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Abstract. Let S be matrix of residual sum of square in linear
model Y = Aβ + e where matrix e is distributed as elliptically
contoured with unknown scale matrix Σ. In present work, we con-
sider the problem of estimating Σ with respect to squared loss
function, L(Σ̂,Σ) = tr(Σ̂Σ−1−I)2. It is shown that improvement
of the estimators were obtained by James, Stein [7], Dey and Sri-
vasan [1] under the normality assumption remains robust under an
elliptically contoured distribution respect to squared loss function.
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1. Introduction and Summary

Consider the multivariate linear model

Y = Aβ + e,

where Y is an N × p random matrix, A is a known N ×m matrix with

full rank, β is an m × p matrix of unknown parameters and e is an

N × p matrix of random errors. We assume that the error matrix e is

distributed as an elliptically contoured distribution with its density

|Σ|−N
2 f

(
tr(Σ−1e′e

)
), (1)

where f(·) is a differentiable and nonnegative real-value function on R+

and Σ is a positive-definite matrix. In this article |B|, B′ and tr(B) used

for the determinant, the transpose and the trace of a square matrix B,

respectively. The model (1) is called elliptically contoured distribution

which we refer to as the ECD model in this paper.

There were many studies to robust improvement estimation of a

covariance matrix and precision matrix under elliptically contoured dis-

tribution. For the estimation of the covariance matrix and precision

matrix see [7,5], respectively. Kubokawa and Srivastava [7] Hisayuki

Tsukuma [5] showed that improvement of a minimax estimator for a

covariance matrix and the precision matrix obtained under normality

assumption remains robust under an elliptically contoured distribution
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respect to Stein’s loss function, respectively. In this paper, the problem

of estimating the scale matrix of an elliptically contoured distribution

with respect to squared loss function is investigated.

The identity for the elliptically contoured distribution which was

derived by Kubokawa and Srivastava [7] known in the literature as the

”Stein-Haff identity”, is applied to compute risk functions. We define

the risk functions as the expected value of the loss functions, i.e.

R(Σ̂,Σ) = E[L(Σ̂,Σ)|Σ].

Let Σ̂ and Σ̂∗ be two estimators of Σ, Σ̂ dominates Σ̂∗ if R(Σ̂,Σ) 6

R(Σ̂∗,Σ)(∀Σ) ([3, 4]).

The unbiased estimator Σ̂UB = n−1S is the best estimator in the

estimators of the kind aS where a is scalar that it has the minimum risk

for squared loss defined above. James and Stein [6] obtained a minimax

estimator of the form

Σ̂JS = TDT′,

where D = diag(d1, · · · , dp) with di = (n + p + 1 − 2i)−1 , i = 1, 2, · · ·
and T is a p×p lower triangular matrix with positive diagonal elements

such that S = TT′. Stein [9, 10], Dey and Srinivasan [1] obtained an

orthogonally invariant estimator

Σ̂SDS = Hdiag(d1l1, · · · , dplp)H′,
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where H is a p × p orthogonal matrix and l1, · · · , lp are the ordered

eigenvalues of the random matrix S such that S = Hdiag(l1, · · · , lp)H′

[8]. Kubokawa and Srivastava [7] showed that James-Stein estimator

Σ̂JS dominates the unbiased estimator Σ̂UB and Orthogonally invari-

ant estimator Σ̂SDS dominates Σ̂JS under Stein’s loss for any possible

function of f in (1). Our objective is to establish that the above dom-

inance results hold for every ECD model under squared loss. Based on

Haff-stein identity we prove the robustness of the two dominance result,

Σ̂JS improving Σ̂UB and Σ̂SDS improving Σ̂JS .

2. Expected Values

Let S be matrix of residual sum of square, i.e.,

S = Y
′
(IN −A(A

′
A)−1A

′
)Y.

Under the normality and ECD assumption, the expected values for var-

ious function of S have been derived. see [2,5], respectively. According

to the same notation used in [5], let f (0)(x) = f(x),

f (k+1)(x) =
1
2

∫ ∞

x
f (k)(t)dt, k = 0, 1,

and

E
(k)
Σ [v(S)] =

∫
v(S) |Σ|−N

2 f (k)
(
tr

(
Σ−1(y −Aβ)t(y −Aβ)

))
dy,
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where v(S) is an integrable function of S. Moreover, we use the trans-

formation to polar coordinates to get

E
(k)
Σ [1] = γ(k) =

2πNP/2

Γ(NP/2)

∫ ∞

0
rNp−1f (k)(r2)dr, k = 0, 1,

and assume γ(i) < ∞, for more details see [5].

2.1. The Stein-Haff Identity

Let T (S) = (tij(S)) be a p× p matrix whose elements are the function

of S = (sij). Denote

{DST (S)}ij =
p∑

i=1

1
2
(1 + δia)

∂taj(S)
∂sia

,

where δia is Kronecker’s delta. From Lemma 1 in [7], for suitable choice

of a matrix T (S), the Stein-Haff identity is given by

E
(k)
Σ

[
tr{Σ−1T (S)}

]
=

E
(k+1)
Σ

[
(n− p− 1) tr{S−1T (S)}+ 2 trDST (S)

]
.

(2)

3. The Main Results

The following two theorems are the main results of this paper. The

proofs are postponed to section 4.

Theorem 3.1. for any f(·) in (1), the James-Stein estimator Σ̂JS

dominates unbiased estimator Σ̂UB under squared loss if n− p + 1 > 0

and p=1 .
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Theorem 3.2. Σ̂SDS is better than Σ̂JS uniformly for every unknown

f(·) under squared loss if

nγ(2)tr(Σ−1HDH′ΣHDH′) 6 4E
(1)
Σ

[∑

i>j

di − dj

li − lj

]
. (3)

4. Mathematical Details

4.1. Preliminaries

The latter calculations depends on Lemmas below:

Lemma 4.1 [ Hisayuki Tsukuma 2005]. Let Q be a p × p matrix of

constants. Under the conditions of Lemma 2.1. in [5], we have

i) E
(0)
Σ [S] = nγ(1)Σ,

ii)E(0)
Σ [SQS] = γ(2)

{
n2ΣQΣ + nΣQtΣ + n tr(QΣ)Σ

}
.

Lemma 4.2. Under the conditions of Lemma 1. in [7], we have

i) E
(0)
Σ [tr(n−1SΣ−1)] = pγ(1),

ii) E
(0)
Σ [tr(n−1SΣ−1)2] = n−2γ(2)[(n2 + n)p + np2].

Proof. (i): Using Lemma 4.1. we obtain

E
(0)
Σ [tr(n−1SΣ−1)] = E

(0)
I [tr(n−1S)] = pγ(1).

(ii): Taking Q = I in Lemma 4.1. we have

E
(0)
Σ [tr(n−1SΣ−1)2] = E

(0)
I [tr(n−1S)2]

= n−2γ(2)[(n2 + n)p + np2].
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Lemma 4.3. Let D = diag(d1, . . . , dp) with di = (n + p + 1− 2i)−1, i =

1, 2, . . . , p and T is a p×p lower triangular matrix with positive diagonal

elements such that S = TT′. Under the conditions of Lemma 2.1. in

[5], we have

i) E
(0)
Σ [trTDT′Σ−1] = pE

(1)
Σ [1] = pγ(1),

ii) E
(0)
Σ [tr(TDT′)2] = γ(2)[(n2 + n)

∑p
i=1 d2

i + n(
∑p

i=1 di)2].

Proof. (i): By using the equation E
(0)
I (T′T) = D−1γ(1) [7], we arrive

at

E
(0)
Σ [trTDT′Σ−1] = E

(0)
I [trTDT′]

= E
(0)
I [trDT′T]

= pγ(1),

which gives the desired result.

(ii): From Lemma 4.1. with Q = D and S = T′T, we can see that

E
(0)
Σ [tr(TDT′Σ−1)2] = E

(0)
I [tr(TDT′)2]

= E
(0)
I [tr(TDT′TDT′)]

= E
(0)
I [tr(T′TDT′TD)]

= E
(0)
I [tr(SDSD)]

= γ(2)[n2trD2 + ntrD2 + n(trD)2]

= γ(2)[(n2 + n)
p∑

i=1

d2
i + n(

p∑

i=1

di)2]. ¤
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Lemma 4.4 ([7]). Let S = HLH′, L = diag(l1, . . . , lp) and l1 > · · · >

lp. Also, consider the estimator Σ̂(Φ) = H diag(Φ1(L), . . . ,Φp(L))H′.

Then, under suitable conditions corresponding to those of Lemma 2.2.

in [7], we have

E
(0)
Σ

[
trΣ̂(Φ)Σ−1

]
= E

(1)
Σ

[
2

∑
i6=j

Φi(L)
li−lj

+ 2
∑

i
∂Φi(L)

∂li

+(n− p− 1)
∑

i
Φi(L)

li

]

= E
(1)
Σ

[
2

∑
i>j

Φi(L)−Φj(L)
li−lj

+ 2
∑

i
∂Φi(L)

∂li

+(n− p− 1)
∑

i
Φi(L)

li

]
. ¤

Lemma 4.5. Let S = HLH′, L = diag(l1, . . . , lp) and l1 > · · · >

lp. Moreover, let H be p × p, orthogonal matrix and also, consider the

estimator Σ̂SDS = HDLH′ and D = diag(d1, . . . , dp). In addition, let

HDH′ be a p × p matrix of constant, under the conditions of Lemma

2.2. in [7], we have

i)E(0)
Σ

[
tr(Σ̂SDSΣ−1)

]
= E

(1)
Σ


2

∑

i>j

di − dj

li − lj


 + pγ(1),

ii)E(0)
Σ

[
tr(Σ̂SDSΣ−1)2

]
= γ(2)

[
n2

p∑

i=1

d2
i + n(

p∑

i=1

di)2

+ntr(Σ−1HDH′ΣHDH′)
]
.

Proof. Under the given condition, using Lemma 4.4. with Φ(L) = DL.
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We can also see that

E
(0)
Σ [tr(HDLH′Σ−1] = E

(1)
Σ

[
2

∑
i>j

dili−dj lj
li−lj

+2
∑

i
∂dili
∂li

+ (n− p− 1)
∑

i
dili
li

]

= E
(1)
Σ

[
2

∑
i>j

dili−dj lj
li−lj

+2
∑p

i di + (n− p− 1)
∑p

i di] .

Additionally, by using

dili − djlj
li − lj

= dili−dj li+dj li+dj lj
li−lj

= di−dj

li−lj
li + dj ,

we arrive at

E
(0)
Σ [tr(HDLH′Σ−1)] = E

(1)
Σ [2

∑
i>j

di−dj

li−lj
li

+2
∑

i>j dj + (n− p + 1)
∑p

i di].

By using the equation

∑

i>j

dj =
p∑

i=1

i−1∑

j=1

dj =
p∑

j=1

p∑

i=j+1

dj =
p∑

j=1

(p− j)dj ,

we have

E
(0)
Σ [tr(HDLH′Σ−1)]

= E
(1)
Σ


2

∑

i>j

di − dj

li − lj
li +

∑

i

(n + p + 1− 2i)di




= E
(1)
Σ


2

∑

i>j

di − dj

li − lj
li + p




= E
(1)
Σ


2

∑

i>j

di − dj

li − lj
li


 + pγ(1),

which completes the proof.
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Proof. Using the equation S = HLH′andHH′ = Ip, we arrive at

tr(Σ̂SDSΣ−1)2 = tr(Σ̂SDSΣ−1Σ̂SDSΣ−1)

= tr(HDLH′Σ−1HDLH′Σ−1)

= tr(HDH′HLH′Σ−1HDH′HLH′Σ−1)

= tr(HDH′SΣ−1HDH′SΣ−1)

= tr(Σ−1HDH′SΣ−1HDH′S).

Now, using Lemma 4.1. with Q = Σ−1HDH′, we arrive at

E
(0)
Σ [tr(Σ̂SDSΣ−1)2] = E

(0)
Σ [tr(Σ−1HDH′SΣ−1HDH′S)]

= γ(2)[n2tr(Σ−1HDH′HDH′Σ) + ntr(Σ−1HDH′ΣHDH′)
+ntr(D) tr(Σ−1HDH′Σ)] = γ(2)[n2tr(HD2H′ΣΣ−1)
+ntr(Σ−1HDH′ΣHDH′) + ntr(D)tr(HDH′ΣΣ−1)]
= γ(2)[n2tr(D2H′H)
+ntr(Σ−1HDH′ΣHDH′) + ntr(D) tr(DH′H)]
= γ(2)[n2tr(D2) + ntr(Σ−1HDH′ΣHDH′) + ntr(D2)]
= γ(2)[n2

∑p
i d2

i + n(
∑p

i di)2 + ntr(Σ−1HDH′ΣHDH′)]. ¤

4.2. Proofs of the Results in Section 3

Proof of Theorem 3.1. The risk difference of the estimators Σ̂JS and

Σ̂UB relative to squared loss is written as

∆1 = R(Σ̂UB,Σ)−R(Σ̂JS ,Σ)

= E
(0)
Σ [tr(Σ̂UBΣ−1)2 − 2tr(Σ̂UBΣ−1)− tr(Σ̂JSΣ−1)2 + 2tr(Σ̂JSΣ−1)]

= E
(0)
I [tr(n−1S)2 − 2tr(n−1S)− tr(TDT′)2 + 2tr(TDT′)]

=
1
n2

E
(0)
I [trS2]− 2

n
E

(0)
I (trS)− E

(0)
I [tr(TDT′)2] + 2E(0)

I [tr(TDT′)].

From Lemmas 4.2. and 4.3., we have

∆1 = γ(2)[ p
n(n + p + 1)− (n2 + n)

∑p
i=1 d2

i − n(
∑p

i=1 di)2].
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To complete the proof, it is enough to show that

p

n
(n + p + 1)− (n2 + n)

p∑

i=1

d2
i − n(

p∑

i=1

di)2 > 0 .

From i 6 p 6 n + 1, i = 1, . . . , p, we have di 6 (n− p + 1)−1,
∑p

i=1 d2
i 6 p(n− p + 1)−2,

(
∑p

i=1 di)2 6 p2(n− p + 1)−2.

Therefore,
p
n(n + p + 1)− (n2 + n) ∑p

i=1 d2
i − n(

∑p
i=1 di)2 > p

n(n + p + 1)
−np(n− p + 1)−2(n + p + 1)
> p

n(n + p + 1)
[
1− ( n

n−p+1)2
]
.

The assumption p 6 1 or p = 1 completes the proof. ¤

Proof of Theorem 3.2. Using Lemmas 4.3. and 4.5., we can write

the risk difference of estimators Σ̂SDS and Σ̂JS as

∆2 = R(Σ̂SDS ,Σ)−R(Σ̂JS ,Σ)

= E
(0)
Σ [tr(Σ̂SDSΣ−1)2 − 2tr(Σ̂SDSΣ−1)− tr(Σ̂JSΣ−1)2

+ 2tr(Σ̂JSΣ−1)]

= γ(2)[n2
p∑

i=1

d2
i + n(

p∑

i=1

di)2 + ntr(Σ−1HDH′ΣHDH′)]

− 4E
(1)
Σ

[∑

i>j

di − dj

li − lj

]

− 2pγ(1)− γ(2)[(n2 + n)
p∑

i=1

d2
i + n(

p∑

i=1

di)2] + 2pγ(1)

= nγ(2)tr(Σ−1HDH′ΣHDH′)− 4E
(1)
Σ

[ ∑

i>j

di − dj

li − lj

]− nγ(2)
p∑

i=1

d2
i .
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For i > j, di > dj and li < lj , we infer that

−4E
(1)
Σ

[∑

i>j

di − dj

li − lj

]
> 0. (4)

Finally, from (3) and (4), we have ∆2 6 0, where the proof is complete. ¤
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