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Abstract

Purpose: In this paper, we introduce and study an iterative method to approximate a common solution of a split
generalized equilibrium problem and a fixed point problem for a nonexpansive semigroup in real Hilbert spaces.

Methods: We prove a strong convergence theorem of the iterative algorithm in Hilbert spaces under certain mild
conditions.

Results: We obtain a strong convergence result for approximating a common solution of a split generalized
equilibrium problem and a fixed point problem for a nonexpansive semigroup in real Hilbert spaces, which is a unique
solution of a variational inequality problem. Further, we obtain some consequences of our main result.

Conclusions: The results presented in this paper are the supplement, extension, and generalization of results in the
study of Plubtieng and Punpaeng and that of Cianciaruso et al. The approach of the proof given in this paper is also
different.
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Introduction
Throughout the paper, unless otherwise stated, let H1 and
H2 be real Hilbert spaces with inner product 〈·, ·〉 and
norm ‖·‖. Let C and Q be nonempty closed convex subsets
of H1 and H2, respectively.

A mapping f : C → C is said to be a contraction if
there exists a constant α ∈ (0, 1) such that ‖fx − fy‖ ≤
α‖x − y‖, ∀x, y ∈ C. A mapping T : C → C is said to be
nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C. Fix(T)

denotes the fixed point set of the nonexpansive mapping
T : C → C.

Let B : H1 → H1 be a strongly positive linear bounded
operator, i.e., if there exists a constant γ̄ > 0 such that

〈Bx, x〉 ≥ γ̄ ‖x‖2, ∀x ∈ H1.
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A typical problem is to minimize a quadratic function
over the set of fixed points of nonexpansive mapping T :

min
x∈Fix(T)

1
2
〈Bx, x〉 − 〈x, b〉,

where b is a given point in H1.
In 2006, Marino and Xu [1] considered the following

iterative method:
xn+1 = αnγ f (xn) + (I − αnB)Txn, ∀n ≥ 0,

with 0 < γ <
γ̄
α

and proved that the sequence {xn} con-
verges strongly to the unique solution of the variational
inequality

〈(B − γ f )z, x − z〉, ∀x ∈ Fix(T)

which is the optimality condition for the minimization
problem

min
x∈Fix(T)

1
2
〈Bx, x〉 − h(x),

where h is the potential function for γ f .
© 2013 Kazmi and Rizvi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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A family S := {T(s) : 0 ≤ s < ∞} of mappings from
C into itself is called a nonexpansive semigroup on C if it
satisfies the following conditions:

(i) T(0)x = x for all x ∈ C.
(ii) T(s + t) = T(s)T(t) for all s, t ≥ 0.

(iii) ‖T(s)x − T(s)y‖ ≤ ‖x − y‖ for all x, y ∈ C and s ≥ 0.
(iv) For all x ∈ C, s �→ T(s)x is continuous.

The set of all the common fixed points of a family S is
denoted by Fix(S), i.e.,

Fix(S) : = {x ∈ C : T(s)x = x, 0 ≤ s < ∞}
=

⋂
0≤s<∞

Fix(T(s)),

where Fix(T(s)) is the set of fixed points of T(s). It is well
known that Fix(S) is closed and convex.

The fixed point problem (FPP) for a nonexpansive semi-
group S is:

Find x ∈ C such that x ∈ Fix(S). (1)

In 1997, Shimizu and Takahashi [2] introduced and
studied the following iterative method to prove a strong
convergence theorem for FPP (1) in a real Hilbert space:

xn+1 = αnu + (1 − αn)
1
sn

∫ sn

0
T(s)xnds, ∀n ∈ N,

where {αn} is a sequence in (0, 1) and {sn} is a sequence of
positive real numbers which diverges to +∞. Later, Chen
and Song [3] introduced and studied the following itera-
tive method to prove a strong convergence theorem for
FPP (1) in a real Hilbert space:

xn+1 = αnf (xn)+ (1−αn)
1
sn

∫ sn

0
T(s)xnds, ∀n ∈ N,

where f is a contraction mapping. Recently, Plubtieng and
Punpaeng [4] introduced and studied the following iter-
ative method to prove a strong convergence theorem for
FPP (1) in a real Hilbert space:

xn+1 =αnf (xn) + βnxn

+ (1 − αn − βn)
1
sn

∫ sn

0
T(s)xnds, ∀n ∈ N,

where {αn} and {βn} are the sequences in (0, 1) and {sn} is
a positive real divergent sequence.

The equilibrium problem (EP) [5] is of finding x ∈ C
such that

F(x, y) ≥ 0, ∀y ∈ C, (2)

where F : C × C → R is a bifunction. The solution set of
EP (2) is denoted by EP(F).

Cianciaruso et al. [6] introduced and studied the fol-
lowing iterative method to prove a strong convergence
theorem for FPP (1) and EP (2) in a real Hilbert space:
x0 ∈ H1:

xn+1 = αnγ f (xn)+(1−αnB)
1
sn

∫ sn

0
T(s)unds, ∀n ∈ N,

F(un, y) + 1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ H1,

where {αn} is a sequence in (0, 1) and {sn} is a positive real
divergent sequence.

Recently, Moudafi [7] introduced the following split
equilibrium problem (SEP):

Let F1 : C × C → R and F2 : Q × Q → R be non-
linear bifunctions and A : H1 → H2 be a bounded linear
operator, then the SEP is to find x∗ ∈ C such that

F1(x∗, x) ≥ 0, ∀x ∈ C, (3)

and such that

y∗ = Ax∗ ∈ Q solves F2(y∗, y) ≥ 0, ∀y ∈ Q. (4)

When looked separately, (3) is the classical EP, and we
denoted its solution set by EP(F1). SEP (3)-(4) constitutes
a pair of equilibrium problems which have to be solved so
that the image y∗ = Ax∗, under a given bounded linear
operator A, of the solution x∗ of EP (3) in H1 is the solu-
tion of another EP (4) in another space H2, and we denote
the solution set of EP (4) by EP(F2).

The solution set of SEP (3)-(4) is denoted by � = {p ∈
EP(F1) : Ap ∈ EP(F2)}. SEP (3)-(4) includes the split vari-
ational inequality problem, split zero problem, and split
feasibility problem (see, for instance, [7-12]).

In this paper, we consider a split generalized equilibrium
problem (SGEP): Find x∗ ∈ C such that

F1(x∗, x) + h1(x∗, x) ≥ 0, ∀x ∈ C, (5)

and such that

y∗ = Ax∗ ∈ Q solves F2(y∗, y)+h2(y∗, y) ≥ 0, ∀y ∈ Q,
(6)

where F1, h1 : C × C → R and F2, h2 : Q × Q → R

are nonlinear bifunctions and A : H1 → H2 is a bounded
linear operator.

We denote the solution set of generalized equilibrium
problem (GEP) (5) and GEP (6) by GEP(F1, h1) and
GEP(F2, h2), respectively. The solution set of SGEP (5)-(6)
is denoted by � = {p ∈ GEP(F1, h1) : Ap ∈ GEP(F2, h2)}.

If h1 = 0 and h2 = 0, then SGEP (5)-(6) reduces to SEP
(3)-(4). If h2 = 0 and F2 = 0, then SGEP (5)-(6) reduces
to the equilibrium problem considered by Cianciaruso
et al. [13].
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Motivated by the works of Moudafi [7], Marino and
Xu [1], Shimizu and Takahashi [2], Chen and Song [3],
Plubtieng and Punpaeng [4], and Cianciaruso et al. [6,13]
and by the ongoing research in this direction, we intro-
duce and study an iterative method for approximating a
common solution of SGEP (5)-(6) and FPP (6) for a non-
expansive semigroup in real Hilbert spaces. The results
presented in this paper extend and generalize the works of
Shimizu and Takahashi [2], Chen and Song [3], Plubtieng
and Punpaeng [4], and Cianciaruso et al. [6].

Now, we recall some concepts and results which are
needed in sequel.

For every point x ∈ H1, there exists a unique nearest
point in C denoted by PCx such that

‖x − PCx‖ ≤ ‖x − y‖, ∀y ∈ C. (7)

PC is called the metric projection of H1 onto C. It is
well known that PC is a nonexpansive mapping and is
characterized by the following property:

〈x − PCx, y − PCx〉 ≤ 0. (8)

Further, it is well known that every nonexpansive oper-
ator T : H1 → H1 satisfies, for all (x, y) ∈ H1 × H1, the
inequality

〈(x − T(x)) − (y − T(y)), T(y) − T(x)〉
≤ (1/2)‖(T(x) − x) − (T(y) − y‖2,

(9)

and therefore, we get, for all (x, y) ∈ H1 × Fix(T),

〈x − T(x), y − T(x)〉 ≤ (1/2)‖T(x) − x‖2 (10)

(see, e.g., Theorem 3 in [14] and Theorem 1 in [15]).
It is also known that H1 satisfies Opial’s condition [16],

i.e., for any sequence {xn} with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖ (11)

holds for every y ∈ H1 with y = x.

Lemma 1. [17] Let {xn} and {yn} be bounded sequences
in a Banach space X and {βn} be a sequence in [ 0, 1] with
0 < lim inf

n→∞ βn ≤ lim sup
n→∞

βn < 1. Suppose xn+1 = (1 −
βn)yn + βnxn, for all integers n ≥ 0 and lim sup

n→∞
(‖yn+1 −

yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, lim
n→∞ ‖yn − xn‖ = 0.

Lemma 2. [2] Let C be a nonempty bounded closed con-
vex subset of a Hilbert space H1 and let S := {T(s) : 0 ≤
s < ∞} be a nonexpansive semigroup on C, for each x ∈ C
and t > 0. Then, for any 0 ≤ h < ∞,

lim
t→∞ sup

x∈C

∥∥∥∥1
t

∫ t

0
T(s)xds − T(h)

(
1
t

∫ t

0
T(s)xds

)∥∥∥∥ = 0.

Lemma 3. [18] Let {an} be a sequence of nonnegative
real numbers such that

an+1 ≤ (1 − αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in
R such that

(i)
∞∑

n=1
αn = ∞.

(ii) lim sup
n→∞

δn
αn

≤ 0 or
∞∑

n=1
| δn |< ∞.

Then, lim
n→∞ an = 0.

Lemma 4. [1] Assume that B is a strong positive linear
bounded operator on a Hilbert space H1 with coefficient
γ̄ > 0 and 0 < ρ < ‖B‖−1. Then, ‖I − ρB‖ ≤ 1 − ργ̄ .

Lemma 5. The following inequality holds in a real
Hilbert space H1:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H1.

Assumption 1 [19] Let F : C × C −→ R be a bifunction
satisfying the following assumptions:

(i) F(x, x) ≥ 0, ∀x ∈ C,
(ii) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0, ∀x ∈ C,

(iii) F is upper hemicontinuous, i.e., for each x, y, z ∈ C,
lim sup

t→0
F(tz + (1 − t)x, y) ≤ F(x, y),

(iv) For each x ∈ C fixed, the function y → F(x, y) is
convex and lower semicontinuous;

let h : C × C −→ R such that

(i) h(x, x) ≥ 0, ∀x ∈ C,
(ii) For each y ∈ C fixed, the function x → h(x, y) is

upper semicontinuous,
(iii) For each x ∈ C fixed, the function y → h(x, y) is

convex and lower semicontinuous,

and assume that for fixed r > 0 and z ∈ C, there exists a
nonempty compact convex subset K of H1 and x ∈ C ∩ K
such that

F(y, x) + h(y, x) + 1
r
〈y − x, x − z〉 < 0, ∀y ∈ C\K .
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The proof of the following lemma is similar to the proof
of Lemma 2.13 in [19] and hence omitted.

Lemma 6. Assume that F1, h1 : C × C −→ R satisfying
Assumption 1. Let r > 0 and x ∈ H1. Then, there exists
z ∈ C such that

F1(z, y) + h1(z, y) + 1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Lemma 7. [12] Assume that the bifunctions F1, h1 : C ×
C −→ R satisfy Assumption 1 and h1 is monotone. For r >

0 and for all x ∈ H1, define a mapping T (F1,h1)
r : H1 → C

as follows:

T (F1,h1)
r (x) =

{
z ∈ C : F1(z, y) + h1(z, y)

+ 1
rn

〈y − z, z − x〉 ≥ 0, ∀y ∈ C
}

.

Then, the following hold:

(i) T (F1,h1)
r is single-valued.

(ii) T (F1,h1)
r is firmly nonexpansive, i.e.,

‖T (F1,h1)
r x − T (F1,h1)

r y‖2 ≤ 〈T (F1,h1)
r x − T (F1,h1)

r y, x − y〉,
∀x, y ∈ H1.

(iii) Fix(T (F1,h1)
r ) = GEP(F1, h1).

(iv) GEP(F1, h1) is compact and convex.

Further, assume that F2, h2 : Q × Q −→ R satisfying
Assumption 1. For s > 0 and for all w ∈ H2, define a
mapping T (F2,h2)

s : H2 → Q as follows:

T (F2,h2)
s (w) =

{
d ∈ Q : F2(d, e) + h2(d, e)

+1
s
〈e − d, d − w〉 ≥ 0, ∀e ∈ Q

}
.

Then, we easily observe that T (F2,h2)
s is single-valued

and firmly nonexpansive, GEP(F2, h2, Q) is compact and
convex, and Fix(T (F2,h2)

s ) = GEP(F2, h2, Q), where
GEP(F2, h2, Q) is the solution set of the following general-
ized equilibrium problem:

Find y∗ ∈ Q such that F2(y∗, y) + h2(y∗, y) ≥ 0, ∀y ∈ Q.
We observe that GEP(F2, h2) ⊂ GEP(F2, h2, Q). Further,

it is easy to prove that � is a closed and convex set.

Remark 1. Lemmas 6 and 7 are slight generalizations
of Lemma 3.5 in [13] where the equilibrium condition
F1(x, x) = h1(x, x) = 0 has been relaxed to F1(x, x) ≥ 0
and h1(x, x) ≥ 0 for all x ∈ C. Further, the monotonicity of
h1 in Lemma 6 is not required.

Lemma 8. [13] Let F1 : C × C −→ R be a bifunction
satisfying Assumption 1 hold and let TF1

r be defined as in
Lemma 4 for r > 0. Let x, y ∈ H1 and r1, r2 > 0. Then,

‖TF1
r2 y − TF1

r1 x‖ ≤ ‖y − x‖ +
∣∣∣∣ r2 − r1

r2

∣∣∣∣ ‖TF1
r2 y − y‖.

Notation. Let {xn} be a sequence in H1, then xn → x
(respectively, xn ⇀ x) denotes strong (respectively, weak)
convergence of the sequence {xn} to a point x ∈ H1.

Methods
In this section, we prove a strong convergence theorem
based on the proposed iterative method for computing the
approximate common solution of SGEP (5)-(6) and FPP
(1) for a nonexpansive semigroup in real Hilbert spaces.

We assume that � = ∅.

Theorem 1. Let H1 and H2 be two real Hilbert spaces
and let C ⊆ H1 and Q ⊆ H2 be nonempty closed convex
subsets. Let A : H1 → H2 be a bounded linear operator.
Assume that F1, h1 : C × C → R and F2, h2 : Q × Q →
R are the bifunctions satisfying Assumption 1; h1, h2 are
monotone and F2 is upper semicontinuous in the first argu-
ment. Let S = {T(s) : 0 ≤ s < ∞} be a nonexpansive
semigroup on C such that Fix(S) ∩ � = ∅. Let f : C → C
be a contraction mapping with constant α ∈ (0, 1) and B
be a strongly positive linear bounded self-adjoint operator
on H1 with constant γ̄ > 0 such that 0 < γ <

γ̄
α

< γ + 1
α

.
Let {sn} is a positive real sequence which diverges to +∞.
For a given x0 ∈ C arbitrarily, let the iterative sequences
{un} and {xn} be generated by iterative algorithm:

un = T (F1,h1)
rn (xn + δA∗(T (F2,h2)

rn − I)Axn);
xn+1 = αnγ f (xn) + βnxn

+ ((1 − βn)I − αnB)
1
sn

∫ sn

0
T(s)unds,

(12)

where rn ⊂ (0, ∞) and δ ∈ (0, 1/L), L is the spectral radius
of the operator A∗A, and A∗ is the adjoint of A, and {αn}
and {βn} are the sequences in (0, 1) satisfying the following
conditions:

(i) lim
n→∞ αn = 0 and

∞∑
n=0

αn = ∞.

(ii) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1.

(iii) lim inf rn > 0 and lim
n→∞ |rn+1 − rn| = 0.

(iv) lim
n→∞

|sn+1−sn|
sn+1

= 0.

Then, the sequence {xn} converges strongly to z ∈
Fix(S) ∩ �, where z = PFix(S)∩�(I − B + γ f )z.
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Proof. We note that from condition (i), we may assume
without loss of generality that αn ≤ (1 − βn)‖B‖−1 for
all n. From Lemma 4, we know that if 0 < ρ ≤ ‖B‖−1,
then ‖I − ρB‖ ≤ 1 − ργ̄ . We will assume that ‖I − B‖ ≤
1 − γ̄ .

Since B is a positive linear bounded self-adjoint operator
on H1, then

‖B‖ = sup{|〈Bu, u〉| : u ∈ H1, ‖u‖ = 1}.
Observe that

〈((1 − βn)I − αnB)u, u〉 = 1 − βn − αn〈Bu, u〉
≥ 1 − βn − αn‖B‖
≥ 0,

which implies that (1 − βn)I − αnB is positive. It follows
that

‖(1 − βn)I − αnB‖ = sup{〈((1 − βn)I − αnB)u, u〉 :
u ∈ H1, ‖u‖ = 1}

= sup{1 − βn − αn〈Bu, u〉 :
u ∈ H1, ‖u‖ = 1}

≤ 1 − βn − αnγ̄ .

Let q = PFix(S)∩� . Since f is a contraction mapping with
constant α ∈ (0, 1), it follows that

‖q(I − B + γ f )(x) − q(I − B + γ f )(y)‖
≤ ‖(I−B+γ f )(x)−(I − B + γ f )(x)‖
≤ ‖I − B‖‖x − y‖ + γ ‖f (x) − f (y)‖
≤ (1 − γ̄ )‖x − y‖ + γα‖x − y‖
≤ (1 − (γ̄ − γα))‖x − y‖,

for all x, y ∈ H1. Therefore, the mapping q(I − B + γ f )
is a contraction mapping from H1 into itself. It follows
from the Banach contraction principle that there exists
an element z ∈ H1 such that z = q(I − B + γ f )z =
PFix(S)∩�(I − B + γ f )(z).

Let p ∈ Fix(S)∩�, i.e., p ∈ �, and we have p = T (F1,h1)
rn p

and Ap = T (F2,h2)
rn (Ap).

We estimate

‖un − p‖2 = ‖T (F1,h1)
rn (xn + δA∗(T (F2,h2)

rn − I)Axn) − p‖2

= ‖T (F1,h1)
rn (xn + δA∗(T (F2,h2)

rn − I)Axn)

−T (F1,h1)
rn p‖2

≤ ‖xn + δA∗(T (F2,h2)
rn − I)Axn − p‖2

≤ ‖xn − p‖2 + δ2‖A∗(T (F2,h2)
rn − I)Axn‖2

+2δ〈xn − p, A∗(T (F2,h2)
rn − I)Axn〉.

(13)

Thus, we have

‖un − p‖2 ≤ ‖xn − p‖2

+δ2〈(T (F2,h2)
rn − I)Axn, AA∗(T (F2,h2)

rn − I)Axn〉
+2δ〈xn − p, A∗(T (F2,h2)

rn − I)Axn〉.
(14)

Now, we have
δ2〈(T (F2,h2)

rn − I)Axn, AA∗(T (F2,h2)
rn − I)Axn〉

≤ Lδ2〈(T (F2,h2)
rn − I)Axn, (T (F2,h2)

rn − I)Axn〉
= Lδ2‖(T (F2,h2)

rn − I)Axn‖2.

(15)

Denoting 
 = 2δ〈xn − p, A∗(T (F2,h2)
rn − I)Axn〉 and using

(10), we have


 = 2δ〈xn − p, A∗(T (F2,h2)
rn − I)Axn〉

= 2δ〈A(xn − p), (T (F2,h2)
rn − I)Axn〉

= 2δ〈A(xn − p) + (T (F2,h2)
rn − I)Axn

−(T (F2,h2)
r − I)Axn, (T (F2,h2)

rn − I)Axn〉
= 2δ

{
〈T (F2,h2)

rn Axn − Ap, (T (F2,h2)
rn − I)Axn〉

−‖(T (F2,h2)
rn − I)Axn‖2

}
≤ 2δ

{
1
2‖(T (F2,h2)

rn − I)Axn‖2 − ‖(T (F2,h2)
rn − I)Axn‖2

}
≤ −δ‖(T (F2,h2)

rn − I)Axn‖2.
(16)

Using (14), (15), and (16), we obtain

‖un −p‖2 ≤ ‖xn −p‖2 +δ(Lδ−1)‖(T (F2,h2)
rn − I)Axn‖2.

(17)

Since δ ∈ (0, 1
L ), we obtain

‖un − p‖2 ≤ ‖xn − p‖2. (18)

Now, setting tn := 1
sn

∫ sn
0 T(s)unds and since p ∈

Fix(S) ∩ �, we obtain

‖tn − p‖ =
∥∥∥ 1

sn

∫ sn
0 T(s)unds − p

∥∥∥
≤ 1

sn

∫ sn
0 ‖T(s)un − T(s)p‖ds

≤ ‖un − p‖
≤ ‖xn − p‖.

(19)

Further, we estimate
‖xn+1 − p‖ = ‖αnγ f (xn)+βnxn + ((1 − βn)I − αnB)tn − p‖

= ‖αn(γ f (xn) − Bp) + βn(xn − p)

+((1 − βn)I − αnB)(tn − p)‖
≤ αn‖γ f (xn) − Bp‖ + βn‖xn − p‖

+(1 − βn − αnγ̄ )‖tn − p‖
≤ αnγ ‖f (xn) − f (p)‖ + αn‖γ f (p) − Bp‖

+βn‖xn − p‖ + (1 − βn − αnγ̄ )‖xn − p‖
≤ αnγα‖xn − p‖ + αn‖γ f (p) − Bp‖

+(1 − αnγ̄ )‖xn − p‖
= (1 − (γ̄ − γα)αn)‖xn − p‖ + αn‖γ f (p) − Bp‖
≤ max

{
‖xn − p‖, 1

γ̄−γ α
‖γ f (p) − Bp‖

}
, n ≥ 0

...
≤ max

{
‖x0 − p‖, 1

γ̄−γ α
‖γ f (p) − Bp‖

}
.

(20)

Hence, {xn} is bounded, and consequently, we deduce
that {un}, {tn}, and {f (xn)} are bounded.
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Next, we estimate

‖tn+1 − tn‖ =
∥∥∥ 1

sn+1

∫ sn+1
0 T(s)un+1ds − 1

sn

∫ sn
0 T(s)unds

∥∥∥
=

∥∥∥ 1
sn+1

∫ sn+1
0 [ T(s)un+1 − T(s)un] ds

+
(

1
sn+1

− 1
sn

)
× ∫ sn

0 T(s)unds

+ 1
sn+1

∫ sn+1
sn

T(s)unds
∥∥∥

=
∥∥∥ 1

sn+1

∫ sn+1
0 [ T(s)un+1 − T(s)un] ds

+
(

1
sn+1

− 1
sn

)
× ∫ sn

0 [ T(s)un − T(s)p] ds

+ 1
sn+1

∫ sn+1
sn

[ T(s)un − T(s)p] ds
∥∥∥

≤ ‖un+1 − un‖ + |sn+1−sn|sn
(sn+1)sn

‖un − p‖
+ |sn+1−sn|

sn+1
‖un − p‖

≤ ‖un+1 − un‖ + 2 |sn+1−sn|
sn+1

‖un − p‖.
(21)

Since T (F1,h1)
rn+1 and T (F2,h2)

rn+1 both are firmly nonexpansive,
for δε(0, 1

L ), the mapping T (F1,h1)
rn+1 (I +δA∗(T (F2,h2)

rn+1 −I)A) is
nonexpensive, see [7,10]. Further, since un = T (F1,h1)

rn (xn +
δA∗(T (F2,h2)

rn − I)Axn) and un+1 = T (F1,h1)
rn+1 (xn+1 +

δA∗(T (F2,h2)
rn+1 − I)Axn+1), it follows from Lemma 8 that

‖un+1 − un‖
≤ ‖T (F1,h1)

rn+1

(
xn+1 + δA∗ (

T (F2,h2)
rn+1 − I

)
Axn+1

)

− T (F1,h1)
rn+1

(
xn + δA∗ (

T (F2,h2)
rn+1 − I

)
Axn

)
‖

+ ‖T (F1,h1)
rn+1

(
xn + δA∗ (

T (F2,h2)
rn+1 − I

)
Axn

)

− T (F1,h1)
rn

(
xn + δA∗ (

T (F2,h2)
rn − I

)
Axn

)
‖

≤ ‖xn+1 − xn‖ + ‖
(

xn + δA∗ (
T (F2,h2)

rn+1 − I
)

Axn
)

−
(

xn + δA∗ (
T (F2,h2)

rn − I
)

Axn
)

‖

+
∣∣∣∣1 − rn

rn+1

∣∣∣∣ ‖T (F1,h1)
rn+1

(
xn + δA∗ (

T (F2,h2)
rn − I

)
Axn

)

−
(

xn + δA∗ (
T (F2,h2)

rn+1 − I
)

Axn
)

‖
≤ ‖xn+1 − xn‖ + δ‖A‖‖T (F2,h2)

rn+1 Axn − T (F2,h2)
rn Axn‖ + δn

≤ ‖xn+1 − xn‖ + δ‖A‖
∣∣∣∣1 − rn

rn+1

∣∣∣∣ ‖T (F2,h2)
rn+1 Axn − Axn‖ + δn

= ‖xn+1 − xn‖ + δ‖A‖σn + δn

(22)

where

σn =
∣∣∣∣1 − rn+1

rn

∣∣∣∣ ‖T (F2,h2)
rn Axn − Axn‖

and

δn =
∣∣∣∣1− rn+1

rn

∣∣∣∣ ‖T (F1,h1)
rn (xn + δA∗(T (F2,h2)

rn − I)Axn)

− (xn + δA∗(T (F2,h2)
rn − I)Axn)‖.

Using (21) and (22), we have

‖tn+1 − tn‖ ≤ ‖xn+1 − xn‖ + δ‖A‖σn + δn

+ 2
|sn+1 − sn|

sn+1
‖un − p‖. (23)

Setting xn+1 = βnxn + (1 − βn)en implies from (12) that
en = xn+1−βnxn

1−βn
= αnγ f (xn)+((1−βn)I−αnB)tn

1−βn
.

Further, it follows that

en+1 − en = αn+1γ f (xn+1)+((1−βn+1)I−αn+1B)tn+1
1−βn+1

−αnγ f (xn)+((1−βn)I−αnB)tn
1−βn

= αn+1
1−βn+1

γ f (xn+1) + (1−βn+1)tn+1
1−βn+1

− αn+1Btn+1
1−βn+1

− αn
1−βn

γ f (xn) − (1−βn)tn
1−βn

+ αnBtn
1−βn= αn+1

1−βn+1
(γ f (xn+1) + Btn+1) + tn+1 − tn

+ αn
1−βn

(Btn − γ f (xn)).

Using (23), we have

‖en+1 − en‖ =
∥∥∥ αn+1

1−βn+1
(γ f (xn+1) + Btn+1) + tn+1

−tn + αn
1−βn

(Btn − γ f (xn))

∥∥∥
≤ αn+1

1−βn+1

(‖γ f (xn+1)‖ + ‖Btn+1‖
)

+ αn
1−βn

(‖γ f (xn)‖ + ‖Btn‖) + ‖tn+1 − tn‖
≤ αn+1

1−βn+1

(‖γ f (xn+1)‖ + ‖Btn+1‖
)

+ αn
1−βn

(‖γ f (xn)‖ + ‖Btn‖) + ‖xn+1 − xn‖
+γ ‖A‖σn + δn + 2

( |sn+1−sn|
sn+1

)
‖un − p‖

which implies that

‖en+1 − en‖ − ‖xn+1 − xn‖

≤ αn+1
1 − βn+1

(‖f (xn+1)‖ + ‖Btn+1‖) + γ ‖A‖σn + δn

+ αn
1 − βn

(‖γ f (xn)‖ + ‖Btn‖)

+ 2
( |sn+1 − sn|

sn+1

)
‖un − p‖.

Hence, it follows by conditions (i), (iii), and (iv) that

lim sup
n→∞

[‖en+1 − en‖ − ‖xn+1 − xn‖] ≤ 0. (24)

From Lemma 1 and (24), we get lim
n→∞ ‖en − xn‖ = 0 and

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1 − βn)‖en − xn‖ = 0. (25)

Now,

xn+1 − xn = αnγ f (xn) + βnxn + ((1 − βn)I − αnB)tn − xn
= αn(γ f (xn) − xn) + ((1 − βn)I − αnB)(tn − xn).

Since ‖xn+1 − xn‖ → 0 and αn → 0 as n → ∞, we obtain

lim
n→∞ ‖tn − xn‖ = 0. (26)
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Next, we have

‖T(s)xn − xn‖ =
∥∥∥T(s)xn − T(s) 1

sn

∫ sn
0 T(s)unds

+T(s) 1
sn

∫ sn
0 T(s)unds

− 1
sn

∫ sn
0 T(s)unds + 1

sn

∫ sn
0 T(s)unds − xn

∥∥∥
≤

∥∥∥T(s)xn − T(s) 1
sn

∫ sn
0 T(s)unds

∥∥∥
+

∥∥∥T(s) 1
sn

∫ sn
0 T(s)unds − 1

sn

∫ sn
0 T(s)unds

∥∥∥
+

∥∥∥ 1
sn

∫ sn
0 T(s)unds − xn

∥∥∥
≤

∥∥∥xn − 1
sn

∫ sn
0 T(s)unds

∥∥∥
+

∥∥∥T(s) 1
sn

∫ sn
0 T(s)unds − 1

sn

∫ sn
0 T(s)unds

∥∥∥
+

∥∥∥ 1
sn

∫ sn
0 T(s)unds − xn

∥∥∥
≤ 2

∥∥∥xn − 1
sn

∫ sn
0 T(s)unds

∥∥∥
+

∥∥∥T(s) 1
sn

∫ sn
0 T(s)unds − 1

sn

∫ sn
0 T(s)unds

∥∥∥ .

(27)

Since {xn} and {f (xn)} are bounded, let K :={
w ∈ C : ‖w − p‖ ≤ ‖x0 − p‖, 1

γ̄−γα
‖γ f (p) − Bp‖

}
, then

K is a nonempty bounded closed convex subset of C which
is T(s)-invariant for each 0 ≤ s < ∞ and contains {xn}.
So, without loss of generality, we may assume that S :=
{T(s) : 0 ≤ s < ∞} is a nonexpansive semigroup on K. By
Lemma 2, we have

lim
n→∞

∥∥∥∥T(s)
1
sn

∫ sn

0
T(s)unds − 1

sn

∫ sn

0
T(s)unds

∥∥∥∥ = 0.

(28)

Using (21) to (23), we obtain

lim
n→∞ ‖T(s)xn − xn‖ = 0. (29)

It follows from (17) and Lemma 5 that
‖xn+1 − p‖2

= ‖αnγ f (xn) + βnxn+[ (1 − βn)I − αnB] tn − p‖2

= ‖αn(γ f (xn) − Bp) + βn(xn − tn) + (I − αnB)(tn − p)‖2

≤ ‖(I − αnB)(tn − p) + βn(xn − tn)‖2 + 2αn〈γ f (xn)

−Bp, xn+1 − p〉
≤ [‖(I − αnB)(tn − p)‖ + βn‖xn − tn‖]2 + 2αn‖γ f (xn)

−Bp‖‖xn+1 − p‖
≤ [‖I − αnB‖‖un − p‖ + βn‖xn − tn‖]2 + 2αn‖γ f (xn)

−Bp‖‖xn+1 − p‖
= (I − αnγ̄ )2‖un − p‖2 + β2

n‖xn − tn‖2 + 2(1 − αnγ̄ )βn‖un
−p‖‖xn − tn‖ + 2αn‖γ f (xn) − Bp‖‖xn+1 − p‖

≤ (1 − αnγ̄ )2
[
‖xn − p‖2 + δ(Lδ − 1)‖(T (F2,h2)

rn − I)Axn‖2
]

+β2
n‖xn − tn‖2 + 2(1 − αnγ̄ )βn‖un − p‖‖xn − tn‖

+2αn‖γ f (xn) − Bp‖‖xn+1 − p‖
≤ [

1 − 2αnγ̄ + (αnγ̄ )2] ‖xn − p‖2

+(1 − αnγ̄ )2δ(Lδ − 1)‖(T (F2,h2)
rn − I)Axn‖2

+β2
n‖xn − tn‖2 + 2(1 − αnγ̄ )βn‖un − p‖‖xn − tn‖

+2αn‖γ f (xn) − Bp‖‖xn+1 − p‖

≤ ‖xn − p‖2 + αnγ̄ 2‖xn − p‖2

+(1 − αnγ̄ )2δ(Lδ − 1)‖(T (F2,h2)
rn − I)Axn‖2

+β2
n‖xn − tn‖2 + 2(1 − αnγ̄ )βn‖un − p‖‖xn − tn‖

+2αn‖γ f (xn) − Bp‖‖xn+1 − p‖.

(30)

Therefore,

(1 − αnγ̄ )2δ(1 − Lδ)‖(T (F2,h2)
rn − I)Axn‖2

≤‖xn − p‖2 − ‖xn+1 − p‖2 + β2
n‖xn − tn‖2

+ αnγ̄ 2‖xn − p‖2 + 2(1 − αnγ̄ )βn‖un

− p‖‖xn − tn‖ + 2αn‖γ f (xn) − Bp‖‖xn+1 − p‖
≤(‖xn−p‖+‖xn+1−p‖)‖xn−xn+1‖+β2

n‖xn−tn‖2

+ αnγ̄ 2‖xn−p‖2+2(1−αnγ̄ )βn‖un−p‖‖xn−tn‖
+ 2αn‖γ f (xn) − Bp‖‖xn+1 − p‖.

Since δ(1−Lδ) > 0, αn → 0, ‖xn −tn‖ → 0 and ‖xn+1 −
xn‖ → 0 as n → ∞, we obtain

lim
n→∞ ‖(T (F2,h2)

rn − I)Axn‖ = 0. (31)

Next, we show that ‖xn − un‖ → 0 as n → ∞. Since
p ∈ Fix(S) ∩ �, we obtain

‖un − p‖2 = ‖T (F1,h1)
rn (xn + δA∗(T (F2,h2)

rn − I)Axn) − p‖2

= ‖T (F1,h1)
rn (xn+δA∗(T (F2,h2)

rn −I)Axn)−T (F1,h1)
rn p‖2

≤ 〈un − p, xn + δA∗(T (F2,h2)
rn − I)Axn − p〉

= 1
2

{
‖un−p‖2+‖xn+δA∗(T (F2,h2)

rn −I)Axn − p‖2

− ‖(un−p)−[ xn+δA∗(T (F2,h2)
rn −I)Axn−p] ‖2

}
= 1

2
{‖un − p‖2 + ‖xn − p‖2 − ‖un − xn

−δA∗(T (F2,h2)
rn − I)Axn‖2

}
= 1

2
{‖un − p‖2 + ‖xn − p‖2 − [‖un − xn‖2

+δ2‖A∗(T (F2,h2)
rn − I)Axn‖2

−2δ〈un − xn, A∗(T (F2,h2)
rn − I)Axn〉

]}
.

Hence, we obtain

‖un − p‖2 ≤‖xn − p‖2 − ‖un − xn‖2

+ 2δ‖A(un − xn)‖‖T (F2,h2)
rn − I)Axn‖.

It follows from (30) and (31) that

‖xn+1 − p‖2 ≤ (1 − αnγ̄ )2 [‖xn − p‖2 − ‖un − xn‖2

+2δ‖A(un − xn)‖‖ T (F2,h2)
rn − I

)
Axn‖

]
+β2

n‖xn − tn‖2 + 2(1 − αnγ̄ )βn‖un − p‖‖xn
−tn‖ + 2αn‖γ f (xn) − Bp‖‖xn+1 − p‖

≤ [
1 − 2αnγ̄ + (αnγ̄ )2] ‖xn − p‖2

−(1 − αnγ̄ )2‖un − xn‖2 + 2(1 − αnγ̄ )2δ‖
A(un − xn)‖‖ T (F2,h2)

rn − I
)

Axn‖
+β2

n‖xn − tn‖2 + 2(1 − αnγ̄ )βn‖un − p‖‖xn
−tn‖ + 2αn‖γ f (xn) − Bp‖‖xn+1 − p‖

≤ ‖xn − p‖2 + αnγ̄ 2‖xn − p‖2 − (1 − αnγ̄ )2‖un
−xn‖2 + 2(1 − αnγ̄ )2δ‖A(un − xn)‖‖T (F2,h2)

rn
−I ) Axn‖+β2

n‖xn−tn‖2+2(1 − αnγ̄ )βn‖un
−p‖‖xn−tn‖+2αn‖γ f (xn)−Bp‖‖xn+1 − p‖.
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Therefore,

(1 − αnγ̄ )2‖un − xn‖2

≤‖xn − p‖2 − ‖xn+1 − p‖2 + β2
n‖xn − tn‖2

+ 2(1 − αnγ̄ )2δ‖A(un − xn)‖‖ T (F2,h2)
rn − I

)
Axn‖

+ αnγ̄ 2‖xn−p‖2+2(1−αnγ̄ )βn‖un−p‖‖xn − tn‖
+ 2αn‖γ f (xn) − Bp‖‖xn+1 − p‖

≤(‖xn−p‖+‖xn+1−p‖)‖xn−xn+1‖+β2
n‖xn − tn‖2

+ 2(1 − αnγ̄ )2δ‖A(un − xn)‖‖ T (F2,h2)
rn − I )Axn‖

+ αnγ̄ 2‖xn−p‖2+2(1−αnγ̄ )βn‖un − p‖‖xn − tn‖
+ 2αn‖γ f (xn) − Bp‖‖xn+1 − p‖.

Since αn → 0, ‖xn − tn‖ → 0, ‖T (F2,h2)
rn − I)Axn‖ → 0

and ‖xn+1 − xn‖ → 0 as n → ∞, we obtain

lim
n→∞ ‖un − xn‖ = 0. (32)

Thus, we can write
‖T(s)tn − xn‖ ≤ ‖T(s)tn − T(s)xn‖ + ‖T(s)xn − xn‖

≤ ‖tn − xn‖ + ‖T(s)xn − xn‖
→ 0 as n → ∞.

Also, we have
‖T(s)tn − tn‖ ≤ ‖T(s)tn − T(s)xn‖

+‖T(s)xn − xn‖ + ‖xn − tn‖
≤ ‖tn − xn‖ + ‖T(s)xn − xn‖

+‖xn − tn‖
→ 0 as n → ∞.

Next, we show that lim sup
n→∞

〈(B − γ f )z, xn − z〉 ≤ 0,

where z = PFix(S)∩�(I − B + γ f )z. To show this inequality,
we choose a subsequence {tni} of {tn} ⊆ K such that

lim sup
n→∞

〈(B − γ f )z, tn − z〉 = lim
i→∞〈(B − γ f )z, tni − z〉.

Since {tni} is bounded, there exists a subsequence {tnij
}

of {tni} which converges weakly to some w ∈ C. Without
loss of generality, we can assume that tni ⇀ w.

Now, we prove that w ∈ Fix(S)∩�. Let us first show that
w ∈ Fix(S). Assume that w /∈ Fix(S). Since tni ⇀ w and
T(s)w = w, from Opial’s condition (11), we have

lim inf
i→∞ ‖tni − w‖ < lim inf

i→∞ ‖tni − T(s)w‖
≤ lim inf

i→∞
{‖tni − T(s)tni‖

+‖T(s)tni − T(s)w‖}
≤ lim inf

i→∞ ‖tni − w‖,

which is a contradiction. Thus, we obtain w ∈ Fix(S).
Next, we show that w ∈ GEP(F1, h1). Since un =

T (F1,h1)
rn xn, we have

F1(un, y)+h1(un, y)+ 1
rn

〈y−un, un −xn〉 ≥ 0, ∀y ∈ C.

It follows from the monotonicity of F1 that

h1(un, y) + 1
rn

〈y − un, un − xn〉 ≥ F1(y, un),

and hence,

h1(uni , y) +
〈
y − uni ,

uni − xni

rn

〉
≥ F1(y, uni).

Since ‖un − xn‖ → 0, we get uni ⇀ w and uni −xni
rn

→ 0.
It follows by Assumption 1 (iv) that 0 ≥ F1(y, w), ∀w ∈ C.
For t with 0 < t ≤ 1 and y ∈ C, let yt = ty+(1−t)w. Since
y ∈ C, w ∈ C, we get yt ∈ C, and hence, F1(yt , w) ≤ 0. So,
from Assumption 1 (i) and (iv), we have

0 = F1(yt , yt) + h1(yt , yt) ≤ t[ F1(yt , y) + h1(yt , y)]
+(1−t)[ F1(yt , w) + h1(yt , w)]≤ t[ F1(yt , y)+h1(yt , y)]
+(1−t)[ F1(w, yt) + h1(w, yt)]≤ [ F1(yt , y) + h1(yt , y)].

Therefore, 0 ≤ F1(yt , y) + h1(yt , y). From Assumption
1 (iii), we have 0 ≤ F1(w, y) + h1(w, y). This implies that
w ∈ GEP(F1, h1).

Next, we show that Aw ∈ GEP(F2, h2). Since ‖un −
xn‖ → 0, un ⇀ w as n → ∞ and {xn} is bounded, there
exists a subsequence {xnk } of {xn} such that xnk ⇀ w, and
since A is a bounded linear operator, so Axnk ⇀ Aw.

Now, setting vnk = Axnk −TF2
rnk

Axnk . It follows from (31)
that lim

k→∞
vnk = 0 and Axnk − vnk = TF2

rnk
Axnk .

Therefore, from Lemma 7, we have

F2(Axnk − vnk , z) + h2(Axnk − vnk , z)

+ 1
rnk

〈z − (Axnk − vnk ), (Axnk − vnk )

− Axnk 〉 ≥ 0, ∀z ∈ Q.

Since F2 and h2 are upper semicontinuous in the first
argument, taking lim sup to above inequality as k → ∞
and using condition (iii), we obtain

F2(Aw, z) + h2(Aw, z) ≥ 0, ∀z ∈ Q,

which means that Aw ∈ GEP(F2, h2), and hence, w ∈ �.
Next, we claim that lim sup

n→∞
〈f (z)−z, xn −z〉 ≤ 0, where

z = PFix(S)∩�(I − B + γ f )z. Now, from (8), we have

lim sup
n→∞

〈(B − γ f )z − z, xn − z〉
= lim sup

n→∞
〈(B − γ f )z − z, tn − z〉

≤ lim sup
i→∞

〈(B − γ f )z − z, tni − z〉
= 〈(B − γ f )z − z, w − z〉
≤ 0. (33)
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Finally, we show that xn → z :

‖xn+1 − z‖2 = ‖αnγ f (xn) + βnxn
+[ (1 − βn)I − αnB] tn − z‖2

= ‖αn(γ f (xn) − Bz) + βn(xn − z)
+[ (1 − βn)I − αnB] (tn − z)‖2

≤ ‖βn(xn−z)+[ (1−βn)I−αnB] (tn−z)‖2

+2αn〈γ f (xn) − Bz, xn+1 − z〉
≤ [‖((1 − βn)I − αnB)(tn − z)‖

+‖βn(xn − z)‖]2 + 2αnγ 〈f (xn)

−f (z), xn+1 − z〉 + 2αn〈γ f (z)
−Bz, xn+1 − z〉

≤ [ (1−βn)−αnγ̄ ) ‖xn−z‖+βn‖xn − z‖]2

+2αnγα‖xn − z‖‖xn+1 − z‖
+2αn〈γ f (z) − Bz, xn+1 − z〉

≤ (1 − αnγ̄ )2‖xn − z‖2 + αnγα{‖xn − z‖2

+‖xn+1−z‖2}+2αn〈γ f (z)−Bz, xn+1−z〉
≤ (1 − αnγ̄ )2‖xn − z‖2 + αnγα‖xn − z‖2

+γα ‖xn+1 − z‖2 + 2αn〈γ f (z)
−Bz, xn+1 − z〉.

This implies that

‖xn+1 − z‖2 ≤ 1−2αnγ̄+(αnγ̄ )2+αnγ α
1−γ α

‖xn − z‖2

+ 2αn
1−γ α

〈γ f (z) − Bz, xn+1 − z〉
=

[
1 − 2(γ̄−γ α)αn

1−γ α

]
‖xn − z‖2 + (αnγ̄ )2

1−γ α
‖xn − z‖2

+ 2αn
1−γ α

〈γ f (z) − Bz, xn+1 − z〉
≤

[
1 − 2(γ̄−γ α)αn

1−γ α

]
‖xn − z‖2 + 2(γ̄−γ α)αn

1−γ α

×
{

(αnγ̄ 2)M
2(γ̄−γ α)

+ 1
γ̄−γ α

〈γ f (z) − Bz, xn+1 − z〉
}

= (1 − δn)‖xn − z‖2 + δnσn,
(34)

where M := sup{‖xn − z‖2 : n ≥ 1}, δn = 2(γ̄−γα)αn
1−γα

,

and σn = (αnγ̄ 2)M
2(γ̄−γα)

+ 1
γ̄−γα

〈γ f (z) − Bz, xn+1 − z〉. Since

lim
n→∞ αn = 0 and

∞∑
n=0

αn = ∞, it is easy to see that

lim
n→∞ δn = 0,

∞∑
n=0

δn = ∞, and lim sup
n→∞

σn ≤ 0. Hence,

from (33), (34), and Lemma 3, we deduce that xn → z.
This completes the proof.

We have the following consequences of Theorem 1.

Corollary 1. Let H1 and H2 be two real Hilbert spaces
and let C ⊆ H1 and Q ⊆ H2 be nonempty closed convex
subsets. Let A : H1 → H2 be a bounded linear operator.
Assume that F1 : C × C → R and F2 : Q × Q → R

are the bifunctions satisfying Assumption 1 and F2 is upper
semicontinuous in the first argument. Let S = {T(s) :
0 ≤ s < ∞} be a nonexpansive semigroup on C such that
Fix(S) ∩ � = ∅. Let f : C → C be a contraction map-
ping with constant α ∈ (0, 1) and B be a strongly positive
linear bounded self-adjoint operator on H1 with constant
γ̄ > 0 such that 0 < γ <

γ̄
α

< γ + 1
α

. Let {sn} is a

positive real sequence which diverges to +∞. For a given
x0 ∈ C arbitrarily, let the iterative sequences {un} and {xn}
be generated by

un = TF1
rn (xn + δA∗(TF2

rn − I)Axn);
xn+1 =αnγ f (xn) + βnxn

+ ((1 − βn)I − αnB)
1
sn

∫ sn

0
T(s)unds,

where rn ⊂ (0, ∞) and δ ∈ (0, 1/L), L is the spectral radius
of the operator A∗A, and A∗ is the adjoint of A, and {αn}
and {βn} are the sequences in (0, 1) satisfying the following
conditions:

(i) lim
n→∞ αn = 0 and

∞∑
n=0

αn = ∞.

(ii) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1.

(iii) lim inf
n→∞ rn > 0,

∞∑
n=1

|rn+1 − rn| < ∞.

(iv) lim
n→∞

|sn+1−sn|
sn+1

= 0.

Then, the sequence {xn} converges strongly to z ∈ Fix(S) ∩
�, where z = PFix(S)∩�(I − B + γ f )z.

Proof. Taking h1 = h2 = 0 in Theorem 1, then the
conclusion of Corollary 1 is obtained.

Corollary 2. [6] Let H be a real Hilbert space and let
C ⊆ H be a nonempty closed convex subset. Assume that
F : C × C → R is a bifunction satisfying Assumption 1 for
F only. Let S = {T(s) : 0 ≤ s < ∞} be a nonexpansive
semigroup on C such that Fix(S) ∩ EP(F) = ∅. Let f : C →
C be a contraction mapping with constant α ∈ (0, 1) and B
be a strongly positive linear bounded self-adjoint operator
on H with constant γ̄ > 0 such that 0 < γ <

γ̄
α

< γ + 1
α

.
Let {sn} is a positive real sequence which diverges to +∞.
For a given x0 ∈ C arbitrarily, let the iterative sequences
{un} and {xn} be generated by

un = TF
rn xn;

xn+1 = αnγ f (xn) + (1 − αnB) 1
sn

∫ sn
0 T(s)unds,

where rn ⊂ (0, ∞) and {αn} is a sequence in (0, 1)

satisfying

(i) lim
n→∞ αn = 0 and

∞∑
n=0

αn = ∞.

(ii) lim inf
n→∞ rn > 0,

∞∑
n=1

|rn+1 − rn| < ∞.

(iii) lim
n→∞

|sn+1−sn|
sn+1

= 0.

Then, the sequence {xn} converges strongly to z ∈ PFix(S)∩
EP(F), where z = PFix(S)∩EP(F) (I − B + γ f )z.
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Proof. Taking F1 = F2 = F , H1 = H2 = H , h1 = h2 = 0,
{βn} = 0, and A = 0 in Theorem 1, then the conclusion of
Corollary 2 is obtained.

Corollary 3. [4] Let H be a real Hilbert space and let
C ⊆ H be a nonempty closed convex subset. Let S = {T(s) :
0 ≤ s < ∞} be a nonexpansive semigroup on C such that
Fix(S) = ∅. Let f : C → C be a contraction mapping with
constant α ∈ (0, 1). Let {sn} be a positive real sequence
which diverges to +∞. For a given x0 ∈ C arbitrarily, let
the iterative sequence {xn} be generated by

xn+1 = αnγ f (xn) + βnxn

+(1 − αn − βn) 1
sn

∫ sn
0 T(s)xnds,

where {αn} and {βn} are the sequences in (0, 1) satisfying
the following conditions:

(i) lim
n→∞ αn = 0 and

∞∑
n=0

αn = ∞.

(ii) 0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1.

(iii) lim
n→∞

|sn+1−sn|
sn+1

= 0.

Then, the sequence {xn} converges strongly to z ∈ Fix(S),
where z = PFix(S)f (z).

Proof. Taking H1 = H2 = H , un = xn, F1 = F2 = h1 =
h2 = 0, and B = I in Theorem 1, then the conclusion of
Corollary 3 is obtained.

Results and discussion
We introduce and study an iterative method for approx-
imating a common solution of split generalized equilib-
rium problem and fixed point problem for a nonexpansive
semigroup in real Hilbert spaces. We obtain a strong
convergence result for approximating a common solution
of split generalized equilibrium problem and fixed point
problem for a nonexpansive semigroup in real Hilbert
spaces. Further, we obtain some consequences of our main
result.

Conclusions
The results presented in this paper extend and general-
ize the works of Shimizu and Takahashi [2], Chen and
Song [3], Plubtieng and Punpaeng [4], and Cianciaruso et
al. [6]. The algorithm considered in Theorem 1 is differ-
ent from those considered in [7-10] in the sense that the
variable sequence {rn} has been taken in place of fixed r.
Further, the approach of the proof presented in this paper
is also different. The use of the iterative method presented
in this paper for the split monotone variational inclusions
considered in Moudafi [9] needs further research effort.
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