since {xy}qeq is a path
in G, if the last case does not hold, then for each @ € Q
there exists n > 1 such that x, € [%q,]c. Hence, x4 € [¥]g
for all @ € Q. Thus, x is an upper bound for {xy }yco. Now
by using Theorem 2.1, G has an end point. O

Now we can consequent the Caristi fixed point theorem.

Theorem 2.5. Let X be a complete metric space, ¢
X — (—00,00) a map bounded from below and lower
semi-continuous, and T : X — X a selfmap satisfying
dx, Tx) < ¢(x) — @(Ix) for all x € X. Then T has a fixed
point.

Proof. Suppose that G is the directed graph via the ver-
tices V(G) = X and the edges E(G) = {(x,7) : d(x,y) <
@(x) — ¢(»}. By using Lemma 2.5, G has an end point. It
is easy to see that T is a self-path map on G. Now by using
Theorem 2.2, T has a fixed point. |
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