Journal of Mathematical Extension Vol. 1, N0. 1, (2006), 57-65

Irrational Rotation Algebra as

a Crossed Product

S. Haghkhah

Islamic Azad University - Sepidan Branch

M. Faghih Ahmadi Islamic Azad University - Sepidan Branch

Example 12 Archive of SID
 Archive of Archiversity - Sepidan Branch
 Archiversity - Sepidan Branch
 Archiversity - Sepidan Branch
 Archiversity - Sepidan Branch
 Abstract: In this paper we will consider the Abstract: In this paper we will consider the crossed product $C(T) \times_{\alpha} \mathbf{Z}$, where T is the unit circle, $\alpha(n) = \alpha_n$ is a rotation through the angle $-2\pi n\theta$ for $n \in \mathbb{Z}$, and θ is a fixed irrational number. We will apply some results about patial actions to represent this crossed product as a C^* -subalgebra of $B(L^2(T))$. Also, by a different method form the proof of Davidson, we show that this crossed product is isomorphic to the irrational rotation algebra.

AMS Subject Classification: 47L65.

Keywords and Phrases: Partial action, partial homeomorphism, crossed product, rotation algebra, topologically free.

1. Introduction

Let G be a discrete group and $\theta = (\{\theta_t\}, \{U_t\})_{t \in G}$ be a partial homeomorphism [3] of a locally compact space X. Put $D_t = C_0(U_t)$ and define $\alpha_t: D_{t^{-1}} \to D_t$ by

 $\alpha_t(f)(x) := f(\theta_{t^{-1}}(x))$, for $f \in D_{t^{-1}}$ and $x \in U_t$.

Then $\alpha = (\{\alpha_t\}, \{D_t\})_{t \in G}$ is a partial action of G on the C^{*}-algbera $C_0(X)$ in the sense of [2] and [6], which is called the partial action of G on $C_0(X)$ corresponding to θ ([4]).

Definition 1.1. ([4]) The partial dynamical system $(C_0(X), G, \alpha)$ is topologically free if for every $t \in G \backslash \{e\}$, the set

$$
F_t := \{ x \in U_{t^{-1}} : \theta_t(x) = x \}
$$

has empty interior.

Definition 1.1. ([4]) The partial dynamical system $(C_0(X), G, \alpha)$ is topologically free if for every $t \in G \setminus \{e\}$, the set $F_t := \{x \in U_{t-1} : \theta_t(x) = x\}$ has empty interior.

The concepts of reduced and full crossed product The concepts of reduced and full crossed products for actions are generalized by McClanahan in [6] to parital actions. It is surprising that in some situations the faithfulness of a representation of the reduced crossed product $C_0(X) \times_r G$ depends only on that of $C_0(X)$. In this relation we bring the following theorem. For the proof see [4, Theorem 2.6].

Theorem 1.2. Suppose $(C_0(X), G, \alpha)$ is topologically free. A representation of the reduced crossed product $C_0(X) \times_r G$ is faithful if and only if it is faithful on $C_0(X)$.

We remark that when G is an amenable group (especially when G is abelian), the reduced and full crossed products are identified with each

other, and so in this case, the preceding theorem is valid for the full crossed product, with a similar proof.

2. Main Result

2. Main Result

Fix an irrational number θ . Let R_{θ_n} be the rotation through the angl
 $2\pi n\theta$. That is, $R_{\theta_n} : T \to T$ is defined by $R_{\theta_n}(z) = ze^{2\pi n\theta}$ for $n \in \mathbb{Z}$

So the map $R_{\theta} : n \mapsto R_{\theta_n}$ is a par Fix an irrational number θ . Let R_{θ_n} be the rotation through the angle $2\pi n\theta$. That is, $R_{\theta_n}: T \to T$ is defined by $R_{\theta_n}(z) = ze^{2\pi i n\theta}$ for $n \in \mathbb{Z}$. So the map $R_{\theta}: n \mapsto R_{\theta_n}$ is a partial action (indeed, an action) on **Z**. It is clear that R_{θ_n} is a homeomorphism on the compact space T. Thus, R_{θ} is a partial homeomorphism.

Now, let α be the partial action of **Z** on $C_0(T) = C(T)$ corresponding to R_{θ} . So $\alpha_n : C(T) \to C(T)$ is defined by

$$
\alpha_n(f)(z) = f(R_{\theta_{-n}}(z)) = f(ze^{-2\pi in\theta})
$$

for $f \in C(T)$ and $z \in T$. Note that α is an action in this case.

To identify the crossed product $C(T) \times_{\alpha} \mathbf{Z}$ ([1], [6]), more explicitely, first we find a faithful representation of $C(T) \times_{\alpha} \mathbb{Z}$. Indeed, we represent the crossed product as a C^* -subalgebra of $B(L^2(T))$. Let $M: C(T) \to$ $B(L^2(T))$ be given by

$$
M_f(g) = fg
$$

for $f \in C(T)$ and $g \in L^2(T)$. Also, define $\lambda : \mathbf{Z} \to B(L^2(T))$ by

$$
\lambda_n(\xi)(z) = \xi(ze^{-2\pi i n\theta})
$$

for $\xi \in L^2(T)$ and $z \in T$.

Note that $\lambda_n^* = \lambda_{-n}$ and $\lambda_n = \lambda_1^n$. It is clear that M is a nondegenerate representation and λ is a unitary representation. Also it can be easily verified that

$$
M(\alpha_n(f)) = \lambda_n o M_f o \lambda_n^*
$$

for $\xi \in L^2(T)$ and $z \in T$.

Note that $\lambda_n^* = \lambda_{-n}$ and $\lambda_n = \lambda_1^n$. It is clear that M is a non

degenerate representation and λ is a unitary representation. Also it ca

be easily verified that
 $M(\alpha_n(f)) = \lambda_n \phi M_f \alpha \$ for $f \in C(T)$. Therefore, $(M, \lambda, L^2(T))$ is a covariant representation of the C^{*}-dynamical system $(C(T), \mathbf{Z}, \alpha)$. By the correspondence between the covariant representations of a partial action and the representations of the associated crossed product [6], we conclude that $M \times \lambda$ is a representation of $C(T) \times_{\alpha} \mathbb{Z}$. Since \mathbb{Z} is an abelian group, we can identify $C(T) \times_{\alpha} \mathbf{Z}$ with $C(T) \times_{r} \mathbf{Z}$. On the other hand, M is faithful on $C(T)$. So Theorem 1.2 implies that $M \times \lambda$ is a faithful representation. Note that Theorem 1.2 can be used because for every irrational θ , R_{θ} is topologically free. In fact, for $n \in \mathbf{Z} \setminus \{0\}$, $F_n = \{z \in T : ze^{-2\pi in\theta} = z\} = \emptyset$ because θ is an irrational number and so $e^{2\pi in\theta} \neq 1$.

We know that $(M \times \lambda)(f\delta_n) = M_f \lambda_n = M_f \lambda_1^n$, where $f\delta_n$ is a

generator of $C(T) \times_{\alpha} \mathbb{Z}$. Since $\iota(z) = z$, generates the C^{*}-algebra $C(T)$ and 1 generates the group **Z**, we have $(M \times \lambda)(C(T) \times_{\alpha} \mathbf{Z}) = C^*(M_z, \lambda_1)$.

We can summarize the above discussions in the following lemma.

Lemma 2.1. Assume that M_z and λ_1 are defined as following

$$
M_z(g)=zg
$$

for $g \in L^2(T)$, and

$$
\lambda_1(\xi)(z) = \xi(ze^{-2\pi i\theta})
$$

for $\xi \in L^2(T)$ and $z \in T$. Then

$$
C(T) \times_{\alpha} \mathbf{Z} \simeq C^*(M_z, \lambda_1).
$$

Lemma 2.1. Assume that M_z and λ_1 are defined as following
 $M_z(g) = zg$

for $g \in L^2(T)$, and
 $\lambda_1(\xi)(z) = \xi(ze^{-2\pi i\theta})$

for $\xi \in L^2(T)$ and $z \in T$. Then
 $C(T) \times_{\alpha} \mathbf{Z} \cong C^*(M_z, \lambda_1)$.
 Remark 2.2. Set $U = M_z$ and **Remark 2.2.** Set $U = M_z$ and $V = \lambda_1$. Then U and V are unitaries

satisfying

$$
UV = e^{2\pi i \theta} VU.
$$

Lemma 2.3. Assume that U and V are two unitaries in $B(L^2(T))$, sat-

isfying the relation (*). Let π be the representation of $C(T)$ on $B(L^2(T))$ taking ι to U, where $\iota(z) = z$ for all z in T. Also let Λ be the representation of **Z** on $B(L^2(T))$ taking 1 to V. Then (π, Λ) is a covariant representation of $(C(T), \mathbf{Z}, \alpha)$.

Proof. It is clear that π is a non-degenerate representation and Λ is a unitary representation. It suffices to show that

$$
\Lambda_n \pi(g) \Lambda_n^* = \pi(\alpha_n(g))
$$

for all $g \in C(T)$ and $n \in \mathbb{Z}$. Since U is unitary, Proposition 4.1.1 (iii) of [5] implies that $sp(U) \subset T$. On the other hand, $sp(U)$ is invariant under the rotation R_{θ} through the irrational angle $2\pi\theta$, because

$$
e^{2\pi i\theta}sp(U) = sp(e^{2\pi i\theta}U) = sp(V^*UV) = sp(UV^*V) = sp(U).
$$

 $A_n \pi(g) \Lambda_n^* = \pi(\alpha_n(g))$
for all $g \in C(T)$ and $n \in \mathbb{Z}$. Since *U* is unitary, Proposition 4.1.1 (iii) c
[5] implies that $sp(U) \subset T$. On the other hand, $sp(U)$ is invariant unde
the rotation R_{θ} through the irrational ang Thus considering the fact that θ is irrational, we conclude that $sp(U)$ = T. So we can use the Functional Calculus. For any polynomial $p(z) =$ $\frac{N}{\sqrt{2}}$ $k = -N$ $a_k z^k$, one has

$$
Vp(U)V^* = \sum_{k=-N}^{N} a_k (VUV^*)^k = \sum_{k=-N}^{N} e^{-2\pi i k\theta} a_k U^k = \alpha_1(p)U.
$$

Similarly, we have $V^*p(V)V = \alpha_{-1}(p)U$. It is easily verified by induction that

$$
V^n p(U) V^{n^*} = \alpha_n(p) U \text{ for all } n \in \mathbb{Z}.
$$

So we have

$$
\Lambda_n \pi(p) \Lambda_n^* = V^n p(U) V^{n^*} = \alpha_n(p) U = p(e^{-2\pi i n \theta} U) = \pi(\alpha_n(p)).
$$

Since $C(T)$ is the closure of such these polynomials, the result follows. \Box

In [1] K. R. Davidson has defined the irrational rotation algebra \mathcal{A}_{θ} as the following:

Definition 2.4. The universal C^{*}-algebra \mathcal{A}_{θ} satisfying $(*)$ is called the irrational rotation algebra.

Recall that \mathcal{A}_{θ} is universal for the relation (*) provided that it is generated by two unitaries \tilde{U} and \tilde{V} satisfying (*), and whenever $\mathcal{A} =$ $C^*(U, V)$ is another C^* -algebra satisfying $(*)$, there is a homomorphism of \mathcal{A}_{θ} onto $\mathcal A$ which carries \tilde{U} to U and \tilde{V} to V .

Definition 2.4. The universal C^* -algebra A_{θ} satisfying (*) is called the irrational rotation algebra.

Recall that A_{θ} is universal for the relation (*) provided that it is generated by two unitaries \tilde{U} **Remark 2.5.** Let (A, G, α) be a C^* -dynamical system. Then the crossed product $A \times_{\alpha} G$ has the universal property [1]. That is, if (π, Λ) is any covariant representation of (A, G, α) , then there is a representation of $\mathcal{A} \times_{\alpha} G$ into $C^*(\pi(\mathcal{A}), \Lambda(G))$ obtained by setting

$$
\sigma(f) = \sum_{t \in G} \pi(A_t) \Lambda_t \quad \text{for} \quad f = \sum_{t \in G} A_t \delta_t \in \mathcal{A}G
$$

and then extending by continuity. In the unital case, this map is surjective.

Theorem 2.6. The crossed product $C(T) \times_{\alpha} \mathbb{Z}$ can be identified with

the irrational rotation algebra A_{θ} .

Proof. By Remark 2.2, M_z and λ_1 are unitaries satisfying (*). Now, since \mathcal{A}_{θ} is simple, by Theorem VI.1.4 of [1], $C^*(M_z, \lambda_1)$ is isomorphic to \mathcal{A}_{θ} . Thus Lemma 2.1 implies that $C(T) \times_{\alpha} \mathbf{Z} \simeq \mathcal{A}_{\theta}$.

Remark 2.7. There is another proof of the theorem due to Davidson $[1]$ which we bring here.

since A_{θ} is simple, by Theorem VI.1.4 of [1], $C^*(M_z, \lambda_1)$ is isomorphit
 Ao. Thus Lemma 2.1 implies that $C(T) \times_{\alpha} \mathbf{Z} \simeq A_{\theta}$.
 Remark 2.7. *There is another proof of the theorem due to Davidso*
 All whi Suppose that $\mathcal{A}_{\theta} = C^*(\tilde{U}, \tilde{V})$ such that \tilde{U} and \tilde{V} are unitaries satisfying (*). Then by Lemma 2.3, (π, Λ) is a covariant representation of $(C(T), \mathbf{Z}, \alpha)$, where $\pi : \iota \mapsto \tilde{U}$ and $\Lambda : 1 \mapsto \tilde{V}$. By Remark 2.5, there is a homomorphism of $C(T) \times_{\alpha} \mathbb{Z}$ onto $C^*(\pi(C(T)), \Lambda(\mathbb{Z})) =$ $C^*(\pi(\iota), \Lambda(1)) \in C^*(\tilde{U}, \tilde{V}) = \mathcal{A}_{\theta}$. Conversely, by Remark 2.2, M_z and λ_1 are unitaries satisfying (*). Therefore, the universal property of \mathcal{A}_{θ} implies that there is a homomorphism of \mathcal{A}_{θ} onto $C^*(M_z, \lambda_1)$, and so by Lemma 2.1, there is a homomorphism of \mathcal{A}_{θ} onto $C(T) \times_{\alpha} \mathbf{Z}$. Clearly these homomorphims are inverses.

Acknowledgement: We are indebted to Dr. B. Tabatabaie for his helpful comment on the article.

References

- [1] K. R. Davidson, C^{*}-Algebras by Example, American Mathematical Society, 1996.
- [2] R. Exel, Partial actions of groups and actions of inverse semigroups, Proc. Amer. Math. Soc., 126 (1998), 3481-3494.
- *Archive Math. Soc.*, 126 (1998), 3481-3494.
 Archive Math. Soc., 126 (1998), 3481-3494.

[3] R. Exel, M. Laca, Cuntz-krieger algebras for infinite matrices, *J. Rein Angew. Math.*, 512 (1999), 119-172.

[4] R. Exel, M. [3] R. Exel, M. Laca, Cuntz-krieger algebras for infinite matrices, J. Reine Angew. Math., 512 (1999), 119-172.
	- [4] R. Exel, M. Laca, J. Quigg, Partial dynamical systems and C^* -algebras generated by partial isometries, J. Operator Theory, 47 (2002), 169-186.
	- [5] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Academic Press, 1983.
	- [6] K. McClanahan, K-theory for partial crossed products by discrete groups, J. Funct. Anal., 130 (1995), 77-117.

Sareh Haghkhah

Islamic Azad University - Sepidan Branch Sepidan, Iran E-mail: haghkhah@shirazu.ac.ir

Masoumeh Faghih Ahmadi

Islamic Azad University - Sepidan Branch Sepidan, Iran E-mail: faghiha@shirazu.ac.ir