Journal of Mathematical Extension Vol. 3, No. 1 (2008), 71-86

An Application of Linear Algebra over Lattices

M. Hosseinyazdi

Payame Noor University(PNU)

Abstract. In this paper, first we consider L^n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for $Lⁿ$. After that, we proved many similar theorems in linear algebra for the space L^n . An application of linear algebra over lattices for solving linear systems, was given.

AMS Subject Classification: 06DXX; 15A03; 16D10; 06F05. Keywords and Phrases: Lattices, semimodule, linear algebra, linear system.

1. Introduction

Abstract. In this paper, first we consider L^n as a semimodule
over a complete bounded distributive lattice L^r . Then we define
the basic concepts of module theory for L^n . After that, we proved
many similar theorem Fuzzy linear systems of equations and inequalities over a bounded chain have been studied by many authors [6], [8], [7]. To extend this concept to L -fuzzy linear systems over a bounded distributive lattice L , we need some basic definitions of linear algebra over lattices such as linearly independent subset, a subsemimodule generated by a set and so on. For more details see [3], [2]. By defining subsemimodule generated by a set, we can find a theoretical necessary and sufficient condition for

⁷¹

consistency of the linear system of equations $A * X = b$ over a bounded distributive lattice.

Definition 1.1. Let $(H, *)$ be a commutative semigroup (monoid) with a reflexive and transitive order \leq on it. $(H, *, \leq)$ is called an ordered commutative semigroup (monoid) if

$$
a \leq b \Longrightarrow a \ast c \leq b \ast c \quad \forall a, b, c \in H.
$$

Definition 1.2. Let $(H, *)$ be a commutative group (resp. semigroup, monoid) with a partial order \leq . $(H, *, \leq)$ is called a lattice-ordered commutative group (resp. semigroup, monoid), if

$$
a\leqslant b\Longrightarrow a\ast c\leqslant b\ast c,\quad \forall a,b,c\in H.
$$

For simplicity, we call it l-group (resp. l-semigroup, l-monoid).

Example 1.3. Every lattice (L, \leqslant) is a l-semigroup, by letting $* = \wedge$. Clearly a bounded lattice is a l-monoid in this way.

A $\leq b \Rightarrow a * c \leq b * c$ $\forall a, b, c \in H$.
 Definition 1.2. Let $(H, *)$ be a commutative group (resp. semigroup
 monoid) with a partial order \leq . $(H, * , \leq)$ is called a lattice-ordered com
 mutative group (resp. semigroup, **Definition 1.4.** Let $Mat_{n\times m}(L)$ be the set of all $n\times m$ matrices over the lattice (L, \leq) . Define a partial order relation on $Mat_{n \times m}(L)$ as follows: $X \leq Y \Leftrightarrow x_{ij} \leq y_{ij};$ for all $i = 1, 2, ..., n$ and $j = 1, 2, ..., m$, where $X, Y \in Mat_{n \times m}(L)$. One can see that $(Mat_{n \times m}(L), \leqslant)$ is a lattice where its supremum and infimum are defined componentwise on

 $Mat_{n\times m}(L)$ induced by the supremum and infimum of lattice L, respectively.

Definition 1.5 ([10]). Let (R, \oplus) be a commutative monoid with neutral element 0 and (R, \otimes) be a monoid with neutral element 1 where $0 \neq 1$. Then, (R, \oplus, \otimes) is called a semiring with unity 1 and zero 0, if for all $a, b, c \in R$, the following conditions hold:

- (a) $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c),$
- (b) $(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a),$
- (c) $0 = a \otimes 0 = 0 \otimes a$.

Example 1.6. Let L be a bounded distributive lattice. Then, (L, \vee, \wedge) and (L, \wedge, \vee) are semirings.

Definition 1.7 ([10]). $(R, \oplus, \otimes, \leq)$ is called an ordered semiring if

- (a) (R, \oplus, \otimes) is a semiring,
- (b) (R, \oplus, \leq) is an ordered commutative monoid,
- (c) for all $a, b, c, d \in R$,
	- (i) $a \leq b$ and $c \geq 0 \Longrightarrow a \otimes c \leq b \otimes c$ and $c \otimes a \leq c \otimes b$,
	- (ii) $a \leqslant b$ and $d \leqslant 0 \Longrightarrow a \otimes d \geqslant b \otimes d$ and $d \otimes a \geqslant d \otimes b$.

Archive is $\alpha \otimes 0 = 0 \otimes a$ *.*
 Example 1.6. Let *L* be a bounded distributive lattice. Then, $(L, \vee, \wedge$

and (L, \wedge, \vee) are semirings.
 Definition 1.7 ([10]). $(R, \oplus, \otimes, \leq)$ is called an ordered semiring if

(a) **Definition 1.8** ([10]). Let $(H, *, \leq)$ be a commutative ordered monoid with neutral element e and let (R, \oplus, \otimes) be a semiring with unity 1 and zero 0.

Moreover, suppose that. : $R \times H \longrightarrow H$ is a scalar multiplication such that for all $\alpha, \beta \in R$ and for all $a, b \in H$:

(a) $(\alpha \otimes \beta).a = \alpha.(\beta.a),$

- (b) $(\alpha \oplus \beta).a = (\alpha.a) \oplus (\beta.a),$
- (c) $\alpha.(a * b) = (\alpha.a)*(\alpha.b),$
- (d) $0.a = e$,
- (e) $1.a = a$,

then, $(R, \oplus, \otimes, H, \ast, \cdot)$ is called an ordered semimodule over R.

Remark 1.9. Let L be a bounded distributive lattice.

Then, $(L, \vee, \wedge, L, \vee, \wedge)$ and $(L, \wedge, \vee, L, \wedge, \vee)$ are semimodules over

 (L, \vee, \wedge) and (L, \wedge, \vee) , respectively.

Upward and downward sets, as important notions in optimization (see $[4]$, $[5]$), are used in $[9]$ as in the following definition.

Definition 1.10. Let (L, \leqslant) be a lattice.

(i) A subset $U \subseteq L$ is called upward set if $(a \in U, x \geq a) \Longrightarrow x \in U$.

(ii) A subset $D \subseteq L$ is called downward set if $(a \in D, x \leq a) \Longrightarrow x \in D$.

Remark 1.9. Let L be a bounded distributive lattice.
 Then, $(L, \vee, \wedge, L, \vee, \wedge)$ and $(L, \wedge, \vee, L, \wedge, \vee)$ are semimodules over
 (L, \vee, \wedge) and (L, \wedge, \vee) , respectively.
 Upward and downward sets, as important **Example 1.11.** Let (L, \leqslant) be a lattice and $a \in L$. Then $\{x \in L | x \geqslant a\}$ is an upward set and $\{x \in L | x \leq a\}$ is a downward set.

We can easily prove the following proposition.

Proposition 1.12. Let (L, \leq) be a lattice and $M_i \subseteq L$ for $i \in I$. Then S $_{i\in I}$ M_i is an upward (resp. downward) set if each $M_i;~i\in I$ is upward (resp. downward) set.

2. Basis For Semimodules

 $(L, \vee, \wedge) \text{ is a semiring by Example 1.6. and hence } (L^n, \wedge_i \leqslant) \text{ is a lattice}$
 $(L, \vee, \wedge) \text{ is a semiring by Example 1.6. and hence } (L^n, \wedge_i \leqslant) \text{ is a lattice}$
 $\begin{aligned} \text{ordered commutative monoid, by Example 1.3. So we can construct}\text{ semimodule as follows.}\\ \text{Theorem 2.1. } Let \ L \ be \ a \ distributive \ complete \ lattice. \ \ \text{Then} \ (L^n, \vee, \leqslant) \\ \text{is a semimodule over } (L, \vee, \wedge). \end{aligned}$ In this section we need to extend some basic definition of linear algebra to concepts of lattices. In this case suppose L is a complete distributive lattice and consider L^n as $Mat_{n\times 1}(L)$, the set of all $n \times 1$ matrices over L. By Definition 1.4., L^n is a lattice. Clearly L^n is a distributive complete lattice if L is so. For every bounded distributive lattice L , (L, \vee, \wedge) is a semiring by Example 1.6. and hence (L^n, \wedge, \leq) is a latticeordered commutative monoid, by Example 1.3. So we can construct a semimodule as follows.

Theorem 2.1. Let L be a distributive complete lattice. Then (L^n, \vee, \leq) is a semimodule over (L, \vee, \wedge) .

Proof. Let L be a bounded distributive lattice. Then (L^n, \vee, \leq) is a semimodule over (L, \vee, \wedge) with scalar multiplication $\bar{\wedge}$ defined by $\overline{\wedge}: L \times L^n \longrightarrow L^n$ such that

$$
\alpha \overline{\lambda} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \alpha \wedge a_1 \\ \alpha \wedge a_2 \\ \vdots \\ \alpha \wedge a_n \end{pmatrix},
$$

which for simplification, we write it as \wedge .

In this way (L^n, \vee, \leq) satisfies all conditions of Definition 1.8. Note that

the identity element of (L^n, \vee) is a column matrix which all of its entry are equal to 0. \Box

Definition 2.2. Let $(H, *, \leq)$ be a semimodule over semiring (R, \oplus, \otimes) and K be a subset of H such that $(K, *, \leq)$ is a monoid. Then $(K, *, \leq)$ is called a subsemimodule of $(H, *, \leqslant)$ if it is a semimodule over (R, \oplus, \otimes) and it is denoted by $K \leqslant_m H$.

The following theorem can be proved easily.

Theorem 2.3. Let $(H, *, \leq)$ be a semimodule over semiring (R, \oplus, \otimes) and K be a subset of H. Then $K \leqslant_m H$ if and only if

(i) $e \in K$

(ii) $x * y \in K$ for all $x, y \in K$,

(iii) $a.x \in K$ for all $a \in R$, and $x \in$

And it is denoted by $K \leqslant_m H$.

The following theorem can be proved easily.
 Theorem 2.3. Let $(H, *_{\leqslant} \cup b e a$ semimodule over semiring $(R, \oplus, \otimes$

and K be a subset of H . Then $K \leqslant_m H$ if and only if

(i) Corollary 2.4. Let L be a distributive complete lattice and K be a sublattice of L which contains 0. Then (K^n, \vee, \leq) is a semimodule over (L, \vee, \wedge) if and only if for every elements $x \in L$ and $y \in K$, we have $x \wedge y \in K$.

Example 2.5. Let $L = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ and $x \leq y$ if x divides y. Consider the sublattice $K = \{1, 2, 3, 6\}$. Then, L and K satisfy on Corollary 2.4. Hence (K^n, \vee, \leq) is a semimodule over (L, \vee, \wedge) .

Definition 2.6. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) and X be

a subset of H.

(i) The subsemimodule hull of $($ or subsemimodule generated by) X is the intersection of all subsemimodules of H which contains X and denoted $by < X >.$ Hence

$$
\langle X \rangle = \bigcap_{X \subseteq K \le H} K.
$$

In the other words, $\langle X \rangle$ is the smallest subsemimodule of H which contains X.

Archive the state words, $\langle X \rangle$ *x* is the smallest subsemimodule of H whic contains X .

(ii) The upward hull of (or upward set generated by) X is defined as the intersection of all upward subsets of H which co (ii) The upward hull of (or upward set generated by) X is defined as the intersection of all upward subsets of H which contains X and is denoted $by < X^* > S_0, < X^* > = \bigcap$ ${K : X \subseteq K \text{ and } K \text{ is an upward subset}}$ of H}. In the other words, $\langle X^* \rangle$ is the smallest upward subset of H which contains X.

(iii) The downward hull of (or downward set generated by) X is defined as the intersection of all downward subsets of H which contains X and is denoted by $\langle X_* \rangle$. So, $\langle X_* \rangle =$ \overline{a} ${K : X \subseteq K \text{ and } K \text{ is}}$ a downward subset of H}. In the other words, $X_* > i$ s the smallest downward subset of H which contains X .

Lemma 2.7. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) and $x \in H$. Then, $(i) < \{x\}^* > = \{a \in H : a \geq x\}, \text{ and}$ (ii) $\langle x \, x \rangle_* \rangle = \{ a \in H : a \leq x \}.$

Definition 2.8. Let $(H, *, \leq)$ be a semimodule over semiring (R, \oplus, \otimes) with scalar multiplication $".'$ and X be a subset of H . By a linear combination of elements $x_1, ..., x_m \in X$, we mean $(a_1.x_1) * ... * (a_m.x_m)$ where $a_1, ..., a_m \in R$ and m is a positive integer.

Theorem 2.9. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) and X be a subset of H.

a subset of H.

(i) Consider $M = \{(a_1.x_1) * ... * (a_m.x_m)|x_1, ..., x_m \in X, a_1, ..., a_m \in I\}$

and *m* is a positive integer }; as the set of all finite linear combination

of elements of *X*. Then, < *X* > = *M*.

(ii) < X^* > = \bigcup_{x (i) Consider $M = \{(a_1.x_1) * ... * (a_m.x_m)|x_1,...,x_m \in X, a_1,..., a_m \in R\}$ and m is a positive integer $\}$; as the set of all finite linear combinations of elements of X. Then, $\langle X \rangle = M$. $(ii) < X^* > = \bigcup$ $x \in X \leq \{x\}^*$ >. $(iii) < X_* > =$ S $x \in X \leq \{x\}_*$ >.

Proof. The proofs of (i)-(iii) follow from Lemma 2.7. Definition 2.8. and Proposition 1.12. \Box

Example 2.10. Let $L = [0, 10]$; the bounded chain of real numbers between 0 and 10. Consider semimodule (L^2, \vee, \wedge) over (L, \vee, \wedge) , where \leq is usual partial order on L. For $X_1 = \{(2,3)^T, (5,1)^T\}$ the subsemimodule generated by X_1 is shown in Fig. 1.

The downward hull of X_1 is shown in Fig. 3.

Fig. 3. Downward hull of X_1

Now consider $X_2 = \{(2,4)^T, (5,9)^T\}$. The subsemimodule hull of X_2 is shown in Fig. 4.

The subsemimodule $\langle X_3 \rangle$, where $X_3 = \{(3,1)^T, (5,2)^T, (2,4)^T\}$,

is as follows:

Fig. 5. Subsemimodule hull of X_3

Archive of Since 12.13. (5,2)
 Archive of Since 12.13. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) with zer
 Definition 2.11. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) with zer

0. A subset X of H is calle **Definition 2.11.** Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) with zero 0. A subset X of H is called linearly independent if for all finite subset ${x_1, \ldots, x_m} \subseteq X$, and elements $a_1, \ldots, a_m \in R$; $(a_1.x_1) * \ldots * (a_m.x_m) =$ $e \implies a_1 = \ldots = a_m = 0.$

If the subset X is not linearly independent, it is called linearly dependent.

Example 2.12. Let $L = \{1, 2, 3, 6\}$ and $x \leq y$ means that x divides y. Clearly (L, \vee, \leq) is a semimodule over (L, \vee, \wedge) with zero 1. Since $2 \wedge 3 = 1$, the set $\{3\}$ is not linearly independent.

Remark 2.13. By the previous example, it is not true that if $x \neq 0$ then $\{x\}$ is linearly independent. But if L is a chain, then for every

82 M. HOSSEINYAZDI

non-zero element x, the set $\{x\}$ is linearly independent.

Definition 2.14. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) . A linearly independent subset B of H is called a basis for H over R, if $\langle B \rangle = H$.

Example 2.15. Let L be as in Example 2.5. (see Fig. 6).

In this lattice the following subsets of L are linearly independent:

In this lattice the following subsets of *L* are linearly independent:
\n
$$
K_1 = \{6\}, K_2 = \{6, 12\}, K_3 = \{12, 18\}
$$

\n $K_4 = \{6, 12, 36\}, K_5 = \{6, 12, 18, 36\}$
\nBut the following subsets are linearly dependent:
\n $K_6 = \{9\}, K_7 = \{2, 3\}, K_8 = \{4, 9\}, K_9 = \{6, 9\}$
\nSome sublattices generated by above subsets of *L* are as follows:
\n $< K_9 > = \{1, 2, 3, 6, 9, 18\}, < K_3 > = < K_4 > = < K_5 > = < K_8 > = L$,
\n $< K_6 > = \{1, 3, 9\}$
\nClearly K_3, K_4 and K_5 are bases of *L*. Also
\n $< (K_9)_* > = \{1, 2, 3, 6, 9\}, < K_9^* > = \{6, 9, 12, 18, 36\}$
\n $< (K_5)_* > = L, < K_5^* > = K_5$.
\n 36
\n 12
\n 18
\n 4
\n 6
\n9

Fig. 6. The relationship between elements of L

Remark 2.16. (i) Note that although $K_8 \geq L$, but K_8 contains no linearly independent subset.

(ii) For the basis K₃ we have $6 = (6 \wedge 12) \vee (6 \wedge 18) = (2 \wedge 12) \vee (3 \wedge 18) =$

 $(3 \wedge 12) \vee (2 \wedge 18)$. Therefore, representation of any elements of L in terms of a linear combination of elements of a basis is not unique.

Archive of a linear combination of elements of a basis is not unique
 Example 2.17. Suppose (L, \leq) be a bounded distributive lattice

Clearly, $\{1\}$ is a basis for (L, \wedge, \leq) over (L, \wedge, \vee) . Note that in semi **Example 2.17.** Suppose (L, \leqslant) be a bounded distributive lattice. Clearly, $\{1\}$ is a basis for (L, \wedge, \leq) over (L, \wedge, \vee) . Note that in semimodule $(L^2, \wedge, \leq),$ the set $\{(1, 1)^T\}$ is linearly independent but $\langle \{(1, 1)^T\}\rangle \neq$ L^2 .

3. Consistency of $A * X = b$.

In this section we consider semimodule $(H, *, \leq)$ over semiring (R, \oplus, \otimes) . By a linear system of equations $A*X = b$ over R we mean the following equations:

$$
\begin{cases}\n(a_{11}.x_1) * (a_{12}.x_2) * ... * (a_{1n}.x_n) = b_1 \\
(a_{21}.x_1) * (a_{22}.x_2) * ... * (a_{2n}.x_n) = b_2 \\
\vdots \\
(a_{m1}.x_1) * (a_{m2}.x_2) * ... * (a_{mn}.x_n) = b_m\n\end{cases}
$$
\n(*)

where $a_{ij} \in R$ and $x_i, b_j \in H$ for all $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$.

84 M. HOSSEINYAZDI

Theorem 3.1. Let L be a bounded distributive lattice. Consider (L^n, \vee, \leq) as a semimodule over semiring (L, \vee, \wedge) with scalar multiplication " \wedge ". Let A, X and b are $m \times n$, $n \times 1$ and $m \times 1$ matrices over L, respectively. The linear system $A \vee X = b$ has a solution if and only if b belongs to the subsemimodule generated by columns of A.

Proof. If we show the columns of A by $A_1, A_2, ..., A_n$; then the linear system $A \vee X = b$ can shown by

$$
(x_1 \wedge A_1) \vee (x_2 \wedge A_2) \vee \dots \vee (x_n \wedge A_n) = b
$$

and clearly the linear system has a solution if and only if $b \in \lt \{A_1, \ldots, A_n\}$ > by Theorem 2.9. \Box

Example 3.2. Let L , K_9 and K_8 be as in Example 2.15. consider the linear equation

$$
(6 \wedge x_1) \vee (9 \wedge x_2) = 3 \tag{1}
$$

Then the set of all solutions of (1) is

$$
{ (1,3)T, (1,6)T, (1,12)T, (3,1)T, (3,3)T, (3,6)T, (3,12)T, (3,2)T, (3,4)T, (9,1)T, (9,3)T, (9,6)T, (9,12)T, (9,2)T, (9,4)T }.
$$

Proof. If we show the columns of *A* by $A_1, A_2, ..., A_n$; then the linear system $A \vee X = b$ can shown by
 $(x_1 \wedge A_1) \vee (x_2 \wedge A_2) \vee ... \vee (x_n \wedge A_n) = b$

and clearly the linear system has a solution if and only if
 $b \in \leq \{A$ Linear equation (1) has solution since $3 \leq K_9 >$; the subsemimodule generated by $\{6, 9\}$. But if we change right hand side of (1) to 12 we have:

$$
(6 \wedge x_1) \vee (9 \wedge x_2) = 12 \tag{2}
$$

Clearly (2) doesn't have any solution since $12 \notin K_9$. Now consider

$$
(4 \wedge x_1) \vee (9 \wedge x_2) = b \tag{3}
$$

Since $\langle \{4,9\} \rangle = \langle K_8 \rangle = L$, so (3) has solution for all $b \in L$.

Archiveson of the sufficient condition for consistency of (*). A computational necessar and sufficient condition for consistency of (*) over a bounded chain was given in [6]. Finding such a condition(s) over a bounded di Remark 3.3. Note that Theorem 3.1. gives a theoretical necessary and sufficient condition for consistency of $(*)$. A computational necessary and sufficient condition for consistency of $(*)$ over a bounded chain was given in $[6]$. Finding such a condition(s) over a bounded distributive lattice is still an open problem.

References

- [1] G. Gratzer, General lattice theory, Academic Press, New York San Francisco, 1978.
- [2] M. Hosseinyazdi, The optimization problem over a distributive lattice, Journal of Global Optimization, 41 (2008), 283-298.
- [3] M. Hosseinyazdi, A. Hassankhani and M. Mashinchi, Linear systems and optimization over lattices, Intrnational Review of Fuzzy Mathematics, 2 $(1)(2007), 27-50.$
- [4] H. Mohebi, Downward sets and their best simultaneous approximation properties with applications, Numer. Funct. Anal. Optim., 25 (7-8) (2004), 685-705.
- [5] H. Mohebi and A. Rabinov, Best approximation by downward sets with applications, Anal. Theory Appl, 22 (1) (2006), 1-22.
- [6] K. Peeva, Fuzzy linear systems, Fuzzy Set and Systems, 49 (1992), 339- 355.

86 M. HOSSEINYAZDI

- [7] K. Peeva, Universal algorithm for solving fuzzy relational equations, Ital. J. Pure Appl. Math. 19 (2006), 9-20.
- [8] K. Peeva and Y. Kyosev, Fuzzy relational calculus, Advances in fuzzy systems-aplications and theory, Vol. 22, World scientific publishing Co. Pte. Ltd, Singapore, 2004.
- [9] I. Singer, Abstract convex analysis, John Wiley & Sons, INC. New York, 1997.
- [10] U. Zimmermann, Linear and combinatorial optimization in ordered algebraic structures, North-Holland Publishing Company, Amesterdam, 1981.

Archive of SID Mahboobeh Hosseinyazdi Department of Mathematics Payame Noor University(PNU) Shiraz, Iran E-mail: myazdi@spnu.ac.ir