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Abstract. Let C(K,A) denote the space of all continuous A-
valued functions on the compact Hausdorff space K, where A is
a commutative Banach algebra. In this paper we show that the
maximal ideal space of C(K,A) can be identified with K ×M,
where M denotes the maximal ideal space of A.
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1. Introduction

The most important problem concerning commutative Banach algebras

is characterizing its maximal ideal space. Though many commutative

Banach algebras, including C(X) for a compact Hausdorff space X and

many function algebras, have a known maximal ideal space, there are

many important commutative Banach algebras including H∞ for which

the topological properties of their maximal ideal spaces are not fully

understood [1].
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Here we show that the maximal space of the algebra of all continuous

functions from a compact Hausdorff space into a Banach algebra has a

simple characterization.

Let K be an arbitrary compact Hausdorff space and A be a Banach

space. Denote by C(K,A) the space of all continuousA-valued functions

defined on K equipped with the norm

||f || = sup
k∈K

||f(k)||A.

Then C(K,A) will be a Banach space and if A is a commutative Banach

algebra, then C(K,A) is a commutative Banach algebra. In this case,

we shall show that the maximal ideal space of C(K,A) can be identified

with K ×M, where M denotes the maximal ideal space of A equipped

with the weak∗ topology. We remind that A need not be unital.

2. Main Results

The following representation theorem is due to Singer [4]. For a nice

proof see Hensgen [3].

Theorem 1. Let A be a Banach space. The dual C(K,A)∗ of C(K,A)

can be identified with M(K,A∗), the space of all regular Borel A∗-valued

measures on K having finite variation. The action of an element Φ ∈
C(K,A)∗ corresponding to F ∈ M(K,A∗) on an element g ∈ C(K,A)

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

THE MAXIMAL IDEAL SPACE OF C(K,A) 99

is then given by

Φ(g) =
∫

K
< g(k), dF (k) > .

Note that for an element F ∈ M(K,A∗) and g ∈ C(K,A), dµg =<

g, dF > defines a regular Borel measure on K.

Let M(K) denote the space of all regular Borel measures on K.

Obviously, each element µ×ϕ ∈ M(K)×A∗ is an element of C(K,A)∗

acting on an element g ∈ C(K,A) as

µ× ϕ(g) =
∫

K
ϕ(g(k))dµ.

Now if µ = δk0 is a point mass measure at some point k0 ∈ K, then the

action of Φ = µ× ϕ simply becomes

µ× ϕ(g) = ϕ(g(k0)). (1)

In this case we say that Φ is supported at the single point k0. Looking

at (1) reveals that if f ∈ C(K), then

Φ(fg) ∈ Im(f), (2)

for all g ∈ C(K,A) with Φ(g) = 1. In other words if Φ(g) = 1, then the

measure ν defined on C(K) by ν(f) =
∫
K f(k) < g(k), dF (k) > has the

property ∫

K
f(k)dν ∈ Im(f), for all f ∈ C(K),
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and such measures are supported at a single point by Lemma 2.5 of [2].

In fact, as the following lemma shows, the converse is also true, i.

e. if an element Φ ∈ C(K,A)∗ satisfies (2) for all g ∈ C(K,A) with

Φ(g) = 1, then Φ is supported at a single point.

Lemma 2. Let Φ ∈ C(K,A)∗ satisfy

Φ(fg) ∈ Im (f)

for every f ∈ C(K) and g ∈ C(K,A) with Φ(g) = 1. Then Φ is sup-

ported by a single point.

Proof. There exists F ∈ M(K,A∗) such that for all g ∈ C(K,A),

Φ(g) =
∫

K
< g(k), dF (k) > .

Choose g0 ∈ C(K,A) with Φ(g0) = 1. Then for every f ∈ C(K) we

have ∫

K
f(k) < g0(k), dF (k) > ∈ Im (f).

By Lemma 2.5 of [2], the measure < g0, dF > is supported by a single

point say kg0 = k0 in K. Thus the relation

∫

K
f(k) < g0(k), dF (k) > = f(k0) (3)

holds for all f ∈ C(K). To show that k0 is independent of g0 let g1 ∈ A
with Φ(g1) = 1. Hence Φ(g2) = 1, where g2 = (g0 + g1)/2. Suppose
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the measures < g1, dF > and < g2, dF > are supported by k1 and

k2, respectively. Therefore (3) implies that f(k2) = f(k0)+f(k1)
2 for all

f ∈ C(K). Consequently k0 = k1 = k2. In general we have

Φ(g) =< g(k0), F (k0) >= F (k0)(g(k0)) (4)

for every g ∈ C(K,A) and for some k0 ∈ K. ¤

Theorem 3. Let K be a compact Hausdorff space and let A be a commu-

tative Banach algebra with maximal ideal space M. Then the maximal

ideal space MC(K,A) of C(K,A) can be identified with the space K×M.

The action of an element (k, ϕ) ∈ K ×M on an element g ∈ C(K,A)

is given by g 7→ ϕ(g(k)).

Proof. Let Φ be a nonzero multiplicative linear functional on C(K,A).

Fix g ∈ C(K,A) with Φ(g) = 1. Then Φ(f1f2g) = Φ(f1g)Φ(f2g) for

every f1, f2 ∈ C(K). In this way Φ defines a multiplicative linear func-

tional on C(K), and because the maximal ideal space of C(K) is K we

have Φ(fg) ∈ Im(f), f ∈ C(K). By Lemma 2 we see that Φ is sup-

ported by a single point k0. Now if Φ is represented by F ∈ M(K,A∗),
then by relation (4),

Φ(g) = F (k0)(g(k0)), for all g ∈ C(K,A).

Since Φ is not identically zero, F (k0) would also be nonzero and by let-

ting g vary in constant functions, it follows that F (k0) ∈M. Therefore,
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we have the identification Λ : Φ 7→ (k0, F (k0)) fromMC(K,A) → K×M.

We now prove that this identification is unique. If Φ ∈ MC(K,A)

corresponds to two elements (k1, ϕ1) and (k2, ϕ2) in K ×M, then for

all f ∈ C(K,A) we have Φ(f) = ϕ1(f(k1)) = ϕ2(f(k2)). Letting f

be a constant function we have ϕ1 = ϕ2. Choose x ∈ A such that

ϕ1(x) 6= 0 and if k1 6= k2 choose f ∈ C(K) such that f(k1) = 0 and

f(k2) = 1. Then Φ(fx) = ϕ1(f(k1)x) = 0 and Φ(fx) = ϕ2(f(k2)x) 6= 0.

This contradiction shows that k1 = k2. Hence the identification Λ is

well-defined.

It is clear that Λ is one to one. On the other hand each (k, ϕ) ∈
K ×M induces an element Φ ∈MC(K,A) acting as Φ(f) = ϕ(f(k)) and

as above Φ is identified with (k, ϕ). Hence the identification Λ is onto.

Now we prove that Λ and Λ−1 are continuous. If A is assumed to

be unital, the continuity of Λ implies that of Λ−1, since MC(K,A) is

compact in this case.

Let Φα → Φ weak * in the space MC(K,A) and let Φα correspond to

Fα ∈ M(K,A∗) and Φ to F ∈ M(K,A∗). Then there are k0, kα ∈ K

such that ΛΦα = (kα, Fα(kα)) and ΛΦ = (k0, F (k0)). Thus, for all

g ∈ C(K,A), F (kα)(g(kα)) → F (k0)(g(k0)). Again letting g vary in

constant functions implies that Fα(kα) → F (k) weak * in M. Now for
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an element g0 ∈ C(K,A) with Φ(g0) = 1 and for all f ∈ C(K),
∫

K
f(k) < g0(k), dFα(k) >−→

∫

K
f(k) < g0(k0), dF (k) > .

This shows that the measures < g0, dFα > converge weak * in M(K)

to the measure < g0, dF > which is just the point mass at k0. Also for

each α the measure < g0, dFα > is zero or is supported at the point kα.

In each case there exists a complex number aα such that < g0, dFα >=

aαdδkα . Thus for all f ∈ C(K) we have aαf(kα) → f(k0) from which we

easily conclude that kα → k0 in K. Therefore (kα, F (kα)) → (k0, F (k0))

in K ×M and this implies the continuity of Λ.

Conversely, let (kα, ϕα) → (k, ϕ) in K ×M and Φα = Λ−1(kα, ϕα),

Φ = Λ−1(k, ϕ). Then for a fixed f ∈ C(K,A),

|Φα(f)− Φ(f)| = |ϕα(f(kα)− ϕ(f(k))|

6 |ϕα(f(kα))− ϕα(f(k))|+ |ϕα(f(k))− ϕ(f(k))|

6 ‖f(kα)− f(k)‖+ |ϕα(f(k))− ϕ(f(k))|

The right hand side of the above inequality converges to zero by noting

that f is continuous, kα → k and ϕα → ϕ weak * in M. This shows that

Φα → Φ weak * in MC(K,A) and this implies the continuity of Λ−1. ¤
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