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Abstract

In this paper, for conformal mapping f , we study the membership of log f ′ to the QK(p, q)-type spaces of analytic
functions. Moreover, geometric conditions and some important characterizations involving the Schwarzian derivative
are also given.
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Introduction
Let D = {z ∈ C : |z| < 1} be the open unit disk of the
complex plane C. H(D) denotes the space of all analytic
functions in D, and dA(z) is the normalized area measure
on D so that A(D) ≡ 1.

Let Green’s function of D be defined as g(z, a) =
log 1

|ϕa(z)| , where ϕa(z) = z−a
1−āz , for z, a ∈ D is the Möbius

transformation related to the point a ∈ D. A complex-
valued function defined in D is said to be univalent if it
is analytic and one-to-one there. The class of all univalent
functions in D will be denoted by U . If f ∈ U , � = f (D),
and ∂� is a Jordan curve, then f : D → � is said to
be a conformal mapping, and so � is a simply connected
domain strictly contained in C.

For 0 < α < ∞, we say that an analytic function f on D

belongs to the space Bα (see [1]) if

‖f ‖Bα = sup
z∈D

(1 − |z|2)α|f ′(z)| < ∞.

Moreover, we say that f ∈ Bα belongs to the space Bα
0 if

lim|a|→1
(1 − |z|2)α|f ′(z)| = 0.

The space Bα is a Banach space under the norm ‖f ‖ =
|f (0) + ‖f ‖Bα . If α = 1, the space B1 is the Bloch space B
and the space B1

0 is the little Bloch space B0 (see [2]).
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Let K : [ 0, ∞) →[ 0, ∞) be a right-continuous and non-
decreasing function. For 0 < p < ∞, −2 < q < ∞, the
space QK (p, q) consists of all functions f ∈ H(D) (see [3]),
for which

‖f ‖p
QK (p,q)

=sup
a∈D

∫
D

|f ′(z)|p(1−|z|2)qK(g(z, a))dA(z)<∞.

Moreover, we say that f ∈ QK (p, q) belongs to the space
QK ,0(p, q) if

lim|a|→1

∫
D

|f ′(z)|p(1 − |z|2)qK(g(z, a))dA(z) = 0.

The definition of QK (p, q) here is based on K(g(z, a)).
There is a slightly different definition of QK (p, q) in the
literature that is based on K

(
1 − |ϕa(z)|2

)
. However, it

has been known that the two definitions are essentially
equivalent (see [4,5]). Equipped with the norm |f (0)| +
‖f ‖QK (p,q), the space QK (p, q) is a Banach space when
p ≥ 1. If q + 2 = p, QK (p, q) is Möbius-invariant, i.e.,

‖f ◦ ϕa‖QK (p,q) = ‖f ‖QK (p,q)

for all a ∈ D. The study of QK (p, q) space has mainly
been on understanding the relationship between the prop-
erties of K and the resulting spaces QK (p, q). For more
information about these spaces, we refer to [3,6-9].

Let f ∈ U . For a Banach space X ⊂ H(D), we say that
� = f (D) is an X-domain whenever log f ′ ∈ X. Many
such domains have been characterized in terms of the
Schwarzian derivative of a conformal map of D. Namely,
Becker and Pommerenke in 1978 characterized bounded
B0 domains (see [10]), and in 1991, Astal and Zinsmeister
gave a description of BMOA domains (see [11]). Also, Qp
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domains were characterized by Pau and Peláez in 2009
(see [12]) by using a method developed in 1994 by Bishop
and Jones (see [13]). Moreover, F(p, q, s) domains were
characterized by Zorboska in 2011 (see [14]).

The logarithm of the Schwarzian derivative of a univa-
lent function plays an important role in geometric func-
tion theory in the characterization of different types of
domains, and in its connections with the Teichmüller the-
ory. For example, one of the famous results in geometric
function theory by Astala and Gehring states that � =
f (D) is a quasi-disk, i.e., f has a quasiconformal exten-
sion to the complex plane if and only if log f ′ belongs
to one of the models of a Teichmüller space T(1) =
{log f ′ : f has a quasiconformal extension to D}, that is,
the Bloch norm interior of the set of all mappings log f ′,
with univalent function f (see [15]).

Analogously, f ∈ H(D) is called locally univalent if it is
injective in a neighborhood of each point of D, which is
further equivalent to f ′(z) �= 0. The Schwarzian derivative
of a locally univalent function was introduced by Chuaqui
and Osgood in [16].

In this paper we study the membership of log f ′ to
the general QK -type spaces QK (p, q) in terms of Car-
leson measures involving the Schwarzian derivative of f .
Moreover, we have given Schwarzian derivative character-
izations of the spaces SX = {log f ′ : f ∈ U , log f ′ ∈ X},
where X is either a QK (p, q) or QK ,0(p, q) space, contained
in the Bloch space.

Note that the space QK (p, q) includes the space BMOA
(the space of functions analytic on D and with bounded
mean oscillation on the unit circle), the class of so-called
Qs space, the class of (analytic) Besov spaces Bp, and the
general Besov-type spaces F(p, q, s). Thus, the results are
generalizations of the recent results due to Pau and Peláez
[12], Pérez-González and Rättyä [17], and Zorboska [14].

The letter C denotes a positive constant throughout the
paper which may vary at each occurrence. Throughout
this paper, we suppose that the nondecreasing function K
is differentiable and satisfies K(2t) ≈ K(t), that is, there
exist constants C1 and C2 such that C1K(2t) ≤ K(t) ≤
C2K(2t). Also, we assume that∫ 1

0
(1 − r2)qK

(
log 1/r

)
rdr < ∞. (1)

Otherwise, QK (p, q) is trivial, that is, QK (p, q) con-
tains constant functions only (see [8]). We know that
QK1(p, q) = QK2(p, q) for K2 = inf(K1(r), K1(1)) (see
[8], Theorem 3.1), and so the function K can be assumed
to be bounded. We know that QK (p, q) ⊂ B

q+2
p and

QK ,0(p, q) ⊂ B
q+2

p
0 (see [8]). Also, if∫ 1

0
(1 − r2)−2K

(
log 1/r

)
rdr < ∞,

then QK (p, q) = B
q+2

p and QK ,0(p, q) = B
q+2

p
0 (see [8]). In

order to obtain our main results in this paper, we define
an auxiliary function φK as follows:

φK (s) = sup
0<t<1

K(st)
K(t)

, 0 < s < ∞.

The following conditions play important roles in the
study of QK (p, q) space (see [3,8,18]):∫ 1

0
φK (s)

ds
s

< ∞ (2)

and that

sup
a∈D

∫
D

(1 − |z|2)p−2

|1 − āz|p K
(

log
1
|z|

)
dA(z) < ∞. (3)

We know that (2) implies (3) for 1 < p < ∞ (see [3]).
Throughout this paper, f (z) will be a conformal map-

ping, and we shall write h(z) =: log(f ′)(z). We denote by
Pf (z) the so-called pre-Schwarzian of f (z), i.e.,

Pf (z) =: h′(z) = f ′′(z)
f ′(z)

.

The Schwarzian derivative of a locally univalent function
f is

Sf (z) = P′
f (z)−

1
2

(
Pf (z)

)2 =
(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2
.

(4)

We list few properties of Pf (z) and Sf (z). For proofs and
more details, see [19].

(A) If f is univalent on D, then (1 − |z|2)|Pf (z)| ≤ 6 and
(1 − |z|2)2|Sf (z)| ≤ 6.

(B) If (1 − |z|2)|zPf (z)| ≤ 1 or (1 − |z|2)2|Sf (z)| ≤ 2,
then f is univalent on D.

(C) For h ∈ H(D), h ∈ B if and only if there exist w ∈ C

and a univalent f such that h = w log f ′.
(D) The Schwarzian derivative is Möbius-invariant in the

sense that Sϕa◦f = Sf , and it is also such that
(1 − |z|2)2|Sf ◦ϕa(z)| = (1 − |ϕa(z)|2)2|Sf (ϕa(z))|, for
every Möbius transformation ϕa(z)), a ∈ D.

For a subarc I ⊂ ∂D, the boundary of D, let

S(I) = {rζ ∈ D : 1 − |I| < r < 1, ζ ∈ I}.
If |I| ≥ 1, then we set S(I) = D. A positive measure μ is

said to be a bounded K-Carleson measure on D (see [18])
if

sup
I⊂ ∂ D

∫
S(I)

K
(

1 − |z|
|I|

)
dμ(z) < ∞.

Moreover, if

lim|I|→0

∫
S(I)

K
(

1 − |z|
|I|

)
dμ(z) = 0,

then μ is a compact K-Carleson measure.
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Clearly, if K(t) = tp, then μ is a bounded p-Carleson
measure on D if and only if (1 − |z|2) dμ is a bounded
p-Carleson measure on D (see [18]). The following lemma
is Corollary 3.2 in [18].

Lemma 1. Let K : [ 0, ∞) →[ 0, ∞) satisfy (2). Then a
positive measure μ on D is a K-Carleson measure if and
only if

sup
a∈D

∫
D

K
(
1 − |ϕa(z)|2

)
dμ(z) < ∞.

Next, for each n = 1, 2, . . . , from the dyadic Carleson
boxes

Qn,j =
{

z = reiθ ∈ D : 1 − 1
2n ≤ |z| < 1,

j
2n+1

≤ θ

π
<

j + 1
2n+1

}
, 0 ≤ j ≤ 2n+1,

of side-length 
(Qn,j) = 1
2n and their inner half

T(Qn,j) = Qn,j ∩ {z ∈ Qn,j : 1 − 1
2n ≤ |z| <

1
2

(Qn,j)}.

From [20], for a univalent function f, the given δ and ε will
be determined later. If Q is a dyadic Carleson box, we shall
say Q is bad if

sup
z∈T(Q)

(1 − |z|2)|Pf (z)| ≥ ε and sup
z∈T(Q)

(1 − |z|2)2|Sf (z)| ≤ δ.

We callQ a maximal bad square if the next bigger dyadic
square Q̃ containing Q has either 
(Q̃) = 1

2 or sup
z∈T(Q)

(1 −
|z|2)2|Sf (z)| > δ.

Lemma 2. [12] Let f be a univalent function on D, and
suppose that there exists z0 ∈ D such that |Sf (z0)|2(1 −
|z0|2) > δ. Then there is a positive constant c = c(δ) < 1
such that |Sf (z)|2(1 − |z|2) > δ

32 , whenever z ∈ D(z0, c(1 −
|z0|2)).

In the proof of Theorem 4, some sums of the type∑
j


[ K(Q)] will be estimated. One of them appears in the

following lemma.

Lemma 3. Let p, ε, δ be positive constants and K :
[0, ∞) →[0, ∞). Then there exists C1, C2 > 0 such that∑

j

[K(Qj)] ≤ C1

+ C2

∫
D

|Sf (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z).

(5)

Proof. Let Q be a maximal square with 
(Q) �= 1
2 . Then

Q̃ is a maximal bad square, and hence, there exists z0 ∈
T(Q̃) with

(1 − |z|2)2|Sf (z0)| > δ.

Then, by Lemma 2, there is a disk Dz0 = D(z0, c(1 −
|z0|2)) ⊂ T(Q̃) such that

(1 − |z|2)2|Sf (z)| >
δ

32
, for all z ∈ Dz0 .

Then


[ K(Q)] ≈ 
[ K(Q̃)] ≤
∫
Dz0

(1 − |z|2)−2K(1 − |ϕa(z)|2)dA(z)

≤ C
∫
Dz0

|Sf (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z).

Since any top half T(Q̃j) can appear only two times, and
since there are only two squares Q′ with 
(Q′) = 1

2 , then
(5) holds.

The nth derivative of QK (p, q) space
First, we give some equivalent conditions for the nth
derivative of QK (p, q) spaces.

Theorem 1. Let K : [ 0, ∞) →[ 0, ∞) satisfy (2), (3), 0 <

p < ∞ and −2 < q < ∞. Suppose that n is a positive
integer, and h ∈ H(D). Then the following statements are
equivalent:

(i) h ∈ QK (p, q);
(ii) |h(n)(z)|p(1 − |z|2)np−p+qdA(z) is a K-Carleson

measure;
(iii)

sup
a∈D

∫
D

|h(n)(z)|p(1−|z|2)np−p+qK(g(z, a))dA(z) < ∞;

(iv)

sup
a∈D

∫
D

|h(n)(z)|p(1 − |z|2)np−p+qK
(
1 − |ϕa(z)|2

)
× dA(z) < ∞.

Proof. (i) ⇔ (ii). This implication is an immediate conse-
quence of the corresponding part of the proof of Theorem
2 in [3].
(i) ⇔ (iii). Similarly as in the proof of Theorem 1 in [3],
the implication follows.
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(ii) ⇔ (iv). By Lemma 1 for dμ(z) = |h(n)(z)|p(1 −
|z|2)np−p+qdA(z), then μ is a K-Carleson measure if and
only if

sup
a∈D

∫
D

K
(
1 − |ϕa(z)|2

)
dμ(z)

= sup
a∈D

∫
D

|h(n)(z)|p(1 − |z|2)np−p+qK
(
1 − |ϕa(z)|2

)
× dA(z) < ∞.

Thus, the implication follows.

Theorem 1 has a corresponding ‘little-oh’ version in
terms of compact K-Carleson measure as follows:

Theorem 2. Let K : [ 0, ∞) →[ 0, ∞) satisfy (2), (3), 0 <

p < ∞ and −2 < q < ∞. Suppose that n is a positive
integer, and h ∈ H(D). Then the following statements are
equivalent:

(i) h ∈ QK ,0(p, q);
(ii) |h(n)(z)|p(1 − |z|2)np−p+qdA(z) is a compact

K-Carleson measure;
(iii)

lim|a|→1

∫
D

|h(n)(z)|p(1−|z|2)np−p+qK(g(z, a))dA(z) = 0;

(iv)

lim|a|→1

∫
D

|h(n)(z)|p(1 − |z|2)np−p+qK
(
1 − |ϕa(z)|2

)
× dA(z) = 0.

Now, we prove the following lemmas:

Lemma 4. Let K : [ 0, ∞) →[ 0, ∞) satisfy (2), (3), 1 ≤
p < ∞ and −2 < q < ∞ with q − p ≤ −2, and let
h = log f ′ ∈ B0. Then if |Sf (z)|p(1 − |z|2)p+qdA(z) is a K-
Carleson measure, we get that |Pf (z)|p(1 − |z|2)qdA(z) is
also a K-Carleson measure.

Proof. Recall that Sf (z) = P′
f (z) − 1

2
(
Pf (z)

)2,
that by Theorem 1, |Pf (z)|p(1 − |z|2)qdA(z) is a
K-Carleson measure if and only if |P′

f (z)|p(1 −
|z|2)p+qdA(z) is a K-Carleson measure, and that
(1 − |z|2)|Pf (z)| ≤ 6 for every z ∈ D. Thus, for any
1 ≤ p < ∞, we have

I(a) =
∫
D

|P′
f (z)|p(1 − |z|2)p+qK(1 − |ϕa(z)|2)dA(z)

≤ 2p−1
∫
D

|Sf (z)|p(1 − |z|2)p+qK(1 − |ϕa(z)|2)dA(z)

+ 1
2

∫
D

|Pf (z)|2p(1 − |z|2)p+qK(1 − |ϕa(z)|2)dA(z).

In what follows, we may assume that Pf is continuous on
D (the closed unit disk), for if not, we can use instead the
dilatations (Pf )r(z) = Pf (rz), and then at the end of the
proof, take r → 1.

Since h = log f ′ ∈ B0, for any ε > 0 there exists rε such
that whenever |z| > rε , we have |Pf (z)|(1 − |z|2) < ε, and∫

D

|Pf (z)|2p(1 − |z|2)p+qK(1 − |ϕa(z)|2)dA(z)

=
∫

|z|>rε
|Pf (z)|2p(1 − |z|2)p+qK(1 − |ϕa(z)|2)dA(z)

+
∫

|z|≤rε
|Pf (z)|2p(1 − |z|2)p+qK(1 − |ϕa(z)|2)dA(z)

= I1(a) + I2(a).
Thus, for some C = C(p, q), we have

I1(a) =
∫

|z|>rε
|Pf (z)|2p(1 − |z|2)p+qK(1 − |ϕa(z)|2)dA(z)

≤ εp
∫
D

|Pf (z)|p(1 − |z|2)qK(1 − |ϕa(z)|2)dA(z)

≤ Cεp
∫
D

|P′
f (z)|p(1 − |z|2)p+qK(1 − |ϕa(z)|2)dA(z)

= CεpI(a).

On the other hand, since q − p ≤ −2, for every a ∈ D we
have

I2(a) =
∫

|z|≤rε
|Pf (z)|2p(1 − |z|2)p+qK(1 − |ϕa(z)|2)dA(z)

≤ 62p
∫

|z|≤rε
(1 − |z|2)q−pK(1 − |ϕa(z)|2)dA(z)

≤ 62p

(1 − rε
2)p−q .

Choose ε that is small enough such that 1 − Cεp

2 > 0.
Then, since(

1 − Cεp

2

)
I(a) ≤ 2p−1

∫
D

|Sf (z)|p(1 − |z|2)p+q

K(1 − |ϕa(z)|2)dA(z) + 62p

2(1 − rε
2)p−q ,

(6)

and since |Sf (z)|p(1 − |z|2)p+qdA(z) is a K-Carleson mea-
sure, taking supremum over a ∈ D on both sides of (6), we
get

sup
a∈D

I(a)=sup
a∈D

∫
D

|P′
f (z)|p(1−|z|2)p+qK(1−|ϕa(z)|2)dA(z)<∞.

It follows by Theorem 1 that |Pf (z)|p(1−|z|2)qdA(z) is also
a K-Carleson measure, and the proof is completed.

Now we give the following result.

Proposition 1. Let K : [ 0, ∞) →[ 0, ∞) satisfy (2), (3),
1 ≤ p < ∞ and −2 < q < ∞. If h = log f ′ ∈ QK (p, q),
then |Sf (z)|p(1 − |z|2)p+qdA(z) is a K-Carleson measure.
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Proof. Since f is univalent,

‖ log f ′‖B = sup
a∈D

(1 − |z|2)|Pf (z)| ≤ 6.

Thus by Theorem 4 with n = 1 and h = log f ′, we have
h = log f ′ ∈ QK (p, q) if and only if

|Pf (z)|p(1 − |z|2)qdA(z) is a K-Carleson measure. (7)

Using Theorem 4 with n = 2, this is further equivalent
to

|P′
f (z)|p(1−|z|2)p+qdA(z) being a K-Carleson measure.

(8)

For p ≥ 1, we get

|Sf (z)|p ≤ 2p−1|P′
f (z)|p + 1

2
|Pf (z)|2p.

Thus,

|Sf (z)|p(1 − |z|2)p+q ≤ 2p−1|P′
f (z)|p(1 − |z|2)p+q

+ 1
2
‖ log f ′‖B|Pf (z)|p(1 − |z|2)q.

By (7) and (8) we have |Sf (z)|p(1 − |z|2)p+qdA(z) as a K-
Carleson measure. The proof is completed.

Schwarzian derivative and K-Carleson measure
In this section, we give Schwarzian derivative characteri-
zations of the spaces SX = {log f ′ : f ∈ U , log f ′ ∈ X},
where X is either a QK (p, q) or QK ,0(p, q) space, con-
tained in the Bloch space. Note that since QK (p, q) ⊂ B0
whenever q + 2 < p, or q + 2 = p and K(0) > 0,
and QK ,0(p, q) ⊂ B0 whenever q + 2 ≤ p, we have
SX ∩ T(1) = SX , where X is one of these spaces and
T(1) = {log f ′ : f has a quasiconformal extension to D}.
Thus, the main interests are the leftover options, i.e., the
cases when X = QK (p, p − 2), K : [ 0, ∞) →[ 0, ∞), and
1 ≤ p < ∞, which are all Möbius-invariant QK (p, p − 2)

space.

Theorem 3. Let K : [ 0, ∞) →[ 0, ∞) satisfy (2), (3),
1 ≤ p < ∞ and −2 < q < ∞, further satisfying either
q + 2 < p, or q + 2 = p and K(t) = 1. Then the following
conditions are equivalent:
(i) log f ′ ∈ QK (p, q).
(ii) log f ′ ∈ B0 and |Sf (z)|p(1 − |z|2)p+qdA(z) is a
K-Carleson measure.

Proof. Recall that for the general choice of p, q and K
satisfying (2) and (3), log f ′ ∈ QK (p, q) ⊂ B

q+2
p . Thus, if

q + 2 < p,QK (p, q) ⊂ Bα , with 0 < α < 1, which is a
subspace of B0. Thus, the proof of (i)⇐⇒ (ii) follows from
Lemma 4 and Proposition 1.

The case q + 2 = p and K(t) = 1, i.e., the case of the
Besov spaces Bp, 1 < p < ∞, follows similarly, noting that
each of these spaces is also included in B0. This result also
appears in [21].

Theorem 4. Let K : [ 0, ∞) →[ 0, ∞) satisfy (2), (3),
1 ≤ p < ∞ and −2 < q < ∞, further satisfy-
ing q + 2 = p. Then log f ′ ∈ QK (p, q) if and only if
|Sf (z)|p(1 − |z|2)p+qdA(z) is a K-Carleson measure.

Proof. The direction of the proof is already covered by
Proposition 1. Since q = p − 2, we have QK (p, q) =
QK (p, p−2), and we are left to prove that if

|Sf (z)|p(1 − |z|2)2p−2dA(z)

is a K-Carleson measure, then log f ′ ∈ QK (p, p − 2). Both
of these conditions are Möbius-invariant, and so, all that
we really need to prove is that∫

D

|Sf (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z) < ∞

implies∫
D

|Pf (z)|p(1 − |z|2)p−2K(1 − |ϕa(z)|2)dA(z) < ∞,

which is further equivalent to∫
D

|P′
f (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z) < ∞.

Since |P′
f (z)|p ≤ 2p−1|Sf (z)|p + 1

2 |Pf (z)|2p, we have∫
D

|P′
f (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

≤ 2p−1
∫
D

|Sf (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

+ 1
2

∫
D

|Pf (z)|2p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z).

As before, we may assume that Pf is continuous on D (the
closed unit disk), for if not, we can first use r-dilatation Pf
and then take r → 1 at the end of the proof.
We estimate the integral

IP2
f
(D) =

∫
D

|Pf (z)|2p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

by estimating parts of this integral over three subsets of D.
For ε, δ > 0, let

U = {z ∈ D : |Pf (z)|(1 − |z|2) < ε},

V = {z ∈ D : |Sf (z)|(1 − |z|2)2 > δ},
and

 = D\(U ∪ V )

= {z∈D : |Pf (z)|(1−|z|2)≥ε, |Sf (z)|(1−|z|2)2 ≤ δ}.
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By Theorem 1, there is E > 0 such that∫
D

|Pf (z)|p(1 − |z|2)p−2K(1 − |ϕa(z)|2)dA(z)

≤ E
∫
D

|P′
f (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z),

so

IP2
f
(U) =

∫
U

|Pf (z)|2p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

< εp
∫

U
|Pf (z)|p(1 − |z|2)p−2K(1 − |ϕa(z)|2)dA(z)

≤ εp
∫
D

|Pf (z)|p(1 − |z|2)p−2K(1 − |ϕa(z)|2)dA(z)

≤ Eεp
∫
D

|P′
f (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z).

Using |Pf (z)|(1 − |z|2) < 6, we have

IP2
f
(V ) =

∫
V

|Pf (z)|2p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

< 62p
∫

V
(1 − |z|2)−2K(1 − |ϕa(z)|2)dA(z)

<
62p

δp

∫
V

|Sf (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

≤ 62p

δp

∫
D

|Sf (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z).

For the estimate of

IP2
f
() =

∫


|Pf (z)|2p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z),

we use a sequence {Qj} of Carleson boxes, so

IP2
f
() =

∫


|Pf (z)|2p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

< 62p
∫



K(1 − |ϕa(z)|2) dA(z)
(1 − |z|2)2

≤ 62p
∑

k

∫
T(Qk)

K(1 − |ϕa(z)|2) dA(z)
(1 − |z|2)2

≤ 62pC
∑

j

[ K(Qj)] .

Combining the above and choosing ε such that Eεp < 1,
we get∫

D

|P′
f (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

≤ 2p−1
∫
D

|Sf (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

+ Eεp

2

∫
D

|P′
f (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

+ 62p

2δp

∫
D

|Sf (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

+ 62pC
∑

j

[ K(Qj)] .

By Lemma 3, we further have∑
j


[ K(Qj)]

≤ C1 + C2

∫
D

|Sϕ(z)|p(1 − |z|2)p−2K(1 − |ϕa(z)|2)dA(z).

Choosing C to represent a generic positive constant, we
get (

1 − Eεp

2

) ∫
D

|P′
f (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z)

≤ C
∫
D

|Sf (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z).

Thus,∫
D

|Sf (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z) < ∞,

which implies that∫
D

|P′
f (z)|p(1 − |z|2)2p−2K(1 − |ϕa(z)|2)dA(z) < ∞

this is equivalent to log f ′ ∈ QK (p, q), and this finishes the
proof.

Next, we give the results of the membership of log f ′ in
the space QK ,0(p, q).

Theorem 5. Let K : [ 0, ∞) →[ 0, ∞) satisfy (2), (3),
1 ≤ p < ∞ and −2 < q < ∞, further satisfying q + 2 ≤
p. Then log f ′ ∈ QK ,0(p, q) if and only if |Sf (z)|p(1 −
|z|2)q+pdA(z) is a compact K-Carleson measure.

Proof. Since q + 2 ≤ p, we have QK ,0(p, q) ⊆ B0.
Thus, if log f ′ ∈ QK ,0(p, q), to prove that |Sf (z)|p(1 −
|z|2)q+pdA(z) is a compact K-Carleson measure, we start
with the inequality

|Sf (z)|p ≤ 2p−1|P′
f (z)|p + 1

2
|Pf (z)|2p.

Thus,∫
D

|Sf (z)|p(1 − |z|2)q+pK(1 − |ϕa(z)|2)dA(z)

≤ 2p−1
∫
D

|P′
f (z)|p(1 − |z|2)q+pK(1 − |ϕa(z)|2)dA(z)

+ 1
2
‖ log f ′‖p

B

∫
D

|Pf (z)|p(1 − |z|2)qK(1 − |ϕa(z)|2)dA(z).

Taking limits as |a| → 1 on both sides of the inequality,
by Theorem 2, we get that |Sf (z)|p(1 − |z|2)q+pdA(z) is a
compact K-Carleson measure.

For the converse, let us assume that |Sf (z)|p(1 −
|z|2)q+pdA(z) is a compact K-Carleson measure. We will
first show then that log f ′ ∈ B0, i.e., |Sf (z)|(1 − |z|2)2 → 0
as |a| → 1. Since q + 2 ≤ p, we have (1 − |z|2)2p−2 ≤
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(1 − |z|2)q+p, and so |Sf (z)|p(1 − |z|2)2p−2dA(z) is also a
compact K-Carleson measure. For a ∈ D, let

E(a, 1/e) = {z ∈ D : |z − a| <
1
e
(1 − |a|)}.

It is easy to see that(
1 − 1

e

)
(1 − |a|) ≤ (1 − |z|) ≤

(
1 + 1

e

)
(1 − |a|)

whenever z ∈ E(a, 1/e). Using |Sf (z)|p as a subharmonic
function and the pseudo-hyperbolic disk D(a, 1/e) and
E(a, 1/e) ⊂ D(a, 1/e), we have

|Sf (a)|p(1 − |a|2)2p

≤ K(1)

∫
E(a,1/e)

|Sf (z)|p(1 − |z|2)2p−2dA(z)

≤ K(1)

∫
D(a,1/e)

|Sf (z)|p(1 − |z|2)2p−2dA(z)

≤
∫
D

|Sf (z)|p(1−|z|2)2p−2 ≤K(1−|ϕa(z)|2)dA(z)<∞.

Therefore, |Sf (a)|p(1 − |a|2)2p < ∞, and so
lim|a|→1

|Sf (a)|(1 − |a|2)2 = 0, which is equivalent to

log f ′ ∈ B0.
The rest of the proof follows similarly to the proof of

Lemma 4, with appropriate adjustments. Using log f ′ ∈
B0, replacing the supremum over a ∈ D with limit as
|a| → 1, and using that for |z| < r, we have (1 −
|ϕa(z))2 ≤ 1−|a|2

1−r → 0 as |a| → 1. We get accordingly
that if |Sf (z)|p(1 − |z|2)q+pdA(z) is a compact K-Carleson
measure, then

lim|a|→1

∫
D

|P′
f (z)|p(1 − |z|2)q+pK(1 − |ϕa(z)|2)dA(z) = 0.

Hence, log f ′ ∈ QK ,0(p, q), and this finishes the proof.

Jordan curve and QK (p, p − 2) space
There are many interesting questions related to the topo-
logical structure of these types of general Teichmüller
spaces and the geometry of the domains �. For example:

• Is it always true that SQK (p,p−2) ∩ T(1) is the interior
of SQK (p,p−2) in QK (p, p−2), and what is their closure
in the QK (p, p − 2) norm or in the Bloch norm?

• Are there specific descriptions of some of the
connected components of SQK (p,p−2) ∩ T(1) via the
dilatations of the quasiconformal extensions of the
corresponding map f or in terms of specific
conditions imposed on f ?

• What are the specific geometric properties that either
� or ∂� has when log f ′ belongs to SQK (p,p−2) or to
SQK (p,p−2) ∩ T(1)?

Recall that since f is univalent and ∂� is a Jordan curve,
∂� is rectifiable if and only if f ′ ∈ H1 (see [19], Theorem

6.8). Furthermore, the Hardy-Stein-Spencer identity states
that f ′ ∈ Hr , r > 0 if and only if

∫
D

|f ′′(z)|2|f ′(z)|r−2(1 − |z|2)dA(z) < ∞, (see [21]).

Note that since � is a bounded domain, we get that f
belongs to the Dirichlet space D, which is contained in
the little Bloch space B0. It is even more true whenever
log f ′ ∈ QK ,0(p, q). Namely, since all of the QK ,0(p, q)

spaces are contained in B0, then log f ′ ∈ Bα , α > 0 (see
[14], p. 56).

By using equivalent, higher derivative versions of a
weighted Bergman space norm, it is not to hard to see that
if log f ′ ∈ B0, i.e., lim|z|→1

(1 − |z|2) |f ′′(z)|
|f ′(z)| = 0, then

∫
D

|f ′(z)|r(1 − |z|2)tdA(z) < ∞,

for every r > 0 and every t > −1 (see [14]).

For any α > 0, let r > 0 such that αr > 1, and let t =
αr−2 > −1, then the finiteness of the integral above, with
the chosen r and t, implies that lim|z|→1

(1 − |z|2)α|f ′(z)| = 0,

and so f ∈ Bα . We have the following result related to
the boundary Jordan curve ∂�, which includes the cases
mentioned above.

Theorem 6. Let K : [ 0, ∞) →[ 0, ∞) satisfy (1) and (2)
with Kn(g(z, a)) ≈ K(g(z, a)); n > 0. Suppose that 1 ≤
p < ∞ and −2 < q < ∞. If log f ′ ∈ QK ,0(p, q), then
f ′ ∈ Hr for all r > 0, which furthermore implies that the
Jordan curve ∂� is rectifiable.

Proof. We will use a result from Theorem 3.2 of [22],
stating that for a positive measure μ on D and any r, α > 0,

∫
D

dμ(z)
(1 − |z|2)αr < ∞

if and only if there is a positive constant C such that

∫
D

|g′(z)|rdμ(z) ≤ C
(‖g‖Bα + |g(0)|)r (9)

for all analytic functions g in D, in particular, for all g ∈
Bα .

Let log f ′ ∈ QK ,0(p, q). Since the space gets larger when
the index p increases, we will first of all assume, without
loss of generality, that p > 2. Secondly, since q ≤ p−2 and
QK ,0(p, q) ⊆ QK ,0(p, p−2), we will consider only the case
when q = p − 2. Thus, we want to prove that if log f ′ ∈
QK ,0(p, q), p > 2, then f ′ ∈ Hr for all r > 0, which by
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the Hardy-Stein-Spencer identity is equivalent to showing
that∫

D

|Pf (z)|2|f ′(z)|r(1 − |z|2)K (
g(z, a)

)
dA(z) < ∞.

Since p > 2, let p′ > 1 such that 2
p + 1

p′ = 1. Using Hölder’s
inequality, for t ∈ (0, 1), we get∫

D

|Pf (z)|2|f ′(z)|r(1 − |z|2)K (
g(z, a)

)
dA(z)

≤
(∫

D

|Pf (z)|p|f ′(z)| rp
2 (1 − |z|2)p−2+tK

(
g(z, a)

)
dA(z)

) 2
p

×
(∫

D

(1 − |z|2) 4−p−2t
p−2 K

(
g(z, a)

)
dA(z)

) 1
p′

≤ C
(
‖f ‖

B
2t
rp

+ |g(0)|
) rp

2
< ∞.

The second inequality above holds since log f ′ ∈
QK ,0(p, p − 2), and thus we can apply (9) to the measure

dμ(z) = |Pf (z)|p(1 − |z|2)p−2+tK
(
g(z, a)

)
dA(z)

to get f ∈ B
2t
rp . Moreover, for K satisfying (1),∫

D

(1 − |z|2) 4−p−2t
p−2 K

(
g(z, a)

)
dA(z)

=
∫
D

(1 − |z|2)qK
(
g(z, 0)

)
dA(z)

= 2π

∫ 1

0
(1 − |r|2)qK

(
log

1
r

)
rdr < ∞

since q = 4−p−2t
p−2 ≥ −1. The proof is completed.

Remark 1. Note that the proof of Theorem 6 can be used
for several cases, and we leave the details to the reader.
The case when K(t) = ts, 0 ≤ s < 1, 1 ≤ p < ∞, −2 <

q < ∞ and q + s > −1 is the F0(p, q, s) case which is
covered in Zorboska’s result in [14]. Also, the case when
K(t) = t, q = 0 and p = 2 is the VMOA case (the space of
functions analytic on D and with vanishing mean oscilla-
tion on the unit circle) which is covered in Pommerenke’s
result in [23].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Each author contributed equally in the development of this manuscript. Both
authors read and approved the final version of this manuscript.

Acknowledgements
The authors thank the referees for their carefully reading of this paper.

Author details
1Department of Mathematics, Faculty of Science, Sohag University, Sohag
82524, Egypt. 2Department of Mathematics, Faculty of Science, Taif University,
P.O. Box 888 El-Hawiyah, El-Taif 5700, Saudi Arabia. 3Department of
Mathematics, Faculty of Science, Assiut Branch, Al-Azhar University, Assiut
32861, Egypt.

Received: 12 June 2013 Accepted: 5 July 2013
Published: 5 July 2013

References
1. Zhao, R: On α-Bloch functions and VMOA. Acta. Math. Sci. 3, 349–360

(1996)
2. Arazy, J, Fisher, D, Peetre, J: Möbius invariant function spaces. J. Reine

Angew. Math. 363, 110–145 (1974)
3. Wulan, H, Zhou, JL: The higher order derivatives of QK type spaces. J.

Math. Anal. Appl. 332(2), 1216–1228 (2007)
4. Aulaskari, R, Stegenga, DA, Xiao, J: Some subclasses of BMOA and their

characterization in terms of Carleson measures. Rocky Mountain J. Math.
26, 485–506 (1996)

5. Essén, M, Wulan, H: Function-theoretic aspects of Möbius invariant QK
spaces. J. Funct. Anal. 230, 78–115 (2006)

6. El-Sayed Ahmed, A, Kamal, A: Generalized composition operators on
QK (p, q) spaces. J. Fract. Calc. Appl. 3(S) 18, 1–9 (2012)

7. El-Sayed Ahmed, A, Kamal, A: Carleson measure characterization on
analytic QK (p, q) spaces. J. Int. Math. Virtual Inst. 3, 1–21 (2013)

8. Wulan, H, Zhou, J: QK type spaces of analytic functions. J. Funct. Spaces
Appl. 4, 73–84 (2006)

9. Zhou, J: Predual of QK spaces. J. Funct. Spaces Appl (2013).
10.1155/2013/252735

10. Becker, J, Pommerenke, C: Über die quasikonforme Fortsetzung schlichter
Funktionen. Math. Z. 161, 69–80 (1978)

11. Astala, K, Zinsmeister, M: Teichmüller spaces and BMOA. Math. Ann. 289,
613–625 (1991)

12. Pau, J, Peláez, JÁ: Logarithms of the derivative of univalent functions in
Qp spaces. J. Math. Anal. Appl. 350, 184–194 (2009)

13. Bishop, CJ, Jones, PW: Harmonic measure, L2 estimates and the
Schwarzian derivative. J. Anal. Math. 62, 77–113 (1994)

14. Zorboska, N: Schwarzian derivative and general Besov-type domains. J.
Math. Anal. Appl. 379, 48–57 (2011)

15. Astala, K, Gehring, FW: Injectivity, the BMO norm and the universal
Teichmüller space. J. Anal. Math. 46, 16–57 (1986)

16. Chuaqui, M, Osgood, B: Sharp distortion theorems associated with the
Schwarzian derivative. J. London Math. Soc. 48, 289–298 (1993)

17. Pérez-González, F, Rättyä J: Dirichlet and VMOA domains via Schwarzian
derivative. J. Math. Anal. Appl. 359, 543–546 (2009)

18. Essén, M, Wulan, H, Xiao, J: Several function-theoretic aspects of Möbius
invariant QK spaces. J. Funct. Anal. 230, 78–115 (2006)

19. Pommerenke, C: Boundary Behaviour of Conformal Maps. Springer,
Heidelberg (1992)

20. Garnett, JB, Marshall, DE: Harmonic Measure. Cambridge University Press,
Cambridge (2005)

21. Pommerenke, C: Univalent Functions. Vandenhoeck and Ruprecht,
Göttingen (1975)

22. Pérez-González, F, Rättyä J: Forelli-Rudin estimates, Carleson measures
and F(p, q, s)-functions. J. Math. Anal. Appl. 315, 394–414 (2006)

23. Pommerenke, C: On univalent functions, Bloch functions and VMOA.
Math. Ann. 236(3), 199–208 (1978)

doi:10.1186/2251-7456-6-12
Cite this article as: El-Sayed Ahmed and Bakhit: Characterizations involv-
ing Schwarzian derivative in some analytic function spaces. Mathematical
Sciences 2013 1:1.

2013, 7:43
http://www.iaumath.com/content/7/1/43

22 Aug 2013

10.1186/2251-7456-7-43

2013, 7:43

www.SID.ir

http://www.iaumath.com/content/7/1/43

