Journal of Mathematical Extension Vol. 1, N0. 1, (2006), 45-55

On the Weighted Hardy Spaces

K. Jahedi

Islamic Azad University-Shiraz Branch

B. Yousefi

Shiraz University

Example 18 And Spaces
 A. Jahedi
 A. Jahedi
 B. Yousefi
 Abstract: Let $\left\{\beta(n)\right\}_{n=0$ Abstract: Let $\big\{\beta(n)$ $\frac{1}{\sqrt{2}}$ be a sequence of positive numbers and $n=0$ $1 < p < \infty$. We consider the weighted Hardy space $H^p(\beta)$. We investigate the relation between the generating function and the functional of point evaluations. Also, under a sufficient condition we determine the structure of all non-zero multiplicative linear functionals on $H^p(\beta)$.

AMS Subject Classification: Primary 47B37; Secondary 47B20. Keywords and Phrases: The Banach space of formal power series associated with a sequence β , bounded point evaluation, generating function.

1. Introduction

First in the following, we generalize the definitions coming in [3]. Let $\{\beta(n)\}\$ be a sequence of positive numbers with $\beta(0) = 1$ and $1 < p < \infty$. We consider the space of sequences $f =$ n $\hat{f}(n)$ າ∞ $n=0$ such that

$$
||f||^{p} = ||f||_{\beta}^{p} = \sum_{n=0}^{\infty} |\hat{f}(n)|^{p} \beta(n)^{p} < \infty.
$$

46 K. JAHEDI AND B. YOUSEFI

The notation $f(z) = \sum_{n=0}^{\infty}$ $n=0$ $\hat{f}(n)z^n$ shall be used whether or not the series converges for any value of z. These are called formal power series. Let $H^p(\beta)$ denotes the space of such formal power series. It is usually called as weighted Hardy spaces. These are reflexive Banach spaces with the norm $\Vert . \Vert_{\beta}$ and the dual of $H^p(\beta)$ is $H^q(\beta^{\frac{p}{q}})$ where $\frac{1}{p} + \frac{1}{q}$ $\frac{1}{q} = 1$ and $\beta^{\frac{p}{q}} = {\beta(n)}^{\frac{p}{q}}_n$ ([4]). Also if

$$
g(z) = \sum_{n=0}^{\infty} \hat{g}(n) z^n \in H^q(\beta^{\frac{p}{q}}),
$$

then

$$
\|g\|^q=\sum_{n=0}^\infty \hskip -10pt|\hat{g}(n)|^q \beta(n)^p.
$$

Let $H^*(\beta)$ denotes the space of stati formal power series. It is usually
called as weighted Hardy spaces. These are reflexive Banach spaces wit
the norm $\|\cdot\|_{\beta}$ and the dual of $H^p(\beta)$ is $H^q(\beta^{\frac{p}{q}})$ where \frac The Hardy, Bergman and Dirichlet spaces can be viewed in this way when $p = 2$ and respectively $\beta(n) = 1, \beta(n) = (n + 1)^{-1/2}$ and $\beta(n) =$ $(n+1)^{1/2}$. It is convenient and helpful to introduce the notation $\langle f, g \rangle$ to stand for $g(f)$ where $f \in H^p(\beta)$ and $g \in H^p(\beta)^*$. Note that

$$
\langle f, g \rangle = \sum_{n=0}^{\infty} \hat{f}(n) \overline{\hat{g}(n)} \beta(n)^p.
$$

Let $\hat{f}_k(n) = \delta_k(n)$. So $f_k(z) = z^k$ and then $\{f_k\}_k$ is a basis such that $||f_k|| = \beta(k)$. Clearly M_z , the multiplication operator by z on $H^p(\beta)$ shifts the basis $\{f_k\}_k$.

Remember that a complex number λ is said to be a bounded point evaluation on $H^p(\beta)$ if the functional of point evaluation at λ, e_λ , is bounded. The functional of evaluation of the j-th derivative at λ is dentoed by $e_{\lambda}^{(j)}$ $_{\lambda}^{(j)}$. These spaces are also studied in [1, 2, 4, 5, 6, 7, 8].

If Ω is a bounded domain in the complex domain \mathcal{C} , then by $H(\Omega)$ we mean the set of analytic functions on Ω . We will denote the open unit disc by U .

2. Main Results

dentoed by $e_{\lambda}^{(j)}$. These spaces are also studied in [1, 2, 4, 5, 6, 7, 8].

If Ω is a bounded domain in the complex domain \emptyset , then by $\overline{H}(\Omega$

we mean the set of analytic functions on Ω . We will denote t We will investigate the relation between the generating function and the functional of point evaluations on $H^p(\beta)$. Also we will determine the structure of all non-zero linear functionals on $H^p(\beta)$ that are multiplicative. This extends some results of [1] into Banach spaces of formal power series. The differential of functionals of point evaluations are also considered.

Definition 1. The generating function for the weighted Hardy space $H^p(\beta)$ is the function

$$
g(z) = \sum_{n=0}^{\infty} \frac{z^n}{\beta(n)^q}
$$

where $\frac{1}{p} + \frac{1}{q}$ $\frac{1}{q} = 1.$ **Lemma 2.** If g is the generating function for a weighted Hardy space contained in $H(U)$, then $g \in H(U)$.

Proof. Let g be the generating function for the weighted Hardy space $H^p(\beta)$ where $H^p(\beta) \subset H(U)$. Define

$$
\hat{f}(n) = \begin{cases} 0 & n = 0 \\ \frac{1}{n\beta(n)} & n \neq 0 \end{cases}
$$

and let $f(z) = \sum_{n=0}^{\infty}$ $n=0$ $\hat{f}(n)z^n$. Now we have

$$
\sum_{n=0}^{\infty} |\widehat{f}(n)|^p \beta(n)^p = \sum_{n=1}^{\infty} \frac{1}{n^p} < \infty.
$$

Proof. Let g be the generating function for the weighted Hardy space $H^p(\beta)$ where $H^p(\beta) \subset H(U)$. Define $\hat{f}(n) = \begin{cases} 0 & n = 0 \\ \frac{1}{n\beta(n)} & n \neq 0 \end{cases}$
and let $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$. Now we have $\sum_{n=0}^{\infty} |\hat{f}($ So $f \in H^p(\beta)$ and by assumption, it is analytic in the open unit disk U. Thus the radius of convergence of its power series, R , is at least 1. Thus

$$
\frac{1}{R} = \limsup_{n \to \infty} |\hat{f}(n)|^{\frac{1}{n}} = \limsup_{n \to \infty} (\frac{1}{n\beta(n)})^{\frac{1}{n}} \leq 1,
$$

and so

$$
\limsup_n (\frac{1}{\beta(n)^q})^{\frac{1}{n}}=\limsup_n\Big[(\frac{1}{n\beta(n)})^{\frac{1}{n}}\Big]^q\leqslant 1,
$$

which implies that $g \in H(U)$. This completes the proof. \square

The next theorem shows the principle role of g : it generates the reproducing kernels for $H^p(\beta)$.

Lemma 3. Let $H^p(\beta)$ be a weighted Hardy space contained in $H(U)$. For each point λ in U, the functional of evaluation at λ , e_{λ} , is a bounded linear functional and $||e_\lambda||^q = g(|\lambda|^q)$.

Proof. For $|\lambda| < 1$, the analyticity of g on U implies that e_{λ} is in $H^q(\beta^{\frac{p}{q}})$. Indeed,

$$
||e_\lambda||^q = ||\sum_{n=0}^\infty \frac{\bar{\lambda}^n}{\beta(n)^p} z^n||^q = \sum_{n=0}^\infty \frac{|\lambda|^{nq}}{\beta(n)^q} = g(|\lambda|^q) < \infty.
$$

This completes the proof. \Box

Proof. For $|\lambda| < 1$, the analyticity of g on U implies that e_{λ} is i
 $H^q(\beta^{\frac{p}{q}})$. Indeed,
 $||e_{\lambda}||^q = ||\sum_{n=0}^{\infty} \frac{\bar{\lambda}^n}{\beta(n)^p} z^n||^q = \sum_{n=0}^{\infty} \frac{|\lambda|^{nq}}{\beta(n)^q} = g(|\lambda|^q) < \infty$.

This completes the proof. $\$ **Theorem 4.** If g, the generating function for $H^p(\beta)$, satisfies $g(1) = \infty$, then each non-zero bounded linear functional H on $H^p(\beta)$ such that $\langle fh, H \rangle = \langle f, H \rangle \langle h, H \rangle$ whenever f, h and fh are in $H^p(\beta)$ is in the form of $H = e_{\lambda}$ for some point λ in U.

Proof. Suppose $H \in H^p(\beta)^*$ such that H is non-zero and satisfies

$$
\langle f h, H \rangle = \langle f, H \rangle \langle h, H \rangle
$$

whenever f, h and fh are in $H^p(\beta)$. Since the polynomials are dense in $H^p(\beta)$, this holds when f and h are polynomials.

Also, we note that

$$
\langle f, H \rangle = \langle f_0 f, H \rangle = \langle f_0, H \rangle \langle f, H \rangle
$$

for all f in $H^p(\beta)$, hence $\langle f_0, H \rangle = 1$. Letting $\lambda = \langle f_1, H \rangle$, it follows that

$$
\langle f_2, H \rangle = \langle f_1 f_1, H \rangle = \langle f_1, H \rangle^2 = \lambda^2.
$$

By induction, $\langle f_n, H \rangle = \lambda^n$ for all $n \in \mathbb{N}$. Remember that if

$$
f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n \in H^p(\beta)
$$

and

$$
G(z) = \sum_{n=0}^{\infty} \hat{G}(n) z^n \in H^q(\beta^{\frac{p}{q}}),
$$

then

$$
\langle f, G \rangle = \sum \hat{f}(n) \overline{\hat{G}(n)} \beta(n)^p.
$$

$$
\langle f_2, H \rangle = \langle f_1 f_1, H \rangle = \langle f_1, H \rangle = \lambda^r.
$$

By induction, $\langle f_n, H \rangle = \lambda^n$ for all $n \in \mathbb{N}$. Remember that if

$$
f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n \in H^p(\beta)
$$
and
and

$$
G(z) = \sum_{n=0}^{\infty} \hat{G}(n) z^n \in H^q(\beta^{\frac{r}{q}}),
$$
then

$$
\langle f, G \rangle = \sum \hat{f}(n) \overline{\hat{G}(n)} \beta(n)^p.
$$

Now if $H(z) = \sum_{n=0}^{\infty} \hat{H}(n) z^n$, we have

$$
1 = \langle f_0, H \rangle = \overline{\hat{H}(0)} \beta(0)^p = \overline{\hat{H}(0)},
$$

$$
\lambda = \langle f_1, H \rangle = \overline{\hat{H}(1)} \beta(1)^p,
$$

$$
\vdots
$$

$$
\lambda^n = \langle f_n, H \rangle = \overline{\hat{H}(n)} \beta(n)^p.
$$

So if $|\lambda| < 1$, then

$$
H(z)=1+\sum_{n=1}^\infty\overline{\lambda^n}_{\beta(n)^p}z^n=e_\lambda(z),
$$

and so H is the linear functional of evaluation at λ . If $|\lambda| \geq 1$, then we get

$$
\|H\|^q=\sum_{n=0}^\infty\frac{|\lambda|^{nq}}{\beta(n)^q}\geqslant \sum_{n=0}^\infty\frac{1}{\beta(n)^q}=g(1)=\infty,
$$

which contradicts the boundedness of the linear functional determined

by H. This completes the proof. \square

As we saw, for λ in U,

$$
e_{\lambda}(z) = \sum_{n=0}^{\infty} \frac{1}{\beta(n)^p} (\bar{\lambda})^n z^n \in H^q(\beta^{p/q}).
$$

This is not true in general if λ is on the unit circle.

 $||H||^2 = \sum_{n=0}^{\infty} \frac{1}{\beta(n)^q} \geq \sum_{n=0}^{\infty} \frac{1}{\beta(n)^q} = g(1) = \infty,$
which contradicts the boundedness of the linear functional determine
by *H*. This completes the proof. \Box
As we saw, for λ in *U*,
 $e_{\lambda}(z) = \sum_{n=0}^$ Lemma 5. Let $j \in \mathbb{N} \cup \{0\}$. If $\sum_{i=1}^{\infty}$ $n=j$ n^{qj} $\frac{n^{q}}{\beta(n)^q} < \infty$, then $e_{\lambda}^{(j)} \in H^q(\beta^{p/q})$ and $\langle f, e_\lambda^{(j)} \rangle = \overline{f^{(j)}(\lambda)}$ for all λ in \overline{U} and f in $H^p(\beta)$.

Proof. For λ in \overline{U} we have

$$
e_{\lambda}^{(j)}(z) = \sum_{n=j}^{\infty} \frac{n(n-1)\cdots(n-j+1)}{\beta(n)^p} (\bar{\lambda})^{n-j} z^n,
$$

and so

$$
||e_{\lambda}^{(j)}(z)||^{q} = \sum_{n=j}^{\infty} \left(\frac{n(n-1)\cdots(n-j+1)}{\beta(n)^{p}}\right)^{q} |\lambda|^{(n-j)q} \beta(n)^{p}
$$

$$
\leq \sum_{n=j}^{\infty} \frac{(n(n-1)\cdots(n-j+1))^{q}}{\beta(n)^{q}}
$$

<www.SID.ir>

$$
\qquad\leqslant\quad \sum_{n=j}^\infty \frac{n^{qj}}{\beta(n)^q}<\infty.
$$

Thus $e_{\lambda}^{(j)} \in H^q(\beta^{p/q})$. Now if

$$
f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n \in H^p(\beta),
$$

then by a Theorem in [4], for all λ in \bar{U} we have:

$$
f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n \in H^p(\beta),
$$

then by a Theorem in [4], for all λ in \bar{U} we have:

$$
\langle f, e_{\lambda}^{(j)} \rangle = \sum_{n} \hat{f}(n) \overline{e_{\lambda}^{(j)}}(n) \beta(n)^p
$$

$$
= \sum_{n=j}^{\infty} \hat{f}(n) \frac{n(n-1)\cdots(n-j+1)}{\beta(n)^p} \lambda^{n-j} \beta(n)^p
$$

$$
= \sum_{n=j}^{\infty} n(n-1)\cdots(n-j+1) \hat{f}(n) \lambda^{n-j} = f^{(j)}(\lambda).
$$
This completes the proof. \square
Note that if $\sum_{n=j}^{\infty} \frac{n^{qj}}{\beta(n)^q} \ll \infty$, then $H^p(\beta)$ is very small and for ever
function in $H^p(\beta)$, the *j*-th derivative exists and is continuous on the unit circle.
Corollary 6. If $\sum_{n=0}^{\infty} \frac{1}{\beta(n)^q} \ll \infty$, then the generating function belong

This completes the proof. \Box

Note that if $\sum_{n=1}^{\infty}$ $n=j$ n^{qj} $\frac{\partial P}{\partial q(n)} \leq \infty$, then $H^p(\beta)$ is very small and for every function in $H^p(\beta)$, the j-th derivative exists and is continuous on the unit circle.

Corollary 6. If $\sum_{i=1}^{\infty}$ $n=0$ 1 $\frac{1}{\beta(n)^q} < \infty$, then the generating function belongs to $H^p(\beta)$.

Proof. Let g be the generating function. Thus $g(z) = \sum$ n 1 $\frac{1}{\beta(n)^q} z^n$ and

$$
||g||q = \sum_{n} |\hat{g}(n)|p \beta(n)p = \sum_{n} \frac{1}{\beta(n)q} < \infty.
$$

So $g \in H^p(\beta)$. \square

Corollary 7. If \sum n 1 $\frac{1}{\beta(n)^q} < \infty$ and $\liminf_n \beta(n)^{1/n} = 1$, then the generating function is in $H(U)$.

Proof. Clearly we can see that $H^p(\beta) \subset H(U)$ and so by the Lemma 2, the proof is complete. \Box

Proof. Clearly we can see that $H^p(\beta) \subset H(U)$ and so by the Lemm

2, the proof is complete. \Box
 Theorem 8. In the weighted Hardy space $H^p(\beta)$ for which $g(1) = \infty$ for all integer $j \ge 0$, the normalized functional **Theorem 8.** In the weighted Hardy space $\bar{H}^p(\beta)$ for which $g(1) = \infty$ for all integer $j \geqslant 0$, the normalized functional of point evaluations, $e_{w_n}^{(j)}$ $\|e_{w_n}^{(j)}\|$, tends to zero weakly as $w_n \longrightarrow \xi \in \partial U$.

Proof. For $j = 0$, the norm of the functional of point evaluations are given by the generating function g and indeed $||e_{w_n}||^q = g(|w_n|^q)$. Since

$$
\lim_{n} g(|w_n|^q) = g(1) = \sum_{n} \frac{1}{\beta(n)^q} = \infty,
$$

it follows that $||e_{w_n}||$ tends to infinity and for every polynomial p,

$$
\lim_{m} |\langle p, \frac{e_{w_n}}{\|e_{w_n}\|} \rangle| = \lim_{n} \frac{|p(w_n)|}{\|e_{w_n}\|} = 0.
$$

But the polynomials are dense in $H^p(\beta)$, thus $\frac{e_{w_n}}{\beta}$ $\frac{C_{w_n}}{\|e_{w_n}\|} \longrightarrow 0$ weakly as $n \longrightarrow \infty$. If $j > 0$, then

$$
\lim_{n} \|e_{w_m}^{(j)}\|^q = \lim_{m} \sum_{n=j}^{\infty} \left(\frac{n(n-1)\cdots(n-j+1)}{\beta(n)}\right)^q |w_m|^{q(n-j)}
$$

$$
= \sum_{n=j}^{\infty} \left(\frac{n(n-1)\cdots(n-j+1)}{\beta(n)}\right)^q
$$

$$
\geqslant \sum_{n=j}^{\infty} \frac{1}{\beta(n)^q} = \infty.
$$

Thus $||e_{w_m}^{(j)}||$ tends to infinity and for every polynomial p,

$$
\lim_{m} \left| \langle p, \frac{e_{w_m}^{(j)}}{\|e_{w_m}^{(j)}\|} \rangle \right| = \lim_{m} \frac{|p^{(j)}(w_m)|}{\|e_{w_m}^{(j)}\|} = 0.
$$

Since the polynomials are dense in $H^p(\beta)$, the proof is complete.

References

- [1] C. C. Cowen and B. D. MacCluer, *Composition operators on spaces of* analytic functions, CRC press, Inc. , 1995.
- Thus $||e_{w_m}^{(j)}||$ tends to infinity and for every polynomial *p*,
 $\lim_{m} \left| \langle p, \frac{e_{w_m}^{(j)}}{\|e_{w_m}^{(j)}\|} \rangle \right| = \lim_{m} \frac{|p^{(j)}(w_m)|}{\|e_{w_m}^{(j)}\|}$

Since the polynomials are dense in $H^p(\beta)$, the proof is complete.
 Arc [2] K. Seddighi and B. Yousefi, On the refrexivity of operators on function spaces, Proceedings of the American Mathematical Society, 116 (1992), 45-52.
	- [3] A. L. Shields, Weighted shift operators and analytic function theory,Mathematical Survey, A. M. S. Providence, 13 (1974), 49-128.
	- [4] B. Yousefi, On the space $l^p(\beta)$, Rendiconti Del Circolo Matematico Di Palermo, Serie II. Tomo XLIX (2000), 115-120.
	- [5] B. Yousefi, Unicellularity of the multiplication operator on Banach spaces of formal power series, Studia Mathematica, 147 (2001), 201-209.
	- [6] B. Yousefi and K. Jahedi, Application of the Rosenthal-Dor Theorem on Banach spaces of formal power series, Islamic Azad University Journal of sciences, Fall (2001), 3147-3168.
	- [7] B. Yousefi and S. Jahedi, Composition operators on Banach spaces of formal power series, Bollettino Della Unione Mathematica Italiana, (8) 6-B (2003), 481-487.

ON THE WEIGHTED HARDY SPACES 55

[8] B. Yousefi, On the eighteenth question of Allen shields, International Journal of Mathematics, 16 (1) (2005), 37-42.

Khadijeh Jahedi

Department of Mathematics Islamic Azad University - Shiraz Branch Shiraz, Iran E-mail: Mjahedi80@yahoo.com

Bahman Yousefi

Archive O Department of Mathematics College of Sciences Shiraz University Shiraz 71454, Iran E-mail: Yousefi@Math.Susc.ac.ir