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Purpose: In this paper, we introduce and study an iterative method to approximate a common solution of a split
generalized equilibrium problem and a fixed point problem for a nonexpansive semigroup in real Hilbert spaces.

Methods: We prove a strong convergence theorem of the iterative algorithm in Hilbert spaces under certain mild

Results: We obtain a strong convergence result for approximating.a common solution of a split generalized
equilibrium problem and a fixed point problem for a nonexpansive semigroup in real Hilbert spaces, which is a unique
solution of a variational inequality problem. Further, we obtain'some consequences of our main result.

Conclusions: The results presented in this paper are the supplement, extension, and generalization of results in the
study of Plubtieng and Punpaeng and that of Cianciaruso-et al.The approach of the proof given in this paper is also
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Introduction

Throughout the paper, unless otherwise stated, let H; and
H>, be real Hilbert spaces with inner product (-,-) and
norm ||-||. Let C and Q be nonempty closed convex subsets
of Hj and Hj, respectively.

A mapping f : C — C is said to be a contraction if
there exists a constant @ € (0,1) such that ||fx — fy|| <
allx —yl, Vx,y € C. A mapping T : C — C is said to be
nonexpansive if | Tx — Ty|| < |lx — y|l, Va,y € C. Fix(T)
denotes the fixed point set of the nonexpansive mapping
T:C— C.

Let B : Hy — Hj be a strongly positive linear bounded
operator, i.e., if there exists a constant > 0 such that

(Bx,x) > )7||x||2, Vx € Hj.
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A typical problem is to minimize a quadratic function
over the set of fixed points of nonexpansive mapping 7"

o1
min —(Bx,x) — (x,b),
xeFix(T) 2

where b is a given point in Hj.
In 2006, Marino and Xu [1] considered the following
iterative method:

Xn+l = Oan/f(xn) +{ —ayB)Ix,, VYn >0,
with0 < y < % and proved that the sequence {x,} con-
verges strongly to the unique solution of the variational
inequality

(B—vf)z,x —z), V¥x € Fix(T)
which is the optimality condition for the minimization
problem

1
in —(Bx,x) — h(x),
Bty 5B =

where 4 is the potential function for yf.
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A family S := {T'(s) : 0 < s < oo} of mappings from
C into itself is called a nonexpansive semigroup on C if it
satisfies the following conditions:

(i) T(0)x =xforallx € C.

(i) T(s+¢t)=T(s)T(t) foralls,t > 0.

(iii) 1T(s)x— T(s)y|l < |lx —y| forallx,y € Cands > 0.
(iv) Forallx € C, s — T(s)x is continuous.

The set of all the common fixed points of a family S is
denoted by Fix(S), i.e.,

Fix(S):={xe C: T(s)x =%,0 <s < o0}
= [ FEx(T6),

0<s<oo

where Fix(7T (s)) is the set of fixed points of T'(s). It is well
known that Fix(S) is closed and convex.

The fixed point problem (FPP) for a nonexpansive semi-
group S is:

Find x € C such that x € Fix(S). (1)

In 1997, Shimizu and Takahashi [2] introduced and
studied the following iterative method to prove a strong
convergence theorem for FPP (1) in a real Hilbert space:

Sn
Xp+1 = apu+ (1 — oc,,)si/ T(s)x,ds, VmeN,
n JO

where {&,} is a sequence in (0, 1) and {s,} is a'sequence of
positive real numbers which diverges to +o00. Later, Chen
and Song [3] introduced and studied the following itera-
tive method to prove a strong convergence theorem for
FPP (1) in a real Hilbert space:

1 [
K1 = anf )+ (1) = / T(o)xuds, VneN,
nJo

where f is a contraction mapping. Recently, Plubtieng and
Punpaeng [4] introduced and studied the following iter-
ative method to prove a strong convergence theorem for
FPP (1) in a real Hilbert space:

X1 = pf (%) + Bun

1 [
+A—ay— /3;1)*/ T(s)xuds, VmeN,
Sn Jo

where {«,} and {8, } are the sequences in (0, 1) and {s,} is
a positive real divergent sequence.

The equilibrium problem (EP) [5] is of finding x € C
such that

F(x,y) >0, Vy e C, (2)

where F : C x C — R is a bifunction. The solution set of
EP (2) is denoted by EP(F).
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Cianciaruso et al. [6] introduced and studied the fol-
lowing iterative method to prove a strong convergence
theorem for FPP (1) and EP (2) in a real Hilbert space:
X0 € Hy:

1 [
Xyl = anyf(xn)—i—(l—a,,B)S—/ T(s)uyds, VmeN,
0

n

F(uy,y) + rl(y — Uy, Uy —xy) >0, VyeHy,
n

where {«,,} is a sequence in (0, 1) and {s,} is a positive real
divergent sequence.

Recently, Moudafi [7] introduced the following split
equilibrium problem (SEP):

Let F] : CxC - Rand F, : Q@ x Q — R be non-
linear bifunctions and A : H; — H> be a bounded linear
operator, then the SEP is to find x* € C such that

Fi(x*,x) =0, Vx € C, 3)
and such that
¥y = Ax* € Q solves F,(y*,y) >0, Vy € Q. (4)

When looked separately, (3) is the classical EP, and we
denoted its solution set by EP(F;). SEP (3)-(4) constitutes
a pair of equilibrium problems which have to be solved so
that the image y* = Ax*, under a given bounded linear
operator A, of the solution x* of EP (3) in H; is the solu-
tion of another EP (4) in another space Hy, and we denote
the solution set of EP (4) by EP(F>).

The solution set of SEP (3)-(4) is denoted by Q@ = {p €
EP(F)) : Ap € EP(F)}. SEP (3)-(4) includes the split vari-
ational inequality problem, split zero problem, and split
feasibility problem (see, for instance, [7-12]).

In this paper, we consider a split generalized equilibrium
problem (SGEP): Find x* € C such that

Fi(x*,%) + hi(x*,x) > 0, Vx € C, (5)

and such that

y* = Ax* € Q solves F2(y*,y)+h2(y*,9) > 0, Vy € Q,
(6)

where Fi,h; : Cx C — Rand F5,h : Q x Q — R
are nonlinear bifunctions and A : H; — H> is a bounded
linear operator.

We denote the solution set of generalized equilibrium
problem (GEP) (5) and GEP (6) by GEP(Fj,h;) and
GEP(Fy, hy), respectively. The solution set of SGEP (5)-(6)
is denoted by I' = {p € GEP(Fy, h1) : Ap € GEP(Fy, hy)}.

If i1 = 0 and /&y = 0, then SGEP (5)-(6) reduces to SEP
(3)-(4). If i = 0 and F, = 0, then SGEP (5)-(6) reduces
to the equilibrium problem considered by Cianciaruso
etal. [13].
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Motivated by the works of Moudafi [7], Marino and
Xu [1], Shimizu and Takahashi [2], Chen and Song [3],
Plubtieng and Punpaeng [4], and Cianciaruso et al. [6,13]
and by the ongoing research in this direction, we intro-
duce and study an iterative method for approximating a
common solution of SGEP (5)-(6) and FPP (6) for a non-
expansive semigroup in real Hilbert spaces. The results
presented in this paper extend and generalize the works of
Shimizu and Takahashi [2], Chen and Song [3], Plubtieng
and Punpaeng [4], and Cianciaruso et al. [6].

Now, we recall some concepts and results which are
needed in sequel.

For every point x € Hj, there exists a unique nearest
point in C denoted by Pcx such that

Il — Pcx|| < llx —yll, VyeC. 7)

Pc is called the metric projection of H; onto C. It is
well known that Pc is a nonexpansive mapping and is
characterized by the following property:

{(x — Pcx,y — Pcx) < 0. (8)

Further, it is well known that every nonexpansive oper-
ator T : H — H; satisfies, for all (x,y) € H; x Hj, the
inequality

(x=T@) = =T, TH) = Tx)

;O
< /2T —x) — (T~
and therefore, we get, for all (%, y) € H; x Fix(T),
(x — T(x),y — T®)) <(@L/2IT(x) — x> (10)

(see, e.g., Theorem 3 in [14] and Theorem 1 in [15]).
It is also known that H; satisfies Opial’s condition [16],
i.e., for any sequence {x,} with x;,, — x, the inequality

lim inf %, — x| <lim inf |x, —y| (11)
n— 00 n—0o0

holds for every y € Hy with y # x.

Lemma 1. [17] Let {x,} and {y,} be bounded sequences
in a Banach space X and {B,} be a sequence in [ 0, 1] with
0 < lim inf B, <lim sup B, < 1. Suppose x,+1 = (1 —

n—00 n— 00
Bu)Yn + Buxn, for all integers n > 0 and lim sup (||y,+1 —
n— 00
Yull = I%nt1 — 24ll) < 0. Then, lim |y, — x|l = 0.
n—00
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Lemma 2. [2] Let C be a nonempty bounded closed con-
vex subset of a Hilbert space H) and let S := {T'(s) : 0 <
s < 00} be a nonexpansive semigroup on C, for each x € C
andt > 0. Then, forany 0 < h < oo,

1 [t 1 [t
- / T(s)xds — T (h) < / T(s)xds)
tJo L Jo

Lemma 3. [18] Let {a,} be a sequence of nonnegative
real numbers such that

lim sup =0.

t—)ooxec

an1 < (1 —ay)ay+38, n=0,
where {«,} is a sequence.in (0,1) and {5,} is a sequence in
R such that

(i) io: oy = oo.
n=1

o
(i) lim sup STZ <0 or ) |8;]<oo.

n—00 n=1

Then, lim a, = 0.
n—>00

Lemma 4. [1] Assume that B is a strong positive linear
bounded operator on a Hilbert space Hy with coefficient
7 >0and0 < p < |B|L. Then, |I — pB| <1 — py.

Lemma 5. The following inequality holds in a real
Hilbert space Hy:

e + 912 < %)® + 20, x +9), Vx,y € Hy.

Assumption 1 [19] Let F : C x C —> R be a bifunction
satisfying the following assumptions:

(i) Fx,x) =0, VxeC,
(ii) F is monotone, i.e., F(x,y) + F(y,x) <0, Vx € C,
(ili) F is upper hemicontinuous, i.e., for each x,y,z € C,

limsup F(tz + (1 — t)x,y) < F(x,9),
t—0
(iv) Foreachx e C fixed, the function y — F(x,y) is

convex and lower semicontinuous;
leth: C x C —> R such that

(i) h(x,x) >0, Vx € C,
(ii) For each y € C fixed, the function x — h(x,y) is
upper semicontinuous,
(iii) For eachx € C fixed, the function y — h(x,y) is
convex and lower semicontinuous,

and assume that for fixed » > 0 and z € C, there exists a
nonempty compact convex subset K of H; andx € CNK
such that

1
Fiy,x) + h(y,x) + —(y —x,x —z) < 0, Vy e C\K.
r
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The proof of the following lemma is similar to the proof
of Lemma 2.13 in [19] and hence omitted.

Lemma 6. Assume that F1,h; : C x C — R satisfying
Assumption 1. Let r > 0 and x € Hy. Then, there exists
z € C such that

1
Fi(z,y) + hi(z,y) + ;(y —zz—x) >0, VyeC.

Lemma 7. [12] Assume that the bifunctions Fi, h; : C X
C —> Rsatisfy Assumption 1 and h; is monotone. Forr >

0 and for all x € H,, define a mapping yRECUY 2 e
as follows:

ﬁ“”&@z{zeczauwy+m@4)
1
+r—(y—z,z—x) >0, VyeC}.
n

Then, the following hold:

(i) T,(Fl'hl) is single-valued.

(ii) T,(Fl’hl) is firmly nonexpansive, i.e.,

”Tr(Fl,hl)x _ Tr('Flvhl)y”Z < (T'gFlvhl)x _ T}fFl,hl)%x — )
Vx,y € Hj.

(iii) Fix(TF"™)y = GEP(Fy, hy).
(iv) GEP(F1, h1) is compact and convex.

Further, assume that Fp, /1 : Q x Q —> R satisfying
Assumption 1. For s > 0 and forall w € H>, define a
mapping TEM) |y s Q as follows:

T2 () = {d € Q: Fy(dye) + hy(d, e)
1
+—(e=d,d—w) >0, Vee Q}.
S

Then, we easily observe that T2 is single-valued

and firmly nonexpansive, GEP(F, h12, Q) is compact and
convex, and Fix(Ts(Fz’hZ)) GEP(F,, hy, Q), where
GEP(F», h3, Q) is the solution set of the following general-
ized equilibrium problem:
Find y* € Q such that F>(y*,y) + h2(y*,5) > 0, ¥y € Q.
We observe that GEP(F5, hy) C GEP(Fy, hy, Q). Further,
it is easy to prove that I is a closed and convex set.

Remark 1. Lemmas 6 and 7 are slight generalizations
of Lemma 3.5 in [13] where the equilibrium condition
Fi(x,x) = hi(x,x) = 0 has been relaxed to F1(x,x) > 0
and hy(x,x) > 0 for all x € C. Further, the monotonicity of
hy in Lemma 6 is not required.
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Lemma 8. [13] Let F; : C x C —> R be a bifunction

satisfying Assumption 1 hold and let T be defined as in
Lemma 4 forr > 0. Let x,y € Hy and r1,ry > 0. Then,

IITr’;Iy_ Tf;lx” <y —xll+ IIT,I';ly—yII.

r

rp—rn
2

Notation. Let {x,} be a sequence in Hj, then x, — «
(respectively, x,, — x) denotes strong (respectively, weak)
convergence of the sequence {x,} to a point x € Hj.

Methods

In this section, we prove a strong convergence theorem

based on the proposed iterative method for computing the

approximate common solution of SGEP (5)-(6) and FPP

(1) for a nonexpansive semigroup in real Hilbert spaces.
We assume that I' # .

Theorem 1. Let Hy and Hy be two real Hilbert spaces
and let C C Hy and Q C Hy be nonempty closed convex
subsets. Let A : Hi — Hy be a bounded linear operator.
Assume that F1,h1 : C x C — Rand Fy,hy : Q x Q —
R are the bifunctions satisfying Assumption 1; hy, hy are
monotone and F; is upper semicontinuous in the first argu-
ment. Let S = {T(s) : 0 < s < oo} be a nonexpansive
semigroup on C such that Fix(S)NT # . Letf : C — C
be a contraction mapping with constant a € (0,1) and B
be a strongly positive linear bounded self-adjoint operator
on Hy with constant y > 0 suchthat0 <y < % <y+ é
Let {s,} is a positive real sequence which diverges to +oo.
For a given xy € C arbitrarily, let the iterative sequences
{u,} and {x,} be generated by iterative algorithm:

Uy = TV (o, SAN (T — 1) Axy);
Xn+1 :an)’f(xn) + Buxn

-Hﬂ-&ﬂ-%&%/wT®W@
0

n

(12)

where r, C (0,00) and § € (0,1/L), L is the spectral radius
of the operator A*A, and A* is the adjoint of A, and {«,,}
and {B,} are the sequences in (0, 1) satisfying the following
conditions:

o0
(i) lim ¢, =0and ) a, = co.
n—0o0 n=0
(i) 0 <lim inf B, <lim sup B, < 1.
n— 00 H— 00
(iii) liminfr, > 0and lim |r,4+; — 7y = 0.
n— 00

(iv)

lim [Sn+1—5n =0
n—oo  Sntl '

Then, the sequence {x,} converges strongly to z €
Fix(S) N T', where z = Prixsynr( — B + yf)z.
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Proof. We note that from condition (i), we may assume
without loss of generality that a,, < (1 — B,)||B|| ™! for
all #. From Lemma 4, we know that if 0 < p < ||B|~},
then ||I — pB|| < 1 — py. We will assume that || — B|| <
1-7. O

Since B is a positive linear bounded self-adjoint operator
on Hi, then

I1BIl = sup{|{Bu, u)| : u € Hy, ||u] =1}.

Observe that
(1= Bl —ayByu,u) = 1 — B, — ay(Bu,u)
> 1— By — aylB
>0,

which implies that (1 — 8,)I — «,,B is positive. It follows
that

(X = B — anBl|

sup{{((1 — Bu) — oy B)u, u) :
u € Hy, |lul| =1}
= sup{l — B, — @, (Bu, u) :
u € Hy, |ul =1}
< 1—Bp—oany.
Let g = Prixs)nr- Since f is a contraction mapping with
constant @ € (0, 1), it follows that

lgd =B+ yf)x) — qd —B+y Ol

II=B+yf)(x)—U — B+ yH@
11 = Bllllx — yll + vAlf @) =f DI
A =P)lx =yl + valx—yl

= A= —ra)lx =yl

IATA TA

for all x,y € Hj. Therefore, the mapping g(I = B + yf)
is a contraction mapping from Hj into itself. It follows
from the Banach contraction principle that there exists
an element z € Hj such that z = g — B + yf)z =
Prixsynr (I — B+ yf)(2).

Letp € Fix(S)NT,ie,p e, and we have p =
and Ap = T2 (Ap).

We estimate

Fi,h
Tr(nl 1)p

it — plI? = [T (x4 84% (TP — 1 Ax,) — pl)2
= IT (o + SAX (TS — 1) Axcy)

~15"pl)?

%, + 8A* (T — DAx, — p|?

s — plI + 82| A* (T2 — 1) As, |2

+28(x, — p, AT _ ) Ax,).

=
=

(13)
Thus, we have
lun — plI? < llxn — pI?
+O2 (T3 ") — DAy, AL (T = DAx,)
280 — p AS(T") — DAx,).
(14)
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Now, we have
82T — 1) Axy, AA*(TE") — 1) Axy)
< L (TP — DA%y, (TP — DAx,)
= L8| (T2 — 1) Ay ||

(15)

Denoting A = 28 {x, —p,A*(Tr(an’hZ) —I)Ax,) and using
(10), we have
A = 28(x, — p, A (T — 1) Ax,)
= 28(A(x, — p), (T — 1) Ax,)
= 28(Ax — p) + (TP — DAx,
—(T" — D Ax,, (T — DAx,)
— 28 {(T,(f 212 A x, = Ap, (T _ ) Ax,)
(T — D2
26 { I DAxy 2 = (T3 = DA, 1)
—SI (T = ARy |12

IA

A

(16)
Using(14), (15), and (16), we obtain

litn=pI2 < llxn —plI*+8 (LS — DT — 1) A, 2.
17)
Since § € (0, %), we obtain

ln — plI* < llxn — plI*. (18)

Now, setting t, = X ["

o T(s)uyds and since p €
Fix(S) N T, we obtain

1t — pli

é g” T(s)u,ds —pH

< L [ IT ) un — T)plids 19)
< llun — pll
< llxn — pll.

Further, we estimate

||Otnyf(xn)+ﬂnxn + (1= B —a,B)t, —19||
“an(yf(xn) - BP) + Bu(xn —19)

+(1 = B — auB)(tn — p)l

anllyfn) — Bpll + Bullxn — pll

+(1 — B — an¥)tn — pl

oy If ) —f O + enllvf(p) — Bpll
+Bullxn — pl + A — Bu — an¥) llxn — pli
apyelxn — pll + anllyf (@) — Bpl

+(1 = any)llxn — pll

1= (¥ —ya)an)llxn — pll + aullyf (p) — Bpl
max |, — pll 725 17/ @) — Bpl}, n=0

l%n+1 — Pl

IA

IA

IA

IA

IA

max { o — pll 52 17/ @) - Bpl |
20)

Hence, {x,} is bounded, and consequently, we deduce
that {u,}, {¢,}, and {f (x;,)} are bounded.
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Next, we estimate

Itwsr = tall = | 55 S5 T©unsrds — 5 fo" T(S)MndSH
= |sn 5”“[T(s>un+1—T(s>un]ds
+ (Sni’l - ?) /'Sn T(s)unds
tog ot T (s)undsH
= |2 o I TG uusr — T(s)ul ds

+ (% = L) < [P 1T @uy — T(s)p) ds
+i [P T S)up — T(s)p] dsH

s — o] + S5

<
= I ‘ Sl gy, — p|
S, —S,
sl yy, )
< Nttn1 — el + 25252, — p.

Sn+1

(21)

Since TFVM) and 75252 both are firmly nonexpansive,

rn+1 Tn+1
for 8¢ (0, Z)’ the mapping T,(fj’lhl) (I+8A* (T,(fjihZ) —DA)is
nonexpensive, see [7,10]. Further, since u, = T(Fl‘hl) (% +
SA*TE DAy and up = T +
SA*(T,(ff’IhZ) — DAx,11), it follows from Lemma 8 that
ltn 1 — uyll
= ”Tr(fi;hl) (anrl + 8A* (Tr(fz;hZ) — I) Aanrl)
= T (s, + 84 (TS0 — 1) A, ) |

Tnt1

_ Trffl,hn (xn 4 8A* (Tr(fz,hz) _ 1) Ax”) I
< Wowsr =l + 1 (0 + 84" (TS — 1) A, )
- (x,, +5A* (T,(fz’hz) — 1) A ) |

1T (s 643 (T2 — 1) A, )

T'nt1

T (s + 847 (T — 1) Ax, )

|-

rn+
- (xn + 8A* (Tr(fj’l”” — 1) Axn) I

< Nons1 — xall + SIANNT 2 Axyy — TE) Ay || + 6,

Tn+1
< 1 — &all + S11A] |1 —1 N7 Ay — Al + 8,
n+
= [[%n+1 — xull + Sl Alloy + n
(22)
where
1,
o = ‘1 = DL T A, — Ay
"'n
and
T,
8y = ’1 PN TR (x4 SAF (T — ) Axy)
'n

— (%n + SA* (T — DAxy)|.
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Using (21) and (22), we have
Zn+1 — tull < %nt1 — xull + Sl Allow + Sn

S — S
poltm sl (23)

Sn+1

Setting x,,+1 = Bux, + (1 — By)ey, implies from (12) that
Xp+1—Bn¥n __ anyf(xn)+((1 Bu)I— anB)tn
l_ﬂn - 1- ﬂn

Further, it follows that

ey =

w1 ) +H((A— ﬂn+1)1 Ut 1B)tnt1
€n+l —€n = 1Bt

an;/f(xn)+((1 /3,,)1 anB)tn

= 125y fan) Pfipies _ syt
_1gﬂn )/f(xn) - % + %
= 12751;11 (vf Cng1) +Btuy1) + tur1 — tu
+1f73n Bty — yf(xn)).
Using (23), we have

lewit—enll = | 25 (f Gous1) + Bturn) + tuia
—tu + 12 Bty — vf ()|
= 145 (I r)] + 1B )
192 (Il f Gon) |+ 1Ball) + 1 —
T2y f Gone) |+ 1B )
P (e f Gonll + 1BEal) + W1 —
WAl 4042 (B2l ) s, —

IA

which implies that
llent1 — enll — %1 — xull

Uy
< (@Dl + 1Btus1 ) + 7 [Allow + 5,
1- ﬂn+

+1 /3 (lvf G Il + 11Btul)

|Sn41 — Sl
+2(”+ )l — pll.
Sn+1

Hence, it follows by conditions (i), (iii), and (iv) that

lim sup [llen+1 — enll — [#nt1 — %all] < 0. (24)

n—0o0

From Lemma 1 and (24), we get lim |le,;, — x,|| = 0 and
n— 00

lim (%41 —x4]l = lim (1 — By)llen — xull = 0. (25)
n— 00 n— 00

Now,

Xnt1 — x%n = dpVf(xn) + Buxn + (1 — Bl — ayB)t, — xy

= a,(yf (xn) — %) + (1 — B — 0, B)(ty — xp).

Since ||x,+1 — %]l — Oand o, — 0 as n — 00, we obtain

lim ||ty — x|l = O. (26)
n— 00
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Next, we have

1T =5l = | T = TG L f57 Tundls

+T(s)$ (f” T(s)u,ds

— ﬁ o T(8)unds + i Jo" T($)unds — x,
|75 = TOL f5 T uads

+ H T() L 3 T(sunds — L [3" T(S)”ndSH

IA

+ $ Os” T(S)uyds — xy,
Xy — i g” T(s)undsH
+ H T(s)é Os” T(s)u,ds — é
+ i fos” T(8)unds — x,,

2 x, — é os" T(s)u,,ds‘

+ H T [o" T(S)upds — L [o" T(s)undsH :
(27)

IA

g” T(s)undsH

IA

Since {x,} and {f(x,)} are bounded, let K :=

{weciiw=pl = v —pl 752 17/ @) — Bpl} then
K is a nonempty bounded closed convex subset of C which
is T'(s)-invariant for each 0 < s < oo and contains {x,}.
So, without loss of generality, we may assume that S :=
{T'(s) : 0 < s < oo} is a nonexpansive semigroup on K. By
Lemma 2, we have

lim H T(s)l/ ’ T(s)u,ds — i / ’ T(s)uuds|| = 0.
n—>00 Sn Jo sn Jo
(28)
Using (21) to (23), we obtain
lim || T(s)x, — x| = O. (29)
n— 00

It follows from (17) and Lemma 5 that

%nt1 — pII?
= llanyf@®n) + Buxn+[ (1 — B)] — 0, B] ty — pl|?
= ”an(yf(xn) - BP) + ,Bn(xn — )+ U —oyB)(ty —p)||2
< I = anB)(tn — p) + Bu(xn — t) 1> + 200 (¥ f (%)

—Bp,xu+1 — p)

< 1 = auB)(tn — Pl + Bulltn — tall]? + 2anllyf (%)
—Bp||%nt1 — pll

< [ = anBlllttn — pll + Bulltn — tall]? + 2anllyf (%)
—Bp||%ut1 — pll

= (I — an?)*lun — pI* + B2I%n — tull® + 21 — 7)) Bullin
—plllxn — tull + 2001l vf (xn) — Bpllllxn+1 — Pl

= (= a2 [l = pI? + 66 = DT = DAx, ]
+B21%n — tull? + 21 — @ ?) Bullten — plllxn — tull
20 |lyf (xn) — Bpllllxns1 — pll

< [1 =207 + (@?)?] llxn — pII?

+(1 — 0, 7)28(LS — DI(TE" — 1) A, |2
+ﬂ%”xn - tn||2 + 21 — oY) Bulltn — pllllxn — txll
20|y ) — Bpll %41 — pll
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< lwn — pI* + ani? % — plI?
+(1— @, 7)8(L8 — DII(T3, " — DA, |1 (30)
+B2Nxn — tull® 4+ 2(1 — 0u ) Bulltin — pllllxn — tall
+2a|vf %n) — Bpll[%ns1 — P

Therefore,

1 = anp)?8(1 = LT — DAx, |
<l = pI* = ltns1 — pI* + B2 1160 — tull®
+ a7 xn — plI* + 2(1 = 0 7) Bullttn
= pll%n — tull + 201l yf n) — Bpll 1%ns1 — pll
<% —pll+ 11 = LI %0 — 1 11+ B2 160 — £ >
+ a7 n—pIP+2(1 =0, 7) Bulltn —p | 160 — |
+ 20l f (¥n) = Bp|| %11 — pII-

Since §(1—L§) > 0, — O, |lxy, —£4]| = Oand ||x,4+1 —
x|l = 0asn — oo, we obtain

lim [|(T$2"2) — DAx,| = 0. (31)
n—00 n

Next, we show that ||x, — u,|| — 0asn — oo. Since
p € Fix(S) N.I", we obtain
g — plI> = 1T @+ 8A* (T — DAxy) — pl

= IT Gt 8A (15,2 =D A) = T3 |2

< (it — P,y + SAX(TEY) _ D Ax, — p)

= 1 {la—pIP+llan+ 84T} ~D A%, — p?
— @t = 20+ 84T - D A, —p] |}

= 5 {lun =PI + I — pII* — lltw —
847 (T — DA, )

= 3 {lun — P + lxn — pII* — [Nl — %2
+82 AN (T2 = DA, |2
— 28ty — 2y AT — I)Ax,,)]] .

&

Hence, we obtain
ltn — pI* <llxn — pII* = llttw — x4l
+ 28| A — x) || T — DA, .
It follows from (30) and (31) that

%0241 _P”2 =Q@1- an);)z [”xn _19”2 — lluy — xn”Z
+28]1A G — 2 || THP 1) s
+B211% — tal® 4+ 21 — 0 7) Ballttn — plllIxn
—tull + 20 vf (xn) — Bpllllxnt1 — pli
[1 = 20,7 + (n?)?] ll%n — plII?
—(1 = @) Nun — xal* 4 2(1 — 0u )3l

h
Al = 1) Il T = 1) A
B2l — tal® + 21 — @ 7) Bllttn — plllIxn
—tull + 20l yf () — Bpll %41 —
%0 — PI% + 72120 — P2 — (1 — 7)1
—xul12 4+ 2(1 — @, 7)28 A Gy — ) | T2
—1) Asyll+ B2 1150 — tl|2+2(1 — 7)ol
—p %0 —tall+ 20 | . ¥n) — Bpl %041 — pII.

IA

IA
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Therefore,
(A = )y — xal®

<l%n = pI* = lltnt1 — pI* + B2 11%n — tal®
+2(1 = 781Gy — 5| T — 1) sy |
+ 7?2 =PI +2(1 =y Bulltn—pl1%n = tall
+ 2a |l vf @) — Bpll[%n11 — Pl

<(xn =l + 161 = pID 160 — g1 [+ Balln — tn
+2(1 — )81 A — x) I} T — 1) Asy||

2
l

+ a7 %0 —plI* +2(L = 7) Bulltn — pllxn — tall
+ 20, lyf (xn) — Bpll1x41 — pll.

Since @y — 0, [ty — tull = O, |T52>" — DAx,| — 0
and ||x,4+1 — x| — 0as n — 00, we obtain

(32)

lim |lu, — 4] = 0.
n— 00

Thus, we can write

1Tty — xull < NTS)En — T(Sxnll + [T ()% — xnll
< tn — xull + 1T () — x4l
— 0asn — oo.

Also, we have

1Tty — tull < 1Tt — T(S)nll
HIT (%0 — Zull + %0 — tull
< ltn — xull + 1T ()xn — %l
+lloen — tull
— Oasn — oo.
Next, we show that lim sup ((B — yf)z, %, — z) < 0,

n—o0

where z = Priys)nr (I — B + yf)z./To show this inequality,
we choose a subsequence {t,,}.of {£,} € K such that
lim sup ((B—yf)z, t, —z) = lim ((B — yf)z, ty, — 2).
n— o0 I— 0

Since {t,,} is bounded, there exists a subsequence {t”lij}

of {¢,,} which converges weakly to some w € C. Without
loss of generality, we can assume that £,,, — w.

Now, we prove that w € Fix(S)NT. Let us first show that
w € Fix(S). Assume that w ¢ Fix(S). Since t,, — w and
T (s)w # w, from Opial’s condition (11), we have

lim inf £, — wl < lim inf |£,, — T(s)w||
i—00 =00

lim inf {llt,, — T(s)ty,]
11— 00

+IT )ty — T(s)wll}
lim inf ¢, —w|,
1— 00

IA

IA

which is a contradiction. Thus, we obtain w € Fix(S).
Next, we show that w € GEP(Fy, k). Since u, =
(F1,h1)

Ty, X, we have

1
Fl(un,y)+h1(un,y)+7(y—un,un—xn> >0, Vye C.
n
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It follows from the monotonicity of F; that

1
hl(unvy) + 7()’ — Uy, Uy — Xpn) = F1(y, uy),

n

and hence,
Uy — Xy
hl(u}’lpy) + <y - un,'t nlrnl> 2 Fl(y) u}’l,‘)~
n

Since ||u, — x4|| = 0, we get u,,, — wand @ — 0.
It follows by Assumption 1 (iv) that 0 > F (y, w),n Yw e C.
Fortwith0 < ¢t <1landy € C,lety, = ty+(1—¢)w. Since
y e C,w e C,we gety; € C,and hence, Fi(y;, w) < 0. So,
from Assumption 1 (i) and (iv), we have

0= Fl()/t,)/t) + hl(yt’yt) =< t[Fl(yt)y) + hl(yt;y)]
+ A=) Ex(ye, w) + 11 (e, WIS F1( 9) 11 (s, )]
+A = [Fr(wspr) + Iw, y) 1< [F1(5,y) + h1(ye, )1

Therefore, 0 < F1(y:,y) + h1(ys y). From Assumption
1 (iii), we have 0 < F1(w,y) + h1(w,y). This implies that
w e GEP(Fl,hl).

Next, we show that Aw € GEP(F,, k). Since ||u, —
Xull — 0, u, =~ wasn — oo and {x,} is bounded, there
exists a subsequence {xy, } of {x,} such that x,, — w, and
since A is a bounded linear operator, so Ax,, — Aw.

Now, setting v,,, = Ax,,, — TfnzkAx,,k. It follows from (31)

Axy,.

that lim v, = 0and Ax, — v, = Tgf
k—o00 k

Therefore, from Lemma 7, we have
F2 (Axnk — Vi Z) + h2 (Axnk — Vs Z)

1
+ — (2 — (Axy, — Vi )s (Axyy, — Vi)
Ty

— Axy) >0, ¥z € Q.

Since F, and /iy are upper semicontinuous in the first
argument, taking lim sup to above inequality as k — oo
and using condition (iii), we obtain

Fy(Aw,z) + hy(Aw,z) > 0, Vz € Q,

which means that Aw € GEP(F», 3), and hence, w € T.

Next, we claim that lim sup {f(z) —z,x, —z) < 0, where
n—o0

z = Prixsynr (I — B + yf)z. Now, from (8), we have

lim sup ((B — yf)z — z,x, — 2)

n—0o0

=lim sup (B—yf)z —z,t, — 2)

n—0o0

<lim sup (B — yf)z — z,ty;, — 2)

=(B-yHz—z,w—2)
0. (33)

IA
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Finally, we show that x, — z:

llocn+1 — Z||2 = llonyf (xn) + Buxn
+H A= B — ayBlt, — Z||2
= llon(vf (¥n) — B2) + Bu(xn — 2)
+[ (1 = B — auB] (8, — 2) ||

< I1Bu(xn—2)+[ (1 —Bp) —0o,B] (tn_z)”2
+2an(yf(xn) — Bz, Xn+1 — z)
< A = B — oy B)(tn — 2) ||
1B (xn — 211> + 20ty { (x4)
—f(2), %n11 — 2) + 20, (v (2)
—Bz, %41 — 2)
< [(A=Bn) —an?) 1% —2zll+Bullxn — 2[1>
2oy alx, — zlllxn+1 — 2|l
+2a,(yf (2) — Bz, %pt+1 — 2)
<@a- arﬂ;)znxn - Z||2 +azyalllx, — Z”2
41— 212} + 2000 (¥ f (2) — Bz, X1 —2)
< A —anp)?xn — 2l® + anyalx, —z|?
+ya [%ns1 — z)|* + 20, (yf (2)
—Bz, %41 — 2).
This implies that
9y -2
s — 2l < 143%ﬂﬁ¥%;§liﬂﬂlﬁnxn——zn2
2“” (vf(2) — Bz, %41 — 2)
Y] 2
:[1 %%%%%]mn—aﬁ+%%gmn—aﬁ
+ 12 (yf (2) — Bz &1 — 2)
- N
=2
x [ S 1 L (vf (@) — Baais — )
= 1 -)llxn — Z||2 + 8,0u,
(34)
where M := sup{[lx, — zl|? : n > 1}, 8, = 72(”1__);03“",
7M .
and o, = g‘ay y)a) + e W (vf(2) = Bz xy1+1 — z). Since
lim o, = 0 and Z a, = 00, it is easy to see that
n— 00 n=0
o0
hm 8§, = 0, Z 8y = 00, and lim sup o, < 0. Hence,
=0 n—00

from (33), (34) and Lemma 3, we deduce that x, — z.
This completes the proof.
We have the following consequences of Theorem 1.

Corollary 1. Let H, and Hy be two real Hilbert spaces
and let C C Hy and Q C Hy be nonempty closed convex
subsets. Let A : Hl — Hy be a bounded linear operator.
Assume that F1 : Cx C — Rand F, : Q x Q —> R
are the bifunctions satisfying Assumption 1 and F; is upper
semicontinuous in the first argument. Let S = {T(s) :
0 < s < oo} be a nonexpansive semigroup on C such that
Fix(SyNQ # @. Let f : C — C be a contraction map-
ping with constant o € (0,1) and B be a strongly positive
linear bounded self-adjoint operator on Hy with constant

y > 0such that 0 < y < g < y—{—é,Let{sn}isa

Page 9 of 10

positive real sequence which diverges to +00. For a given
xo € C arbitrarily, let the iterative sequences {u,} and {x,}
be generated by

Un = T} (0 + SA*(TE2 — DAxy);

Xn+1 =anyf(xn) + Buxn
-Hﬂ—%ﬂ—%&%/wTwwa
n JO

wherer, C (0,00) and 8 € (0,1/L), L is the spectral radius
of the operator A*A, and A* is the adjoint of A, and {«,}
and {B,} are the sequences in (0, 1) satisfying the following
conditions:

(i) hm a, = 0 and Z oy = 00.

(ii)) 0 < 11m 1nf Bu 5 11m sup. B, < 1.

n—o0
o
(iii) lim inf 7, >0, Y |rut1 — rul < o0
n—00 n=1
; i ISnpr=sul _
) i, " as

Then, the sequence {x,} converges strongly to z € Fix(S) N
Q wherez = Pp,'x(s)mQ (1 — B+ )/f)Z.

Proof. ' Taking hy = hy = 0 in Theorem 1, then the
conclusion of Corollary 1 is obtained. O

Corollary 2. [6] Let H be a real Hilbert space and let
C C H be a nonempty closed convex subset. Assume that
F: C x C — Risa bifunction satisfying Assumption 1 for
Fonly. Let S = {T'(s) : 0 < s < oo} be a nonexpansive
semigroup on C such that Fix(S) NEP(F) = (. Letf : C —
C be a contraction mapping with constant a € (0,1) and B
be a strongly positive linear bounded self-adjoint operator
on H with constant y > 0 such that0 < y < g <y+ é
Let {s,} is a positive real sequence which diverges to +oo.
For a given xy € C arbitrarily, let the iterative sequences
{u,} and {x,} be generated by

F
U, = T,nx,,;

Xni1 = @S (%n) + (1 — anB) - [0 T(s)unds,

where r, C (0,00) and {a,} is a sequence in (0,1)
satisfying

(i) hm an_OandZan—oo

n 0

(ii) lim 1nf rm >0, Z [Fpp1 — ry| < o0.
n=1

(i) lim M =0.

n—oo Sn+l

Then, the sequence {x,} converges strongly to z € PFix(S) N
EP(F), where z = Prixs)nepr) { — B+ yf)z.
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Proof. Taking Fi = Fp = F,Hy = Hy =H, h1 = hy =0,
{Bx} = 0,and A = 0 in Theorem 1, then the conclusion of
Corollary 2 is obtained. O

Corollary 3. [4] Let H be a real Hilbert space and let
C C H be a nonempty closed convex subset. Let S = {T'(s) :
0 < s < oo} be a nonexpansive semigroup on C such that
Fix(S) # 0. Let f : C — C be a contraction mapping with
constant o € (0,1). Let {s,} be a positive real sequence
which diverges to +o00. For a given xy € C arbitrarily, let
the iterative sequence {x,} be generated by

Xng1 = dp¥f(xn) + Buxn
+(1—a, — ﬁn)i Jo" T($)xnds,

where {a,} and {B,} are the sequences in (0,1) satisfying
the following conditions:

o0
(i) lim oy, =0and ) «, = oco.
n— 00 n=0
(ii) 0 <lim inf B, <lim sup B, < 1.
n— o 11— 00

: [Sn+1—=8nl __

(iii) nll)rrgo o = 0.
Then, the sequence {x;} converges strongly to z € Fix(S),
where z = Prix5)f (2).

Proof. Taking Hy = Hy = H, u,, = x,, F1 = F) = h; =
hy = 0, and B = I in Theorem 1, then the conclusion of
Corollary 3 is obtained. O

Results and discussion

We introduce and study an iterative method for approx-
imating a common solution of split generalized equilib-
rium problem and fixed point problem for a nonexpansive
semigroup in real Hilbert spaces. We obtain a strong
convergence result for approximating a common solution
of split generalized equilibrium problem and fixed point
problem for a nonexpansive semigroup in real Hilbert
spaces. Further, we obtain some consequences of our main
result.

Conclusions

The results presented in this paper extend and general-
ize the works of Shimizu and Takahashi [2], Chen and
Song [3], Plubtieng and Punpaeng [4], and Cianciaruso et
al. [6]. The algorithm considered in Theorem 1 is differ-
ent from those considered in [7-10] in the sense that the
variable sequence {r,} has been taken in place of fixed r.
Further, the approach of the proof presented in this paper
is also different. The use of the iterative method presented
in this paper for the split monotone variational inclusions
considered in Moudafi [9] needs further research effort.
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