Journal of Mathematical Extension Vol. 3, No. 1 (2008), 71-86

An Application of Linear Algebra over Lattices

M. Hosseinyazdi

Payame Noor University(PNU)

Abstract. In this paper, first we consider L^n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L^n . After that, we proved many similar theorems in linear algebra for the space L^n . An application of linear algebra over lattices for solving linear systems, was given.

AMS Subject Classification: 06DXX; 15A03; 16D10; 06F05. **Keywords and Phrases:** Lattices, semimodule, linear algebra, linear system.

1. Introduction

Fuzzy linear systems of equations and inequalities over a bounded chain have been studied by many authors [6], [8], [7]. To extend this concept to *L*-fuzzy linear systems over a bounded distributive lattice *L*, we need some basic definitions of linear algebra over lattices such as linearly independent subset, a subsemimodule generated by a set and so on. For more details see [3], [2]. By defining subsemimodule generated by a set, we can find a theoretical necessary and sufficient condition for

⁷¹

consistency of the linear system of equations A * X = b over a bounded distributive lattice.

Definition 1.1. Let (H, *) be a commutative semigroup (monoid) with a reflexive and transitive order \leq on it. $(H, *, \leq)$ is called an ordered commutative semigroup (monoid) if

$$a \leqslant b \Longrightarrow a * c \leqslant b * c \quad \forall a, b, c \in H.$$

Definition 1.2. Let (H, *) be a commutative group (resp. semigroup, monoid) with a partial order \leq . $(H, *, \leq)$ is called a lattice-ordered commutative group (resp. semigroup, monoid), if

$$a \leqslant b \Longrightarrow a * c \leqslant b * c, \quad \forall a, b, c \in H.$$

For simplicity, we call it l-group (resp. I-semigroup, I-monoid).

Example 1.3. Every lattice (L, \leq) is a l-semigroup, by letting $* = \wedge$. Clearly a bounded lattice is a l-monoid in this way.

Definition 1.4. Let $Mat_{n \times m}(L)$ be the set of all $n \times m$ matrices over the lattice (L, \leq) . Define a partial order relation on $Mat_{n \times m}(L)$ as follows: $X \leq Y \Leftrightarrow x_{ij} \leq y_{ij}$; for all i = 1, 2, ..., n and j = 1, 2, ..., m, where $X, Y \in Mat_{n \times m}(L)$. One can see that $(Mat_{n \times m}(L), \leq)$ is a lattice where its supremum and infimum are defined componentwise on $Mat_{n \times m}(L)$ induced by the supremum and infimum of lattice L, respectively. **Definition 1.5** ([10]). Let (R, \oplus) be a commutative monoid with neutral element 0 and (R, \otimes) be a monoid with neutral element 1 where $0 \neq 1$. Then, (R, \oplus, \otimes) is called a semiring with unity 1 and zero 0, if for all $a, b, c \in R$, the following conditions hold:

- (a) $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$,
- (b) $(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a)$,
- (c) $0 = a \otimes 0 = 0 \otimes a$.

Example 1.6. Let *L* be a bounded distributive lattice. Then, (L, \lor, \land) and (L, \land, \lor) are semirings.

Definition 1.7 ([10]). $(R, \oplus, \otimes, \leqslant)$ is called an ordered semiring if

- (a) (R, \oplus, \otimes) is a semiring,
- (b) (R, \oplus, \leqslant) is an ordered commutative monoid,
- (c) for all $a, b, c, d \in R$,
 - (i) $a \leq b$ and $c \geq 0 \Longrightarrow a \otimes c \leq b \otimes c$ and $c \otimes a \leq c \otimes b$,
 - (ii) $a \leq b$ and $d \leq 0 \Longrightarrow a \otimes d \geq b \otimes d$ and $d \otimes a \geq d \otimes b$.

Definition 1.8 ([10]). Let $(H, *, \leq)$ be a commutative ordered monoid with neutral element e and let (R, \oplus, \otimes) be a semiring with unity 1 and zero θ .

Moreover, suppose that. : $R \times H \longrightarrow H$ is a scalar multiplication such that for all $\alpha, \beta \in R$ and for all $a, b \in H$:

(a) $(\alpha \otimes \beta).a = \alpha.(\beta.a),$

- (b) $(\alpha \oplus \beta).a = (\alpha.a) \oplus (\beta.a),$
- (c) $\alpha . (a * b) = (\alpha . a) * (\alpha . b),$
- (d) 0.a = e,
- (e) 1.a = a,

then, $(R, \oplus, \otimes, H, *, .)$ is called an ordered semimodule over R.

Remark 1.9. Let L be a bounded distributive lattice.

Then, $(L, \lor, \land, L, \lor, \land)$ and $(L, \land, \lor, L, \land, \lor)$ are semimodules over

 (L, \lor, \land) and (L, \land, \lor) , respectively.

Upward and downward sets, as important notions in optimization (see [4], [5]), are used in [9] as in the following definition.

Definition 1.10. Let (L, \leq) be a lattice.

(i) A subset $U \subseteq L$ is called upward set if $(a \in U, x \ge a) \Longrightarrow x \in U$.

(ii) A subset $D \subseteq L$ is called downward set if $(a \in D, x \leq a) \Longrightarrow x \in D$.

Example 1.11. Let (L, \leq) be a lattice and $a \in L$. Then $\{x \in L | x \ge a\}$ is an upward set and $\{x \in L | x \le a\}$ is a downward set.

We can easily prove the following proposition.

Proposition 1.12. Let (L, \leq) be a lattice and $M_i \subseteq L$ for $i \in I$. Then $\bigcup_{i \in I} M_i$ is an upward (resp. downward) set if each M_i ; $i \in I$ is upward (resp. downward) set.

2. Basis For Semimodules

In this section we need to extend some basic definition of linear algebra to concepts of lattices. In this case suppose L is a complete distributive lattice and consider L^n as $Mat_{n\times 1}(L)$, the set of all $n \times 1$ matrices over L. By Definition 1.4., L^n is a lattice. Clearly L^n is a distributive complete lattice if L is so. For every bounded distributive lattice L, (L, \lor, \land) is a semiring by Example 1.6. and hence (L^n, \land, \leqslant) is a latticeordered commutative monoid, by Example 1.3. So we can construct a semimodule as follows.

Theorem 2.1. Let L be a distributive complete lattice. Then (L^n, \lor, \leqslant) is a semimodule over (L, \lor, \land) .

Proof. Let L be a bounded distributive lattice. Then (L^n, \lor, \leqslant) is a semimodule over (L, \lor, \land) with scalar multiplication $\bar{\land}$ defined by $\bar{\land} : L \times L^n \longrightarrow L^n$ such that

$$\alpha \bar{\wedge} \begin{pmatrix} a_1 \\ a_2 \\ \cdot \\ \cdot \\ \cdot \\ a_n \end{pmatrix} = \begin{pmatrix} \alpha \wedge a_1 \\ \alpha \wedge a_2 \\ \cdot \\ \cdot \\ \cdot \\ \alpha \wedge a_n \end{pmatrix},$$

which for simplification, we write it as \wedge .

In this way (L^n, \lor, \leqslant) satisfies all conditions of Definition 1.8. Note that

the identity element of (L^n, \vee) is a column matrix which all of its entry are equal to 0. \Box

Definition 2.2. Let $(H, *, \leq)$ be a semimodule over semiring (R, \oplus, \otimes) and K be a subset of H such that $(K, *, \leq)$ is a monoid. Then $(K, *, \leq)$ is called a subsemimodule of $(H, *, \leq)$ if it is a semimodule over (R, \oplus, \otimes) and it is denoted by $K \leq_m H$.

The following theorem can be proved easily.

Theorem 2.3. Let $(H, *, \leq)$ be a semimodule over semiring (R, \oplus, \otimes) and K be a subset of H. Then $K \leq_m H$ if and only if

(i) $e \in K$

(ii) $x * y \in K$ for all $x, y \in K$,

(iii) $a.x \in K$ for all $a \in R$, and $x \in K$.

Corollary 2.4. Let L be a distributive complete lattice and K be a sublattice of L which contains 0. Then (K^n, \lor, \leqslant) is a semimodule over (L, \lor, \land) if and only if for every elements $x \in L$ and $y \in K$, we have $x \land y \in K$.

Example 2.5. Let $L = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ and $x \leq y$ if x divides y. Consider the sublattice $K = \{1, 2, 3, 6\}$. Then, L and K satisfy on Corollary 2.4. Hence (K^n, \lor, \leqslant) is a semimodule over (L, \lor, \land) .

Definition 2.6. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) and X be

 $a \ subset \ of \ H.$

(i) The subsemimodule hull of (or subsemimodule generated by) X is the intersection of all subsemimodules of H which contains X and denoted by < X >. Hence

$$\langle X \rangle = \bigcap_{X \subseteq K \leqslant H} K.$$

In the other words, $\langle X \rangle$ is the smallest subsemimodule of H which contains X.

(ii) The upward hull of (or upward set generated by) X is defined as the intersection of all upward subsets of H which contains X and is denoted by $\langle X^* \rangle$. So, $\langle X^* \rangle = \bigcap \{K : X \subseteq K \text{ and } K \text{ is an upward subset of } H \}$. In the other words, $\langle X^* \rangle$ is the smallest upward subset of H which contains X.

(iii) The downward hull of (or downward set generated by) X is defined as the intersection of all downward subsets of H which contains X and is denoted by $\langle X_* \rangle$. So, $\langle X_* \rangle = \bigcap \{K : X \subseteq K \text{ and } K \text{ is} a \text{ downward subset of } H \}$. In the other words, $\langle X_* \rangle$ is the smallest downward subset of H which contains X.

Lemma 2.7. Let (H, *, ≤) be a semimodule over (R, ⊕, ⊗) and x ∈ H.
Then,
(i) < {x}* >= {a ∈ H : a ≥ x}, and
(ii) < {x}* >= {a ∈ H : a ≤ x}.

www.SID.ir

Definition 2.8. Let $(H, *, \leq)$ be a semimodule over semiring (R, \oplus, \otimes) with scalar multiplication "." and X be a subset of H. By a linear combination of elements $x_1, ..., x_m \in X$, we mean $(a_1.x_1) * ... * (a_m.x_m)$ where $a_1, ..., a_m \in R$ and m is a positive integer.

Theorem 2.9. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) and X be a subset of H.

(i) Consider M = {(a₁.x₁)*...*(a_m.x_m)|x₁,..., x_m ∈ X, a₁,..., a_m ∈ R and m is a positive integer }; as the set of all finite linear combinations of elements of X. Then, < X >= M.
(ii) < X* >= ⋃_{x∈X} < {x}* >.
(iii) < X* >= ⋃_{x∈X} < {x}* >.

Proof. The proofs of (i)-(iii) follow from Lemma 2.7. Definition 2.8. and Proposition 1.12. □

Example 2.10. Let L = [0, 10]; the bounded chain of real numbers between 0 and 10. Consider semimodule (L^2, \lor, \land) over (L, \lor, \land) , where \leq is usual partial order on L. For $X_1 = \{(2,3)^T, (5,1)^T\}$ the subsemimodule generated by X_1 is shown in Fig. 1.

The downward hull of X_1 is shown in Fig. 3.

Fig. 3. Downward hull of X_1

Now consider $X_2 = \{(2,4)^T, (5,9)^T\}$. The subsemimodule hull of X_2 is shown in Fig. 4.

The subsemimodule $\langle X_3 \rangle$, where $X_3 = \{(3,1)^T, (5,2)^T, (2,4)^T\},\$

80

is as follows:

Fig. 5. Subsemimodule hull of X_3

Definition 2.11. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) with zero 0. A subset X of H is called linearly independent if for all finite subset $\{x_1, \ldots, x_m\} \subseteq X$, and elements $a_1, \ldots, a_m \in R$; $(a_1.x_1)*\ldots*(a_m.x_m) =$ $e \text{ imply } a_1 = \ldots = a_m = 0.$

If the subset X is not linearly independent, it is called linearly dependent.

Example 2.12. Let $L = \{1, 2, 3, 6\}$ and $x \leq y$ means that x divides y. Clearly (L, \lor, \leqslant) is a semimodule over (L, \lor, \land) with zero 1. Since $2 \land 3 = 1$, the set $\{3\}$ is not linearly independent.

Remark 2.13. By the previous example, it is not true that if $x \neq 0$ then $\{x\}$ is linearly independent. But if L is a chain, then for every

M. HOSSEINYAZDI

non-zero element x, the set $\{x\}$ is linearly independent.

Definition 2.14. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) . A linearly independent subset B of H is called a basis for H over R, if $\langle B \rangle = H$.

Example 2.15. Let L be as in Example 2.5. (see Fig. 6).

In this lattice the following subsets of L are linearly independent:

$$K_{1} = \{6\}, \quad K_{2} = \{6, 12\}, \quad K_{3} = \{12, 18\}$$

$$K_{4} = \{6, 12, 36\}, \quad K_{5} = \{6, 12, 18, 36\}$$
But the following subsets are linearly dependent:

$$K_{6} = \{9\}, \quad K_{7} = \{2, 3\}, \quad K_{8} = \{4, 9\}, \quad K_{9} = \{6, 9\}$$
Some sublattices generated by above subsets of *L* are as follows:

$$< K_{9} >= \{1, 2, 3, 6, 9, 18\}, \quad < K_{3} >= < K_{4} >= < K_{5} >= < K_{8} >= L,$$

$$< K_{6} >= \{1, 3, 9\}$$
Clearly K_{3}, K_{4} and K_{5} are bases of *L*. Also

$$< (K_{9})_{*} >= \{1, 2, 3, 6, 9\}, < K_{9}^{*} >= \{6, 9, 12, 18, 36\}$$

$$< (K_{5})_{*} >= L, < K_{5}^{*} >= K_{5}.$$

$$36$$

82

Fig. 6. The relationship between elements of L

Remark 2.16. (i) Note that although $\langle K_8 \rangle = L$, but K_8 contains no linearly independent subset.

(ii) For the basis K_3 we have $6 = (6 \land 12) \lor (6 \land 18) = (2 \land 12) \lor (3 \land 18) =$

 $(3 \land 12) \lor (2 \land 18)$. Therefore, representation of any elements of L in terms of a linear combination of elements of a basis is not unique.

Example 2.17. Suppose (L, \leq) be a bounded distributive lattice. Clearly, $\{1\}$ is a basis for (L, \wedge, \leq) over (L, \wedge, \vee) . Note that in semimodule (L^2, \wedge, \leq) , the set $\{(1, 1)^T\}$ is linearly independent but $<\{(1, 1)^T\} > \neq L^2$.

3. Consistency of A * X = b.

In this section we consider semimodule $(H, *, \leq)$ over semiring (R, \oplus, \otimes) . By a linear system of equations A * X = b over R we mean the following equations:

$$\begin{cases}
(a_{11}.x_1) * (a_{12}.x_2) * \dots * (a_{1n}.x_n) = b_1 \\
(a_{21}.x_1) * (a_{22}.x_2) * \dots * (a_{2n}.x_n) = b_2 \\
& \ddots \\
& \ddots \\
(a_{m1}.x_1) * (a_{m2}.x_2) * \dots * (a_{mn}.x_n) = b_m
\end{cases}$$
(*)

where $a_{ij} \in R$ and $x_i, b_j \in H$ for all $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$.

M. HOSSEINYAZDI

Theorem 3.1. Let L be a bounded distributive lattice. Consider (L^n, \lor, \leqslant) as a semimodule over semiring (L, \lor, \land) with scalar multiplication " \land ". Let A, X and b are $m \times n$, $n \times 1$ and $m \times 1$ matrices over L, respectively. The linear system $A \lor X = b$ has a solution if and only if b belongs to the subsemimodule generated by columns of A.

Proof. If we show the columns of A by $A_1, A_2, ..., A_n$; then the linear system $A \lor X = b$ can shown by

$$(x_1 \wedge A_1) \lor (x_2 \wedge A_2) \lor \ldots \lor (x_n \wedge A_n) = b$$

and clearly the linear system has a solution if and only if $b \in < \{A_1, \dots, A_n\} >$ by Theorem 2.9. \Box

Example 3.2. Let L, K_9 and K_8 be as in Example 2.15. consider the linear equation

$$(6 \wedge x_1) \lor (9 \wedge x_2) = 3 \tag{1}$$

Then the set of all solutions of (1) is

$$\{ (1,3)^T, (1,6)^T, (1,12)^T, (3,1)^T, (3,3)^T, (3,6)^T, (3,12)^T, (3,2)^T, (3,4)^T, (9,1)^T, (9,3)^T, (9,6)^T, (9,12)^T, (9,2)^T, (9,4)^T \}.$$

Linear equation (1) has solution since $3 \in \langle K_9 \rangle$; the subsemimodule generated by $\{6,9\}$. But if we change right hand side of (1) to 12 we have:

$$(6 \wedge x_1) \vee (9 \wedge x_2) = 12 \tag{2}$$

Clearly (2) doesn't have any solution since $12 \notin K_9$. Now consider

$$(4 \wedge x_1) \vee (9 \wedge x_2) = b \tag{3}$$

Since $\langle \{4, 9\} \rangle = \langle K_8 \rangle = L$, so (3) has solution for all $b \in L$.

Remark 3.3. Note that Theorem 3.1. gives a theoretical necessary and sufficient condition for consistency of (*). A computational necessary and sufficient condition for consistency of (*) over a bounded chain was given in [6]. Finding such a condition(s) over a bounded distributive lattice is still an open problem.

References

- G. Gratzer, General lattice theory, Academic Press, New York San Francisco, 1978.
- [2] M. Hosseinyazdi, The optimization problem over a distributive lattice, Journal of Global Optimization, 41 (2008), 283-298.
- [3] M. Hosseinyazdi, A. Hassankhani and M. Mashinchi, Linear systems and optimization over lattices, *Intrnational Review of Fuzzy Mathematics*, 2 (1)(2007), 27-50.
- [4] H. Mohebi, Downward sets and their best simultaneous approximation properties with applications, *Numer. Funct. Anal.* Optim., 25 (7-8) (2004), 685-705.
- [5] H. Mohebi and A. Rabinov, Best approximation by downward sets with applications, Anal. Theory Appl, 22 (1) (2006), 1-22.
- [6] K. Peeva, Fuzzy linear systems, Fuzzy Set and Systems, 49 (1992), 339-355.

M. HOSSEINYAZDI

- [7] K. Peeva, Universal algorithm for solving fuzzy relational equations, *Ital. J. Pure Appl. Math.* 19 (2006), 9-20.
- [8] K. Peeva and Y. Kyosev, Fuzzy relational calculus, Advances in fuzzy systems-aplications and theory, Vol. 22, World scientific publishing Co. Pte. Ltd, Singapore, 2004.
- [9] I. Singer, Abstract convex analysis, John Wiley & Sons, INC. New York, 1997.
- [10] U. Zimmermann, Linear and combinatorial optimization in ordered algebraic structures, North-Holland Publishing Company, Amesterdam, 1981.

Mahboobeh Hosseinyazdi Department of Mathematics Payame Noor University(PNU) Shiraz, Iran E-mail: myazdi@spnu.ac.ir

86