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Abstract

Purpose: In this paper, a new algorithm is presented for solving one-dimensional parabolic partial differential
equations subject to integral conditions.

Methods: The algorithm is based on the transverse method of lines and the reproducing kernel method. The
transverse method of lines can reduce a one-dimensional parabolic partial differential equation subject to integral
conditions to a series of ordinary differential equations(ODEs) with integral boundary conditions. The reproducing
kernel method is a relative new analytical technique, which can solve successfully ODEs with integral boundary
conditions.

Results: The present method combines advantages of these two methods.

Conclusions: Numerical results show that the present method is quite efficient.
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Introduction
Consider the following nonclassical parabolic problem:

∂u
∂t

= ∂2u
∂x2 + g(x, t), (0 < x < X, 0 < t ≤ T) (1.1)

subject to the initial condition

u(x, 0) = f (x) (1.2)

and the nonlocal boundary conditions

u(0, t) + μ1ux(0, t) =
∫ X

0
h1(x)u(x, t)dx + q1(t)

(1.3)

u(X, t) + μ2ux(X, t) =
∫ X

0
h2(x)u(x, t)dx + q2(t),

where μi(i = 1, 2) are given constants, and g, f , qi (i =
1, 2) are given continuous functions. Here, we only con-
sider qi(t) = 0 (i = 1, 2) since the nonlocal boundary
conditions can reduce to qi(t) = 0 (i = 1, 2) easily by
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homogenization of initial and boundary conditions. We
assume that the functions g, f , qi (i = 1, 2) satisfy the con-
ditions so that the solution of this equation exists and is
unique.

Various problems arising in heat conduction [1-3],
chemical engineering [4], thermo-elasticity [5], and
plasma physics [6] can be reduced to the nonlocal prob-
lems. Boundary value problems with integral conditions
constitute a very interesting and important class of prob-
lems. Therefore, partial differential equations with nonlo-
cal boundary conditions have received much attention in
the last 20 years. We will deal here with parabolic partial
differential equations with nonlocal boundary conditions.
These nonlocal conditions arise mainly when the data on
the boundary cannot be measured directly. Many physi-
cal phenomena are modeled by parabolic boundary value
problems with nonlocal boundary conditions.

The theoretical aspects of the solutions to the one-
dimensional partial differential equations (PDEs) with
integral conditions have been studied by several authors
[7-10]. Lin, Cui, and Zhou [11,12] studied the numerical
solution of a class of PDEs with integral conditions. Gol-
babai and Javidi [13] developed a numerical method based
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on Chebyshev polynomials and local interpolating func-
tions for solving one-dimensional parabolic PDEs sub-
ject to nonclassical conditions. Dehghan [14-19], together
with Tatari [17], presents some effective methods for
solving PDEs with nonlocal conditions.

Reproducing kernel theory has important applications
in numerical analysis, differential equation, probability
and statistics, and so on [20-31]. Recently, authors pre-
sented reproducing kernel methods (RKMs) for solving
linear and nonlinear differential equations [22-31].

In this work, we will give the approximation of solution
to nonclassical parabolic problems (1.1) to (1.3) based on
the transverse method of lines and the reproducing kernel
method.

The rest of the paper is organized as follows: In the next
section, the method for nonclassical parabolic problems
(1.1) to (1.3) is introduced. The numerical examples are
presented in the ‘Results and discussion’ section. The last
section ends this paper with a brief conclusion.

Methods
Analysis of the RKM for ODEs with integral boundary
conditions (1.3)
In this section, we illustrate how to solve the following lin-
ear second-order ordinary differential equations (ODEs)
with integral boundary conditions (1.3) using the RKM:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lu(x) = F(x), 0 < x < X,

u(0) + μ1u′(0) =
∫ X

0
h1(s)u(s)ds, u(X) + μ2u′(X)

=
∫ X

0
h2(s)u(s)ds,

(2.1)

where Lu = u′′(x) + b(x)u′(x) + c(x)u(x), b(x), c(x) and
F(x) are continuous.

In order to solve (2.1) using the RKM, it is necessary to
construct a reproducing kernel space W 3

2 [ 0, X] in which
every function satisfies the integral boundary conditions
of (2.1).

First, we construct the following reproducing kernel
space.

Definition 2.1. W 3[ 0, X] = {u(x) | u′′(x) is an abso-
lutely continuous real value function, u′′′(x) ∈ L2[ 0, X] }.
The inner product and norm in W 3[ 0, X] are given,
respectively, by

(u(y), v(y))W 3 = u(0)v(0) + u′(0)v′(0) + u(X)v(X)

+
∫ X

0
u′′′v′′′dy

and

‖ u ‖W 3= √
(u, u)W 3 , u, v ∈ W 3[ 0, X] .

By [22,24], clearly, W 3[ 0, X] is a reproducing kernel
space, and its reproducing kernel is

k(x, y) =
{

h1(x, y), y ≤ x,
h1(y, x), y > x,

(2.2)

where h1(x, y) = y5(
X2−x2)

120X2 −
x2

X2 − y2(
x5X2−5x4X3+10x3X4−6x2(

X5+20X2+40
)+120xX3+120X2)

120X4 +
xy4(x−X)

24X + xy(X−x)

X + 1.
Next, we construct a reproducing kernel space W 3

1 [ 0, X]
in which every function satisfies u(0) + μ1u′(0) =∫ X

0 h1(s)u(s)ds.

Definition 2.2. W 3
1 [ 0, X] = {u(x) | u(x) ∈ W 3[ 0, X],

u(0) + μ1u′(0) = ∫ X
0 h1(s)u(s)ds}.

Clearly, W 3
1 [ 0, X] is a closed subspace of W 3[ 0, X], and

therefore, it is also a reproducing kernel space.
Put L1u(x) = u(0) + μ1u′(0) − ∫ X

0 h1(s)u(s)ds.

Theorem 2.1. If L1xL1yk(x, y) �= 0, then the reproducing
kernel k1(x, y) of W 3

1 [ 0, X] is given by

k1(x, y) = k(x, y) − L1xk(x, y)L1yk(x, y)
L1xL1yk(x, y)

, (2.3)

where the subscript x by the operator L1 indicates that the
operator L1 applies to the function of x.

Proof. It is easy to see that L1k1(x, y) = 0, and therefore
k1(x, y) ∈ W 3

1 [ 0, X].
For all u(y) ∈ W 3

1 [ 0, X], obviously, L1yu(y) = 0, it
follows that

(u(y), k1(x, y))W 3 = (u(y), k(x, y))W 3 = u(x).

That is, k1(x, y) is of ‘reproducing property’. Thus, k1(x, y)
is the reproducing kernel of W 3

1 [ 0, X] and the proof is
complete.

Similarly, we construct a reproducing kernel space
which is a closed subspace of W 3

1 [ 0, X].

Definition 2.3. W 3
2 [ 0, X] = {u(x) | u(x) ∈ W 3

1 [ 0, X],
u(X) + μ2u′(X) = ∫ X

0 h2(s)u(s)ds}.

Put L2u(x) = u(X) + μ2u′(X) − ∫ X
0 h2(s)u(s)ds. By the

proof of Theorem 2.1, it is easy to see the following.

Theorem 2.2. The reproducing kernel k2(x, y) of
W 3

2 [ 0, X] is given by

k2(x, y) = k1(x, y) − L2xk1(x, y)L2yk1(x, y)
L2xL2yk1(x, y)

. (2.4)
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In [22], Cui and Lin defined a reproducing kernel space
W 1[ 0, X] and gave its reproducing kernel

k(x, y) =
{

1 + y, y ≤ x,
1 + x, y > x,

It is clear that L : W 3
2 [ 0, X] → W 1[ 0, X] is a bounded

linear operator. Put ϕi(x) = k(x, xi) and ψi(x) = L∗ϕi(x)

where L∗ is the adjoint operator of L. The orthonormal
system {ψ i(x)}∞i=1 of W 3

2 [ 0, X] can be derived from the
process of Gram-Schmidt orthogonalization of {ψi(x)}∞i=1,

ψ i(x) =
i∑

k=1
βikψk(x), (βii > 0, i = 1, 2, . . .). (2.5)

Theorem 2.3. For (2.1), if {xi}∞i=1 is dense on [ 0, X], then
{ψi(x)}∞i=1 is the complete system of W 3

2 [ 0, X] and ψi(x) =
LyRx(y)|y=xi .

Proof. For the proof, we refer to [22].

Theorem 2.4. If {xi}∞i=1 is dense on [ 0, X] and the solu-
tion of (2.1) is unique, then the solution of (2.1) is

u(x) =
∞∑

i=1

i∑
k=1

βikF(xk)ψ i(x). (2.6)

Proof. Applying Theorem 2.3, it is easy to know that
{ψ i(x)}∞i=1 is the complete orthonormal basis of W 3

2 [ 0, X].
Note that (v(x), ϕi(x)) = v(xi) for each v(x) ∈ W 1[ 0, X].
Hence, we have

u(x) =
∞∑

i=1
(u(x), ψ i(x))ψ i(x)

=
∞∑

i=1

i∑
k=1

βik(u(x), L∗ϕk(x))ψ i(x)

=
∞∑

i=1

i∑
k=1

βik(Lu(x), ϕk(x))ψ i(x)

=
∞∑

i=1

i∑
k=1

βik(F(x), ϕk(x))ψ i(x)

=
∞∑

i=1

i∑
k=1

βikF(xk)ψ i(x),

(2.7)

and the proof of the theorem is complete.

Now, the approximate solution uN (x) can be obtained
by the N-term intercept of the exact solution u(x) and

uN (x) =
N∑

i=1

i∑
k=1

βikF(xk)ψ i(x). (2.8)

Algorithm for nonclassical parabolic problems (1.1) to (1.3)
To solve problems (1.1) to (1.3) numerically, we consider
a finite difference discretization in the time variable first.
For simplicity, assume a uniform mesh with 
t = T/m,
and let ui(x) approximate u(x, ti), where ti = i 
t, i =
0, 1, 2, · · · , m. Then, replacing the time derivative ∂u

∂t by
a simple backward difference approximation using time
step 
t, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2ui
dx2 − m

T
ui(x) =−g(x, ti)− m

T
ui−1(x)� Gi(x), 0<x<X, i

= 1, 2, · · · , m

ui(0) + μ1u′
i(0) =

∫ X

0
h1(s)ui(s)ds, ui(X) + μ2u′

i(X)

=
∫ X

0
h2(s)ui(s)ds,

(2.9)

with u0(x) = f (x).
Therefore, to solve problems (1.1) to (1.3), it suffices for

us to solve problem (2.9).
Problem (2.9) is an ODE boundary value problem in

space variable x. By using the RKM presented in the
‘Analysis of the RKM for ODEs with integral boundary
conditions (1.3)’ section, one can obtain the solution of
problem (2.9):

ui(x) =
∞∑

j=1
Ajψ j(x), (2.10)

where Aj =
j∑

k=1
βjkGi(xk).

Therefore, N-term approximations ui,N (x) to ui(x) are
obtained

ui,N (x) =
N∑

j=1
Ajψ j(x). (2.11)

Table 1 Relative errors of numerical values of u(0.6,1.0) by the present method and [15], for Example 1

h BTCS in [15] Crandall in [15] FTCS in [15] Dufort-Frankel in [15] Present method

0.050 7.3 × 10−2 3.8 × 10−3 7.5 × 10−2 7.8 × 10−2 1.6 × 10−3

0.025 1.8 × 10−2 2.1 × 10−4 1.9 × 10−2 1.9 × 10−2 4.0 × 10−4

BTCS, backward time centered space; FTCS, forward time centered space.
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Table 2 Maximum errors of numerical values using
h = 0.05 and various values of time step for Example 1

ti �t = 0.01 �t = 0.005 �t = 0.001 �t = 0.0005

0.10 7.0 × 10−4 1.6 × 10−4 8.0 × 10−5 4.0 × 10−5

0.30 9.0 × 10−4 1.8 × 10−4 1.0 × 10−5 5.0 × 10−5

0.50 7.0 × 10−4 1.4 × 10−4 7.0 × 10−5 3.5 × 10−5

0.70 4.5 × 10−4 9.0 × 10−5 4.5 × 10−5 2.4 × 10−5

0.90 3.0 × 10−4 6.0 × 10−5 3.0 × 10−5 1.4 × 10−5

1.00 2.4 × 10−4 4.5 × 10−5 2.4 × 10−5 1.2 × 10−5

Results and discussion
In this section, we present and discuss the numerical
results by employing the present method for two exam-
ples. The results demonstrate that the present method is
remarkably effective.

Example 1. For an example problem from [15]

∂u
∂t

= ∂2u
∂x2 + −2(x2 + t + 1)

(t + 1)3 , (0 < x < 1, 0 < t ≤ 1)

(3.1)

subject to the initial condition

u(x, 0) = x2 (3.2)

and the nonlocal boundary conditions

u(0, t) =
∫ 1

0
xu(x, t)dx − 1

4(t + 1)2

u(1, t) =
∫ 1

0
xu(x, t)dx + 3

4(t + 1)2 ,
(3.3)

it is easy to see that the exact solution is u(x, t) = x2

(t+1)2 .

Using the present method, take xi = (i − 1)h, h =
1/(N − 1), (i = 1, 2, · · · , N). Taking h = 0.05, 0.025,

t = 0.4h2, the relative errors of the numerical value of
u(0.6, 1.0) by the present method and method in [15] are
compared in Table 1. Table 2 shows maximum errors of
the numerical values of u(x, t) which is defined as:

E(ti) = max
0≤x≤1

| u(x, ti) − ui(x) |, i = 1, 2, · · · , m.

The numerical values of u(x, t) are obtained by using h =
0.05 and various values of time step 
t.

Table 4 Maximum errors of numerical values using
h = 0.05 and various values of time step for Example 2

ti �t = 0.01 �t = 0.005 �t = 0.001

0.10 4.5 × 10−4 4.0 × 10−5 1.5 × 10−5

0.30 1.4 × 10−3 1.4 × 10−4 2.5 × 10−5

0.50 2.5 × 10−3 2.5 × 10−4 2.4 × 10−5

0.70 4.0 × 10−3 4.0 × 10−4 2.7 × 10−5

0.90 5.5 × 10−3 5.5 × 10−4 6.0 × 10−5

1.00 6.0 × 10−4 6.0 × 10−4 6.8 × 10−5

Example 2. For an example problem from [15]

∂u
∂t

= ∂2u
∂x2 −e−(x+sin t)(1+cos t), (0 < x < 1, 0 < t ≤ 1)

(3.4)

subject to the initial condition

u(x, 0) = e−x (3.5)

and the nonlocal boundary conditions

u(0, t) =
∫ 1

0
3.784423xu(x, t)dx

u(1, t) =
∫ 1

0
0.6623722 cos xu(x, t)dx,

(3.6)

it is easy to see that the exact solution is u(x, t) =
e−(x+sin t).

Using the present method, take xi = (i − 1)h, h =
1/(N − 1), (i = 1, 2, · · · , N). Taking h = 0.05, 0.025,

t = 0.4h2, the relative errors of the numerical value of
u(0.6, 0.1) by the present method and method in [15] are
compared in Table 3. Table 4 shows maximum errors of
the numerical values of u(x, t) which is defined as follows:

E(ti) = max
0≤x≤1

| u(x, ti) − ui(x) |, i = 1, 2, · · · , m.

The numerical values of u(x, t) are obtained by using h =
0.05 and various values of time step 
t.

Conclusion
In this paper, the combination of the transverse method
of lines and the reproducing kernel method was employed
successfully for solving parabolic problems with integral
boundary conditions. Using the transverse method of
lines, the nonclassical parabolic problem is converted to

Table 3 Relative errors of numerical values of u(0.6, 0.1) by the present method and [15], for Example 2

h BTCS in [15] Crandall in [15] FTCS in [15] Dufort-Frankel in [15] Present method

0.050 6.3 × 10−3 3.9 × 10−3 6.4 × 10−2 6.8 × 10−2 2.8 × 10−4

0.025 1.5 × 10−2 2.4 × 10−4 1.6 × 10−2 1.7 × 10−2 7.1 × 10−5

BTCS, backward time centered space; FTCS, forward time centered space.
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boundary value ODE problems in space variable first;
then, solve ODE problems with integral boundary con-
ditions by using the reproducing kernel method. The
numerical results show that the present method is an
accurate and reliable technique.
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