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Abstract
We study weak solutions of the Timoshenko equation in a bounded domain. We consider a nonlinear dissipation and
a nonlinear source term. We obtain boundedness of the solutions as well as their asymptotic behavior. In particular,
the source term does not produce a blowup, and the global attractor is the set of all equilibria.
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Introduction
In this work, we shall study the dynamics of the following
equation:

utt + �2u − M(‖∇u‖22)�u + g(ut) = f (u) in �, (1)

with one set of the following boundary conditions:

u = 0 and �u = 0 on ∂�

or

u = 0 and
∂u
∂ν

= 0 on ∂�,

and the following initial conditions:

u(x, 0) = u0, ut(x, 0) = v0, x ∈ �.

Here, � ⊂ Rn is a bounded domain with a sufficiently
smooth boundary, ‖ · ‖2 is the norm in L2(�), and the
nonlinearities considered are defined by:

M(s2) = α+βs2γ , α ≥ 0, β ≥ 0, α+β > 0, γ ≥ 1,
(2)

g(ut) = δut|ut|λ−2, δ > 0, λ ≥ 2, (3)
and

f (u) = μu|u|r−2,μ > 0, r > 2. (4)

For n = 1, Timoshenko equation is an approximate
model describing the transversal motion of a rod. See the
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work of Antman [1] for a general and rigorous frame-
work of models in the theory of elasticity, in particular,
of Equation 1. Here, we are interested in the qualita-
tive behavior of solutions of the Timoshenko equation
for any n. The dynamics of second-order equations in
time has been widely studied by Alves and Cavalcanti [2],
Barbu et al. [3], Cavalcanti et al. [4-9], Rammaha and
Sakuntasathien [10,11], Todorova and Vitillaro [12,13].
There are a number of papers studying the dynamics of
Equation 1, when sf (s) ≤ 0, s ∈ R; see for instance the
books of Hale [14] andHaraux [15] and references therein.
For a destabilizing source term, sf (s) > 0, s ∈ R \{0},
there are several results studying the effect of this force in
nonlinear wave equations; see the papers of Payne and Sat-
tinger [16], Georgiev and Todorova [17], Ikehata [18], and
Esquivel-Avila [19,20]. For the undamped Timoshenko
equation, Bainov and Minchev [21] gave sufficient con-
ditions for the nonexistence of smooth solutions of (1),
with negative initial energy, and gave an upper bound
of the maximal time of existence. For positive and suffi-
ciently small initial energy, blowup and globality proper-
ties are characterized in the study of Esquivel-Avila [22].
For damped Timoshenko equation, see another study of
Esquivel-Avila [23]; we proved blowup in finite time, glob-
ality and unboundedness, globality and convergence to
the equilibria, and rates of such convergence for the zero
equilibrium. All these results were obtained by means of
the potential well theory under the assumption that r ≥
2(γ + 1). To the knowledge of the author, the behavior of
the solutions is still unknown when 2 < r < 2(γ + 1).
Here, we prove that, in this case, there is no blowup; all
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of the solutions are global, are uniformly bounded, and
converge to the equilibria set.

Preliminaries
We present an existent, unique, and continued theorem
for Equation 1 (see [23]).

Theorem 1. Assume that r > 2 and r ≤ 2(n − 2)/(n −
4) if n ≥ 5. For every initial data (u0, v0) ∈ H ≡ B ×
L2(�), where B is defined either by B ≡ H2(�) ∩H1

0(�) or
by B ≡ H2

0 (�), there exists a unique (local) weak solution
(u(t), v(t)) of problem (1), that is,

d
dt

(v(t),w)2 + (�u(t),�w)2 + M(‖∇u(t)‖22)(∇u(t),∇w)2

+ (g(v(t)),w)2 = (f (u(t)),w)2,
(5)

almost everywhere (a.e.) in (0,T) and for every w ∈ B ∩
Lλ(�), such that

u ∈ C([ 0,T);B) ∩ C1([ 0,T); L2(�)),

v ≡ ut ∈ Lλ((0,T) × �).

Here, (·, ·)2 denotes the inner product in L2(�).
The following energy equation holds:

E0 = E(t) +
∫ t

0
δ‖v(τ )‖λ

λdτ , (6)

where

E(t) ≡ E(u(t), v(t)) ≡ 1
2
‖v(t)‖22 + J(u(t)) (7)

and

J(u) ≡ 1
2
a(u) + 1

2(γ + 1)
c(u) − 1

r
b(u), (8)

with

a(u) ≡ ‖u‖2B ≡ ‖�u‖22 + α‖∇u‖22, b(u) ≡ μ‖u‖rr,
c(u) ≡ β‖∇u‖2(γ+1)

2 .
(9)

Here, E0 ≡ E(u0, v0) is the initial energy, and ‖ · ‖q
denotes the norm in the Lq(�) space.
If the maximal time of existence TM < ∞, then

(u(t), v(t)) → ∞ as t ↗ TM, in the norm of H:

‖(u, v)‖2H ≡ ‖u‖2B + ‖v‖22. (10)

In that case, from (6) to (9), ‖u(t)‖r → ∞ as t ↗ TM.

We define the set of equilibria of Equation 1 by:

E ≡ {ue ∈ B : �2ue − M(‖u‖22)�ue = f (ue)}. (11)

We notice that, in particular, 0 ∈ E .

Main result
In this section, we prove that all of the solutions are global
and uniformly bounded and that the global attractor is E .

Theorem 2. Let (u(t), v(t)) be a solution of problem (1),
given by Theorem 1. Assume that r < 2(γ + 1) and r ≤
2n/(n − 2) if n ≥ 3. Then, (u(t), v(t)) is global and uni-
formly bounded, and (u(t), v(t)) → E∞ is strongly in H as
t → ∞, where E∞ ≡ {(ue, 0) : ue ∈ E , J(ue) = E∞ ≡
lim t→∞ E(u(t), v(t))}.

Proof. Since the proof is long, we shall divide it into five
steps as follows. First, we prove that the solution is global
and bounded. Next, we show that this implies weak con-
vergence to the equilibria set. In order to conclude strong
convergence, we have to prove that the orbit is precom-
pact in the phase space. In order to do that, we show that
the solution is uniformly continuous. We then prove the
precompactness of the orbit.

Globality and boundedness
Notice that, from the continuous injection H1

0 (�) ↪→
Lr(�),

c(u)
1

2(γ +1) = β
1

2(γ +1) ‖∇u‖2 ≥ β
1

2(γ +1)C(�)‖u‖r
= β

1
2(γ +1)C(�)μ− 1

r b(u)
1
r ≡ κ

1
2(γ +1) b(u)

1
r ,

and C(�) > 0 is a Sobolev constant. Then, along the
solution, for any t ≥ 0,

1
2(γ + 1)

c(u(t)) ≥ κ

2(γ + 1)
b(u(t))

2(γ +1)
r

and

1
2(γ + 1)

c(u(t)) − 1
r
b(u(t)) ≥ κ

2(γ + 1)
b(u(t))

2(γ +1)
r

×
(
1 − νb(u(t))−

(
2(γ +1)−r

r

))
,

(12)

where κν ≡ 2(γ+1)
r . Here, we have either

(i) b(u(t)) ≤ ν
r

2(γ +1)−r or (ii) b(u(t)) ≥ ν
r

2(γ +1)−r .
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We use the energy equation in both cases. For the first
one, we get the following from (12):

‖(u(t), v(t))‖2H ≤ ‖v(t)‖22 + a(u(t)) + 1
γ + 1

c(u(t))

≤ 2E0 + 2
r
ν

r
2(γ +1)−r .

In the second case,

‖(u(t), v(t))‖2H = ‖v(t)‖22 + a(u(t)) ≤ 2E(t) ≤ 2E0.

Therefore, for any t ≥ 0,

‖(u(t), v(t))‖2H ≤ 2E0 + 2
r
ν

r
2(γ +1)−r ≡ Ê0. (13)

Weak convergence to E
Since the solution is global and uniformly bounded in the
norm of H, there exists a sequence, {tn}, such that if n →
∞, then tn → ∞, and (u(tn), v(tn)) → (û, v̂) weakly in
H. Moreover, b(u(tn)) → b(û), because of the compact
injection B ↪→ Lr(�). On the other hand, the energy is
uniformly bounded and nonincreasing; consequently,

−∞ < E∞ ≡ lim
t→∞E(t) = inf

t≥0
E(t) ≤ E(t) ≤ E0 < ∞.

(14)

From the energy equation and the continuous injection
Lλ(�) ↪→ L2(�), this implies that

lim
t→∞

∫ t+1

t
‖v(τ )‖λ

2 dτ = 0.

In particular, for any sequence {sn} such that sn → ∞ as
n → ∞,

lim
n→∞

∫ 1

0
hn(τ ) dτ = 0,

where hn(τ ) ≡ ‖v(sn + τ)‖λ
2, for τ ∈[ 0, 1]. By Fatou

Lemma,

lim inf
n→∞ ‖v(sn + τ)‖λ

2 = lim inf
n→∞ hn(τ ) = 0,

for a.e. τ ∈[ 0, 1], and by the weak convergence to v̂,

‖v̂‖2 ≤ lim inf
n→∞ ‖v(tn)‖2 = 0,

where we choose {sn} such that tn = sn + τ0, for some
τ0 ∈[ 0, 1]. Then, the weak limit set of the orbit is such that

ωw(u0, v0)={(û, 0) : (u(tn), v(tn))→(û, 0), weakly in H}.
The weak limit set is positive invariant (see Ball [24]),

that is,

(u(0), v(0))∈ωw(u0, v0)⇒ (u(t), v(t))∈ωw(u0, v0), ∀t > 0.

Consequently ωw(u0, v0) ⊂ E , that is, there exists some
ue ∈ E , such that, along a sequence of times, the solution
converges weakly to (ue, 0).

Strong convergence to E
If the convergence is strong in H,

lim
n→∞ ‖(u(tn) − ue, v(tn))‖H = 0,

then

J(ue) = lim
n→∞ J(u(tn)),

and by (14),

E∞ ≡ lim
n→∞E(tn) = lim

t→∞ J(u(tn)).

Consequently,

E∞ ≡ lim
t→∞E(t) = J(ue),

and the assertion of the theorem holds.
Now, strong convergence follows if the orbit

{(u(t), v(t))}t≥0 (15)

is a precompact subset of H.
To show this, we shall use a technique due to Haraux

[15], and we shall extend it to handle the nonlinearities of
Equation 1 as follows.

Uniform continuity
We shall prove that t �→ (u(t), v(t)) ∈ H is uniformly con-
tinuous. In order to do that, we define, for every ε > 0 and
t ≥ 0,

uε(t) ≡ u(t + ε) − u(t), vε(t) ≡ v(t + ε) − v(t),

2wε(t) ≡ ‖(uε(t), vε(t)‖2H .
Hence, the uniform continuity of the solution holds if

for any η > 0, there exists ε(η) > 0, such that

wε(t) ≤ η, (16)

for every t ≥ 0, and ε ∈ (0, ε(η)). To get that estimate, we
need the energy equation for (uε(t), vε(t)). Then, from (5),
we obtain

wε(0) = wε(t)+
∫ t

0
(gε(τ )−fε (τ )−m̂ε (τ ), vε(τ ))2 dτ ,

(17)

where

gε(t) ≡ g(v(t+ε))−g(v(t)), fε(t) ≡ f (u(t+ε))−f (u(t)),

m̂ε(t) ≡ m(‖∇u(t+ε)‖22)�u(t+ε)−m(‖∇u(t)‖22)�u(t),
and

m(‖∇u(t)‖22) ≡ β‖∇u(t)‖2γ2 .

However, we cannot obtain (16) through the energy
equation (17) alone because of the form of the nonlin-
earity m̂ε(t). Hence, we have to work with the auxiliary
function:

Wε(t) ≡ wε(t) + 1
2
m(‖∇u(t + ε)‖22)‖∇uε(t)‖22. (18)
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The corresponding energy equation forWε(t) is

Wε(0) = Wε(t) +
∫ t

0
(gε(τ ) − fε(τ ) − mε(τ ), vε(τ ))2dτ

−
∫ t

0
(nε(τ ), uε(τ ))2 dτ ,

(19)

where

mε(t) ≡ (m(‖∇u(t + ε)‖22) − m(‖∇u(t)‖22))�u(t)

and

nε(t) ≡ m′(‖∇u(t+ε)‖22)(�u(t+ε), v(t+ε))2�uε(t).

Notice that since the solution is uniformly bounded by
Ê0, there exists a constant Ẽ0 > 0, depending on Ê0, such
that

wε(t) ≤ Wε(t) ≤ Ẽ0wε(t), (20)

that is,Wε is an equivalent norm of the solution in H. We
shall show the uniform continuity property forWε .
For every t ≥ 0, we have either

Wε(t + 1) ≤ Wε(t) (21)

or

Wε(t + 1) > Wε(t). (22)

If (22) holds,

0 > Wε(t) − Wε(t + 1) =
∫ t+1

t
(gε (τ ) − fε(τ ) − mε(τ ),

vε(τ ))2dτ −
∫ t+1

t
(nε(τ ), uε(τ ))2dτ .

(23)

A well-known inequality can be applied to the
monotone form of the damping term:

(gε(t), vε(t))2 ≥ 22−λδ‖vε(t)‖λ
λ. (24)

Therefore, (23) yields

22−λδ

∫ t+1

t
‖vε(τ )‖λ

λdτ <

∫ t+1

t
(fε(τ ) + mε(τ ),

vε(τ ))2dτ +
∫ t+1

t
(nε(τ ), uε(τ ))2dτ .

(25)

On the other hand, we apply another inequality for the
source term:∣∣fε(t)∣∣ ≤ σ(r)μ

(|u(t + ε)|r−2 + |u(t)|r−2) |uε(t)|,
(26)

where σ(r) = 1 if r ∈[ 2, 3] and σ(r) = (r − 1)/2 if r > 3.

Now, we apply Hölder inequality to obtain

(∫ t+1

t
‖fε(τ )‖22dτ

) 1
2

≤ Ĉ sup
t≥0

a(u(t))(r−2)/2

×
(∫ t+1

t
‖uε(τ )‖2(r−1)

2(r−1)dτ

) 1
2(r−1)

,

(27)

where Ĉ ≡ 2σ(r)μC(�), and C(�) > 0 is a Sobolev
constant of the injection B ↪→ L2(r−1)(�).
We claim that t �→ u(t) ∈ L2(r−1)(�) must be uniformly

continuous. Otherwise, there exists some η0 > 0 and
sequences {εn}n≥1{tn}n≥1, such that εn → 0 and tn → ∞,
as n → ∞, and

‖uεn(tn)‖2(r−1) > η0, (28)

for every n ≥ 1. By assumption, B ↪→ L2(r−1)(�)

is compact, and since {u(t)}t≥0 is bounded in B,
then {u(tn + εn)}n≥1, {u(tn)}n≥1 are precompact in
L2(r−1)(�). Therefore, we can extract subsequences
{u(t′n + ε′

n)}n≥1, {u(t′n)}n≥1, such that for some fixed n0,
which is sufficiently big, and every n ≥ n0,

‖u(t′n + ε′
n) − u(t′n)‖2(r−1) ≤ ‖u(t′n + ε′

n) − u(tn0 + εn0)‖2(r−1)

+ ‖u(tn0 + εn0 ) − u(n0 )‖2(r−1)

+ ‖u(tn0 ) − u(t′n)‖2(r−1)

≤ η0
3

+ η0
3

+ η0
3

= η0.

This contradicts (28). Hence, for any η > 0, there exists
some ε̂(η) > 0, such that for every t ≥ 0 and every ε ∈
(0, ε̂(η)),(∫ t+1

t
‖uε(τ )‖2(r−1)

2(r−1) dτ

) 1
2(r−1)

≤ η4(λ−1). (29)

Consequently, from (27), (29), and Hölder inequality, we
get ∫ t+1

t
|(fε(τ ), vε(τ ))2|dτ ≤ Cη4(λ−1)

×
(∫ t+1

t
‖vε(τ )‖λ

λdτ

) 1
λ

,

(30)

where C > 0 depends on Ĉ, Ê0, and the inclusion
Lλ(�) ↪→ L2(�).
Now notice that

‖mε(t)‖2 ≤ sup
t≥0

{m′(‖∇u(t)‖22)}
∣∣‖∇u(t + ε)‖22

−‖∇u(t)‖22
∣∣ ‖�u(t)‖2 = sup

t≥0
{m′(‖∇u(t)‖22)} |

(∇u(t + ε)+∇u(t),∇u(t + ε)−∇u(t))2|‖�u(t)‖2
≤ sup

t≥0
{m′(‖∇u(t)‖22)‖�u(t + ε) +�u(t)‖2‖�u(t)‖2}

‖uε(t)‖2 ≤ C(Ê0)‖uε (t)‖2,
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then

|(mε(t), vε(t))2| ≤ C(Ê0)‖uε(t)‖2‖vε(t)‖2. (31)

Also,

|(nε(t), uε(t))2| ≤m′(‖∇u(t + ε)‖22)‖�u(t + ε)‖2
‖v(t + ε)‖2‖�uε(t)‖2‖uε(t)‖2

≤C(Ê0)‖uε(t)‖2.
(32)

Here, C(Ê0) > 0 is a constant.
Since B ↪→ L2(�) is compact, we show like in (29) that

(∫ t+1

t
‖uε(τ )‖22dτ

) 1
2

≤ η4(λ−1). (33)

Consequently, from (31) to (33) and Hölder inequality,
we obtain∫ t+1

t
{|(mε(τ ), vε(τ ))2| + |(nε (τ ), uε(τ ))2|}dτ ≤ Ĉη4(λ−1)

×
⎧⎨
⎩

(∫ t+1

t
‖vε(τ )‖λ

λdτ

) 1
λ

+ 1

⎫⎬
⎭ ,

(34)

where Ĉ > 0 depends on C(Ê0) and the inclusion
Lλ(�) ↪→ L2(�).
Taking into account (30) and (34) in (25), we have∫ t+1

t
‖vε(τ )‖λ

λdτ ≤ C̃η4(λ−1)

×
⎧⎨
⎩

(∫ t+1

t
‖vε(τ )‖λ

λdτ

) 1
λ

+ 1

⎫⎬
⎭ ,

where C̃ > 0 is a constant. Consequently, for η that is
sufficiently small, we obtain∫ t+1

t
‖vε(τ )‖λ

λ dτ ≤ η3λ (35)

and∫ t+1

t
‖vε(τ )‖22 dτ ≤ η2

5
. (36)

We want to get a similar estimate for uε in the B norm.
To this end, from (5), we get

d
dt

(vε(t), uε(t))2−‖vε(t)‖22 + ‖�uε(t)‖22 + α‖∇uε(t)‖22
+ (gε(t), uε(t))2

=(m̂ε(t), uε(t))2 + (fε(t), uε(t))2.
(37)

We apply inequality (26) to gε , and by Hölder inequality,
we get

∫ t+1

t
(gε (τ),uε (τ))2dτ ≤ σ(λ)δ

(∫ t+1

t
‖vε(τ)‖λ

λdτ

) 1
λ

×
(∫ t+1

t
‖uε (τ)‖λ

λdτ

) 1
λ

⎡
⎣(∫ t+1

t
‖v(τ + ε)‖λ

λdτ

) λ−2
λ

+
(∫ t+1

t
‖v(τ)‖λ

λdτ

) λ−2
λ

⎤
⎦ .

(38)

Notice that by (6) and (14),∫ ∞

0
‖v(t)‖λ

λ dt ≤ E0 − E∞
δ

. (39)

By assumption, B ↪→ Lλ(�), then

(∫ t+1

t
‖uε(τ )‖λ

λ dτ

) 1
λ

≤ 2C(�) sup
t≥0

‖u(t)‖B ≤ C,

(40)

where C > 0 depends on the embedding constant C(�)

and Ê0.
Therefore, from (35), (39), and (40) and for η that is

sufficiently small, (38) becomes∣∣∣∣
∫ t+1

t
(gε(τ ), uε(τ ))2dτ

∣∣∣∣ ≤ 2σ(λ)δC

×
(
E0 − E∞

δ

) λ−2
λ

η3 ≤ η2

5
.

(41)

Now, by (27), (29), and (33) and for small η, we obtain∫ t+1

t
(fε(τ ), uε(τ ))2 dτ ≤ Cη8(λ−1) ≤ η2

5
. (42)

Next, we have the estimate

(m̂ε(t), uε(t))2 = −m(‖∇u(t + ε)‖22)‖∇uε(t)‖22
+ {m(‖∇u(t + ε)‖22) − m(‖∇u(t)‖22)}
× (�u(t), uε(t))2

≤ C(Ê0)‖uε(t)‖2.
Hence, by Hölder inequality, (33) and small η,∫ t+1

t
(m̂ε(τ ), uε(τ ))2 dτ ≤ η2

5
. (43)

Therefore, (36), (41), (42), and (43) in (37), yield∫ t+1

t
‖uε(τ )‖2Bdτ ≤ 2 sup

t≥0
{‖vε(t)‖2‖uε(t)‖2} + 4η2

5
.

(44)
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Notice that for every t ≥ 0, we have

‖uε(t)‖2 ≤ ε sup
s∈[t,t+ε]

‖v(s)‖2 ≤ ε

√
2Ê0

and

‖vε(t)‖2 ≤ 2 sup
t≥0

‖v(t)‖2 ≤ 2
√
2Ê0.

Consequently, for ε ∈ (0, ε̂(η)), with ε̂(η) sufficiently
small, (44) is∫ t+1

t
‖uε(τ )‖2B dτ ≤ η2. (45)

Hence, in case (22), from (36) and (45) we conclude that∫ t+1

t
wε(τ ) dτ ≤ 3η2

5
. (46)

Also, from (20) with η small,∫ t+1

t
Wε(τ ) dτ ≤ 3η

5
. (47)

From (19) and by (24), we have for any s ∈[ t, t+1] , t ≥ 0
that

Wε(t + 1) ≤ Wε(s) +
∫ t+1

s
(mε(τ ) + fε(τ ), vε(τ ))2 dτ

+
∫ t+1

s
(nε(τ ), uε(τ ))2 dτ .

≤ Wε(s) +
∫ t+1

t
{|(fε(τ ), vε(τ ))2| + |(mε(τ ),

vε(τ ))2| + |(nε(τ ), uε(τ ))2|} dτ .

Then, taking into account (30), (34), and (35) and for η

small

Wε(t + 1) ≤ Wε(s) + 2η
5
.

Therefore, by (47), we obtain

Wε(t + 1) ≤
∫ t+1

t
Wε(s) ds + 2η

5
≤ η.

Consequently, in both cases, (21) and (22),

Wε(t + 1) ≤ max{η,Wε(t)}.
Notice that for every t ≥ 0, there exists a natural num-

ber N such that N ≤ t ≤ N + 1, then the last estimate
implies that

Wε(t) ≤ max{η, max
s∈[N−1,N]

Wε(s)}.
Hence, applied recursively backwards,

Wε(t) ≤ max{η, max
s∈[0,1]

Wε(s)}. (48)

Since the solution (u, v) :[ 0, 1]→ H is uniformly con-
tinuous,Wε has the same property due to (20). Then, (48)
implies that t �→ Wε(t) is uniformly continuous for any

t ≥ 0, and the same holds for the solution in H, again in
virtue of (20), that is, we have proven (16).

Precompactness
Next, we shall prove (15), that is, the orbit is a precompact
subset of H. We start with {v(t)}t≥0 ⊂ L2(�).
Notice that because of (16),

∥∥∥∥v(t) − 1
ε

∫ t+ε

t
v(τ )dτ

∥∥∥∥
2

≤ 1
ε

∫ t+ε

t
‖v(t) − v(τ )‖2 dτ

≤ sup
τ∈[t,t+ε]

‖v(t) − v(τ )‖2

≤ √
2η.

(49)

Since {u(t)}t≥0 is bounded in B, then

∥∥∥∥1ε
(∫ t+ε

t
v(τ )dτ

)∥∥∥∥
B

≤ 1
ε
‖u(t + ε) − u(t)‖B

≤ 2
ε
sup
t≥0

‖u(t)‖B

≤ 2
ε

√
2Ê0.

Since B ↪→ L2(�) is compact, { 1
ε

∫ t+ε

t v(τ )dτ }t≥0 is pre-
compact or, equivalently, totally bounded in L2(�). Also,
by (49), {v(t)}t≥0 is precompact in L2(�).
In a similar way, from (16), we estimate

∥∥∥∥u(t) − 1
ε

∫ t+ε

t
u(τ )dτ

∥∥∥∥
B
≤ sup

τ∈[t,t+ε]
‖u(t)−u(τ )‖B ≤ √

2η.

(50)

We shall prove that {L ∫ t+ε
t u(τ ) dτ }t≥0 is precompact

in B′ ≡ the dual space of B, where

L ≡ �2 : B → B′,

then precompactness of {u(t)}t≥0 in B follows from (50)
since

L−1 ≡ (�2)−1 : B′ → B

is a linear and continuous operator.
According to the dense and continuous inclusions

B ↪→ Lλ(�) ↪→ L2(�) ↪→ Lλ∗
(�) ↪→ B′,

where Lλ∗
(�) = (Lλ(�))′ , λ∗ = λ/(λ − 1), we extend the

inner product in L2(�) to the duality product in B′ × B.
Now, we integrate Equation 1, and since L : B → B′ is

www.sid.ir


www.SID.ir

Arc
hive

 of
 S

ID

Esquivel-AvilaMathematical Sciences 2013, 7:32 Page 7 of 8
http://www.iaumath.com/content/7/1/32

closed, we get, in the sense of B′,

L
∫ t+ε

t
u(τ )dτ = v(t) − v(t + ε)

+
∫ t+ε

t
M(‖∇u(τ )‖22)�u(τ )dτ

−
∫ t+ε

t
g(v(τ ))dτ +

∫ t+ε

t
f (u(τ ))dτ .

(51)

By Hölder inequality and since v(t) is bounded in L2(�),

‖v(t) − v(t + ε)‖λ∗ ≤ 2|�| λ−2
2λ sup

t≥0
‖(v(t))‖2

≤ 2|�| λ−2
2λ C(Ê0).

(52)

By Hölder inequality and (39),∥∥∥∥
∫ t+ε

t
g(v(τ ))dτ

∥∥∥∥
λ∗

≤ δ

∫ t+ε

t
‖(v(τ ))‖λ−1

λ dτ

≤ δ
1
λ (E0 − E∞)

λ−1
λ .

(53)

By the boundedness of u(t) in B, Hölder inequality and
the injection B ↪→ L2(r−1)(�), we obtain the estimate∥∥∥∥

∫ t+ε

t
f (u(τ ))dτ

∥∥∥∥
λ∗

≤ |�| λ−2
2λ

∥∥∥∥
∫ t+ε

t
f (u(τ ))dτ

∥∥∥∥
2

≤ μ|�| λ−2
2λ

∫ t+ε

t
‖(u(τ ))‖r−1

2(r−1)dτ

≤ μC(�) sup
t≥0

‖u(t)‖B,

≤ μC(�)C(Ê0).
(54)

Also,∥∥∥∥
∫ t+ε

t
M(‖∇u(τ )‖22)�u(τ )dτ

∥∥∥∥
λ′

≤ |�| λ−2
2λ

∥∥∥∥
∫ t+ε

t
M(‖∇u(τ )‖22)�u(τ )dτ

∥∥∥∥
2

≤ ε|�| λ−2
2λ sup

t≥0
{M(‖∇u(t)‖22)‖u(t)‖B}

≤ ε|�| λ−2
2λ C(Ê0),

(55)

Therefore, (52) to (55) in (51) imply that∥∥∥∥L
∫ t+ε

t
u(τ ) dτ

∥∥∥∥
λ∗

≤ C, (56)

for some constant C > 0 and every t ≥ 0.

B ↪→ Lλ(�) is compact by assumption. By Schauder’s
theorem (see Brézis [25]), B ↪→ Lλ(�) is compact if and
only if Lλ∗

(�) ↪→ B′ is compact. Then, (56) implies that
{L ∫ t+ε

t u(τ ) dτ }t≥0 is precompact in B′. The proof is
complete. �

Remark 1. We observe that the main difficulty in the
proof of the last theorem is to show precompactness of
bounded orbits. This has been accomplished for semi-
linear wave equations by Haraux [15]. Here, we extend
this technique for a Timoshenko equation with nonlinear
damping and a source term. This source term has an
amplifying effect instead of a restoring one in case of
r ≥ 2(γ + 1) (see [23]). Indeed, in another study [23],
we proved that, depending on the initial conditions, every
solution of (1) either blows up in a finite time or there
exists for all time. In this last case, again depending on
the initial conditions, the solution is either unbounded
or bounded and tends to the set of equilibria E , as time
goes to infinity. On the other hand, Theorem 2 shows that
every solution of Equation 1 converges to E , whenever 2 <

r < 2(γ + 1), that is, when the source term is dominated,
then every solution is bounded and tends to the equilib-
ria set as time goes to infinity. Consequently, we give a
complete panorama of the qualitative behavior of the solu-
tions of the nonlinear Timoshenko equation, Equation 1.
A dynamic analysis of more realistic rod models (see for
instance [1]) requires more effort and research.
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