Journal of Mathematical Extension Vol. 3, No. 1 (2008), 95-105

P-Dense Submodules

H. Khabazian and S. Safaeeyan Isfahan University of Technology

Abstract. Let *M* and *P* be right *R*-modules. A submodule *K* of
an *R*-module *M* is called *P*-dense if for each $m \in M$, $(K : m)$ is
a *P*-faithful right ideal of *R*. P_R is nonsingular if and only if, for
each *R*-Abstract. Let M and P be right R -modules. A submodule K of an R−module M is called P−dense if for each $m \in M$, $(K : m)$ is a P-faithful right ideal of R. P_R is nonsingular if and only if, for each R−module M, every essential submodule of M is a P −dense submodule. For any R -module M, we obtain P-rational extention of M and equivalent condition in order that M is equal with its P−rational extention is found. An R−module P is called right Kasch if every simple R -module can be embedded in P . Finally, we given some equivalent conditions for an R -module P to be right Kasch.

AMS Subject Classification: 16W80.

Keywords and Phrases: P-donse submodule and right Kasch module.

1. Introduction

Throughout this paper, all rings are associative with non-zero identity and modules are unitary right module. For any R -module $M, E(M)$ is injective hull of M. Let A be a set of right ideals of R and K be a submodule of an R -module M. K is called A -submodule of M, if for each $m \in M$, $(K : m) \in \mathcal{A}$. K denoted by $K \subseteq_{\mathcal{A}} M$. Let P be a right

95

R-module and I be a right ideal of R. I is called P-faithful, if

$$
ann_P(I) = \{ p \in P : pI = 0 \} = 0.
$$

their recent work are cited in the reference. If *K* is a *P*-dense submodul
of *M*, then we denote it by $K \subseteq_P M$. In Section 2, we study propertie
of *P*-dense submodules of an *R*-module *M*. Equivalent conditions ar
gi Let A be the set of all P -faithful right ideals of R and K be a submodule of M. If $K \subseteq_A M$, then K is called a P-dense submodule. Dense submodules have been investigated by several authors some of their recent work are cited in the reference. If K is a P -dense submodule of M, then we denote it by $K \subseteq_P M$. In Section 2, we study properties of P-dense submodules of an R-module M. Equivalent conditions are given for a submodule to be P -dense are found 2.4. and show that P is a nonsingular R-module if and only if for each right R -module M , its essential submodules are P-dense submodules. In Section 3, we study modules are called right Kasch R-modules.

2. P-Dense Submodules

Lemma 2.1. Let M and P be right R-modules and K be a submodule of M. The following are equivalent.

(i) K is a P-dense submodule of M.

(ii) For each $m \in M$ and non-zero element $p \in P$, there exists $r \in R$ such that $pr \neq 0$ and $mr \in K$.

proof. (i) \Rightarrow (ii) Let $m \in M$ and $0 \neq p \in P$. By (i), $(K : m)$ is Pfaithful, then $p(K : m) \neq 0$.

 $(ii) \Rightarrow (i)$ Let $m \in M$ and $p \in P$ such that $p(K : m) = 0$. If $p \neq 0$, by (ii), there exists $r \in R$ such that $pr \neq 0$ and $mr \in K$. Thus $p(K : m) \neq 0$, a contradiction. \Box

Example 2.2. If K is a dense submodule of a right module M over a ring R , then K is M -dense.

Example 2.3. Every essential submodule of a Z-module is Z-dense.

Theorem 2.4. Let M and P be R -modules and K be a submodule of M. The following are equivalent.

(i) $K \subseteq_P M$.

(*ii*) $Hom_R(M/K, E(P)) = 0.$

(iii) For any submodule Q of M such that $K \subseteq Q \subseteq M$, Hom_R $(Q/K, P) = 0.$

Example 2.3. Every essential submodule of a Z-module is Z-dense.
 Theorem 2.4. Let M and P be R -modules and K be a submodule M .
 Archive of M are equivalent.

(i) $K \subseteq_P M$.

(ii) $Hom_R(M/K, E(P)) = 0$.

(iii) $For any$ **Proof.** (i) \Rightarrow (ii) Let $f \in Hom_R(M, E(P))$ be such that $f(K) = 0$. If $f \neq 0$, then $f(m) \neq 0$ for some non-zero element $m \in M$. Since $P \subseteq_{ess} E(P)$, there exists $r \in R$ such that $0 \neq f(mr) = f(m)r \in P$. Since $K \subseteq_R M$, there exists $s \in R$ such that $f(mr)s = f(mrs) \neq 0$ and $mrs \in K$, a contradiction.

 $(ii) \Rightarrow (iii)$ Assume that, for some Q as in (iii) , there exists a non-zero R-homomorphism $g \in Hom_R(Q, P)$ such that $g(K) = 0$. Since $E(P)$ is an injective R-module, then g can be extended to $\bar{g} \in Hom_R(M, E(P)).$

Since $\bar{g}(K) = g(K) = 0$, by (ii) , $\bar{g} = 0$, a contradiction.

 $(iii) \Rightarrow (i)$ Suppose that $p(K : m) = 0$ fore some $m \in M$ and $p \in P \setminus \{0\}.$ We define $f: K + mR \rightarrow P$ by

$$
f(k+mr) = pr \qquad (k \in K, r \in R).
$$

This map is well-defined, for, if $k + mr = \hat{k} + m\hat{r}$, then $(k - \hat{k}) =$ $m(\acute{r} - r) \in K$. Hence $p(\acute{r} - r) = 0$. Clearly, f is an R-homomorphism vanishing on K. So by (iii) , $0 = f(m) = p$, a contradiction. \square

Proposition 2.5. Let M and P be R-modules and K and L be submodules of M. Then

(i) If $K \subseteq_P M$, $L \subseteq_P M$, then $K \cap L \subseteq_P M$. (ii) Let $L \subseteq K \subseteq M$. Then $L \subseteq P$ M if and only if $L \subseteq P$ K and $K\subseteq_P M$.

Proof. (i) Let $m \in M$ and $p \in P \setminus \{0\}$. Since $K \subseteq_P M$, there exists $r \in R$ such that $pr \neq 0$ and $mr \in K$. Since $L \subseteq_P M$, there exists $s \in R$ such that $prs \neq 0$ and $mrs \in L$. Thus $prs \neq 0$ and $mrs \in K \cap L$.

Archive of $m(r - r) \in K$ *. Hence* $p(r - r) = 0$ *. Clearly,* f *is an* R *-homomorphist*
vanishing on K . So by (iii) , $0 = f(m) = p$, a contradiction.
Proposition 2.5. Let M and P be R -modules and K and L be sult
modules o (*ii*) It is sufficient to prove the "if " part. Assume that $L \subseteq_P K$ and $K \subseteq_P M$. Let $m \in M$ and $p \in P \setminus \{0\}$. There exists $r \in R$ such that $pr \neq 0$ and $mr \in K$ since $K \subseteq_P M$. Since $L \subseteq_P K$, there exists $s \in R$ such that $prs \neq 0$ and $mrs \in L$. \Box

Let M be a right module over a ring R. An element $m \in M$ is said

to be singular element of M if the right ideal $ann_r(m)$ is essential in R_R . The set of all singular elements of M is denoted by $Z(M)$. The right R-module M is called nonsingular module, if $Z(M) = 0$.

Theorem 2.6. For any R-module P, the following are equivalent.

 (i) P is a nonsingular R-module.

(ii) Every essential submodule of any R-module M is a P-dense submodule.

(*ii*) Every essential submodule of any R-module M is a P-dense submodule.
 Proof. (*i*) \Rightarrow (*ii*) Let M be a right R-module and K $\leq_{ess} M$. Let $m \in M$ and $p \in P \setminus \{0\}$. Since K is an essential submodule of M

then **Proof.** (i) \Rightarrow (ii) Let M be a right R-module and K \subseteq _{ess} M. Let $m \in M$ and $p \in P \setminus \{0\}$. Since K is an essential submodule of M, then $(K : m) \subseteq_{ess} R$. If $p(K : m) = 0$, then $(K : m) \subseteq ann_r(p) \subseteq R$. Since $(K : m) \subseteq_{ess} R$, then $ann_r(p) \subseteq_{ess} R$ and hence $p \in Z(P)$, a contradiction.

 $(ii) \Rightarrow (i)$ Let $p \in Z(P)$. Then $ann_r(p) \subseteq_{ess} R$. By (ii) , $ann_r(p) \subseteq_{PR} R$. If $p \neq 0$, then there exists $r \in R$ such that $pr \neq 0$ and $1.r \in ann_r(p)$, a contradiction. \square

Definition 2.7. For two R-modules M and P, we define $\tilde{E}_P(M) = \{x \in E(M) : \forall f \in Hom_R(E(M), E(P)), f(M) = 0 \Rightarrow f(x) = 0\}.$

Lemma 2.8. Let P and M be R-modules and N be any submodule of $E(M)$ containing M. Then $M \subseteq_P N$ if and only if $N \subseteq \tilde{E}_P(M)$.

Proof. For the "if" part, it suffices to show that $Hom_R(N/M, E(P)) =$

0. Assume that, $f \in Hom_R(N, E(P))$ such that $f(M) = 0$. Since $E(P)$ is an injective R-module, then f can be extended to $\bar{f} \in Hom_R(E(M), E(P)).$ Since $\bar{f}(M) = f(M) = 0$ and $N \subseteq \tilde{E}_P(M)$, then $f(N) = \bar{f}(N) = 0$. Hence $f = 0$. For the "only if" part, assume that $M \subseteq_P N$ and consider $f \in Hom_R(E(M), E(P))$ such that $f(M) = 0$. If $f(N) \neq 0$, then there exists $n \in N \setminus \{0\}$ such that $f(n) \in E(P) \setminus \{0\}$. Since $P \subseteq_{ess} E(P)$, there exists $r \in R$ such that $f(n)r = f(nr) \in P \setminus \{0\}$. For $nr \in N$ and $f(nr) \in P \setminus \{0\}, M \subseteq_P N$ implies that $f(nr).s = f(nrs) \in P \setminus \{0\}$ and $nrs \in M$, for some $s \in R$. It is a contradiction, since $f(M) = 0$. \Box

Proposition 2.9. For two R-modules M and P, we have

$$
\tilde{E}_P(M) = \{ m \in E(M) : \forall x \in E(P) \setminus \{0\}, x(M:m) \neq 0 \}.
$$

there exists $r \in R$ such that $f(n)r = L(x) \setminus \{0\}$. Ever $T = 2\cos 2x$,

there exists $r \in R$ such that $f(n)r = f(nr) \in P \setminus \{0\}$. For $nr \in N$ and
 $f(nr) \in P \setminus \{0\}$, $M \subseteq P$ N implies that $f(nr).s = f(nrs) \in P \setminus \{0\}$ and
 $nrs \in M$, for some **Proof.** Let $m \in \tilde{E}_P(M)$ and $x \in E(P) \setminus \{0\}$. Since P is an essential submodule of $E(P)$, there exists $r \in R$ such that $xr \in P \setminus \{0\}$. By Lemma 2.8. $M \subseteq_P \tilde{E}_P(M)$ and hence there exists $s \in R$ such that $xrs \neq 0$ and $mrs \in M$, hence $x(M : m) \neq 0$. Conversely, assume $m \in RHS$ and $f \in Hom_R(E(M), E(P)) \neq 0$ such that $f(M) = 0$. If $f(m) \neq 0$, then by hypothesis, $f(m)(M : m) \neq 0$. Thus there exists $r \in R$ such that $f(m)r = f(mr) \neq 0$ and $mr \in M$. It is a contradiction, since $f(M) = 0$. \Box

Definition 2.10. An R-module M_R is called rationally P- complete if

 $\tilde{E}_P(M) = M.$

Theorem 2.11. For any R-modules M and P, the following are equivalent.

 (i) M is rationally P-complete.

(ii) For any R-modules $A \subseteq B$ such that $Hom_R(B/A, E(P)) = 0$, any R-homomorphism $f : A \to M$ can be extended to B.

Proof. (i) \Rightarrow (ii). Let $A \subseteq B$ be R-modules such that $Hom_R(B/A, E(P))$ $= 0$, and let $f \in \text{om}_R(A, M)$. Since $E(M)$ is an injective R-module, We can extended f to $g : B \to E(M)$. We claim that

$$
M\subseteq_P M+g(B).
$$

Once we have proved this, then lemma 2.8. and (i) imply that $g(B) \subseteq M$ and we are done. By theorem 2.4. it suffices to prove that

$$
Hom_R((M+g(B))/M, E(P)) = 0.
$$

R-homomorphism $f : A \rightarrow M$ can be extended to *B*.
 Proof. (i) \Rightarrow (ii). Let $A \subseteq B$ be *R*-modules such that $Hom_R(B/A, E(B))$
 $= 0$, and let $f \in om_R(A, M)$. Since $E(M)$ is an injective *R*-module, W

can extended f to $g : B \rightarrow E$ Suppose $h \in Hom_B((M + g(B))/M, E(P))$. Define R-homomorphism $h \in Hom_R(B/A,(M + g(B))/M)$ by $h(b+A) = g(b) + M$ $(b \in B)$. Since $Hom_R(B/A)$ $E(P) = 0$, $h\acute{h} = 0$. Hence for each $m \in M$ and $b \in B$, $h((m+g(b))+M) = h(g(b)+M) = h \circ h(b+A) = 0.$

Therefore $h = 0$. (ii) \Rightarrow (i) By theorem 2.4. $M \subseteq_P \tilde{E}_P(M)$, and so $Hom_R(\tilde{E}_P$

 $(M)/M, E(P)$ = 0. By (ii), the identity map id: $M \rightarrow M$ can be extended to an R-module $g : E_P(M) \to M$ such that $gi = id$, where $i: M \to \tilde{E}_P(M)$ is an inclusion map. Therefore $\tilde{E}_P(M) = \ker g \oplus Im i$. Since ker $g \cap M = 0$ and M is an essential submodule of $E(M)$, then $\ker q = 0$. Hence

$$
\tilde{E}_P(M) = Im \ \ i = M. \ \ \Box
$$

3. Right Kasch R-modules

If S is a simple right module and P is a right module over a ring R , it is of interest to know whether S can be embedded in P . Consideration of this issue leads to the notion of right Kasch R-modules.

3. Right Kasch *R*-modules
 Archive of Archive of Archive of Archive of Archive of Archive of this issue leads to the notion of right Kasch <i>R-modules.
 Definition 3.1. Let *P* be a right module over a ring *R*. We **Definition 3.1.** Let P be a right module over a ring R . We say that P is right Kasch R−module if every simple right R−module S can be embedded in P.

Theorem 3.2. Let P be a right module over a ring R . For any maximal right ideal m of R, the following are equivalent.

- (i) R/m embeds to P_R .
- (ii) $m = ann_r(x)$ for some $x \in P$.
- (iii) m is not a P−faithful right ideal.
- (iv) $m = ann_r(ann_P(m)).$
- (v) m is not P−dense in R_R .

Proof. (i) \Rightarrow (ii) Let $f \in Hom_R(R/m, P)$ be a monomorphism and $0 \neq x = f(1 + m)$. For each $r \in m$,

$$
xr = f(1 + m)r = f(r + m) = f(m) = 0.
$$

Therefore $r \in ann_r(x)$. Hence $m \subseteq ann_r(x)$. Since $ann_r(x) \neq R$, then $m = ann_r(x)$.

 $(ii) \Rightarrow (iii)$ Let $m = ann_r(x)$ for some non-zero element $x \in P_R$. Then $xm = 0$, therefore m is not a P-faithful right ideal of R.

Archive of $(ii) \Rightarrow (iii)$ *Let* $m = ann_r(x)$ *for some non-zero element* $x \in P_R$ *. The*
 $xm = 0$, therefore m is not a P -faithful right ideal of R .
 $(iii) \Rightarrow (iv)$ We know that $ann_P(m).m = 0$, then $m \in ann_P(am(m))$

If $ann_r(ann_P(m)) = R$, then $ann_P(m)$ $(iii) \Rightarrow (iv)$ We know that $ann_P(m).m = 0$, then $m \subseteq ann_r(ann_P(m)).$ If $ann_r(ann_P (m)) = R$, then $ann_P (m) = 0$. Hence m is a P-faithful, a contradiction. Therefore $ann_r(ann_p(m))$ is a proper right ideal of R and hence

$$
m = ann_r(ann_P(m)).
$$

 $(iv) \Rightarrow (v)$ Since $ann_P(m) \neq 0$, there exists $0 \neq p \in ann_P(m)$. For $1 \in R$, $(m:1) = m$, and hence

$$
pm = p(m:1) = 0.
$$

Therefore m is not P-dense in R_R , by Lemma 2.1.

 $(v) \Rightarrow (i)$ By Theorem 2.4. since m is not P-dense in R_R , then Hom_R $(R/m, E(P)) \neq 0$. Let f be a non-zero element of $Hom_R(R/m, E(P))$. Since R/m is a simple R-module, f is a monomorphism and hence Im $f \simeq R/m$. Since P is an essential submodule of $E(P)$, then Im $f \cap$ $P \neq 0$. Since Im f is a simple R-module, then Im $f \cap P = Im f$. Therefore $Im f \subseteq P$. This show that $f : R/m \to P$ is a monomorphism. \Box

Corollary 3.3. For any right R-module P, the following are equivalent. (i) P is a right Kasch module.

(ii) Any maximal right ideal in R has the form $ann_r(x)$ for some $x \in P$.

(*iii*) The set of P-faithful right ideals of R does not contain any maximal right ideal of R.

- (iv) For any maximal right ideal m of R, $ann_r(ann_P(m)) = m$.
- (v) The only P-dense right ideal in R is R itself.
- (vi) For any proper right ideal I of R, $ann_P (I) \neq 0$.

(iii) The set of P-faithful right ideals of R does not contain any maxima

right ideal of R.

(iv) For any maximal right ideal m of R, ann_r (ann_P(m)) = m.

(v) The only P-dense right ideal in R is R itself.

(vi) For **Proof.** (i) \Rightarrow (ii) Let m be a maximal right ideal of R, then the simple R-module R/m embeds in P. By Theorem 3.1, $m = ann_r(x)$ for some $x \in P$.

 $(ii) \Rightarrow (iii) \Rightarrow (iv)$ By Theorem 3.1.

 $(iv) \Rightarrow (v)$ Let J be a proper P-dense right ideal of R_R . There exists a maximal right ideal m containing J . By Proposition 2.5. m is a P-dense in R_R . By Theorem 3.1. $m \neq ann_r(ann_P(m))$, a contradiction.

 $(v) \Rightarrow (i)$ For each maximal right ideal m of R, m is not P-dense in R. By Theorem 3.2. R/m embeds in P. Which implies that P is a right Kasch R-module.

 $(ii) \Rightarrow (vi)$ Let I be a proper right ideal of R. There exists a maximal

right ideal m contains I. By (ii), $m = ann_r(x)$ for some $0 \neq x \in P$. Then $I \subseteq m = ann_r(x)$, and so $xI = 0$. It implies that $ann_P(I) \neq 0$.

 $(vi) \Rightarrow (iii)$ For any maximal right ideal m of R, $ann_P (m) \neq 0$. Then m is not P-faithful. \Box

References

- 11 T. Albu and R. Wisbauer, Kasch modules, in: Advances in ring theor (Granville, OH, 1996), *Trends in mathematics*, Birkhavser, Boston, 1997

1-16.

22 F. W. Anderson and K. R. Fuller, *Rings and categories of modules*
 [1] T. Albu and R. Wisbauer, Kasch modules, in: Advances in ring theory (Granville, OH, 1996), Trends in mathematics, Birkhavser, Boston, 1997, 1-16.
	- [2] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-Verlage, New York, 1974.
	- [3] H. Khabazian, Like-annihilator submodules and weakly polyform modules, Preprint.
	- [4] T. Y. Lam, *Lectures on modules and rings*, Graduate Texs in Math., Springer-Verlage. New York, 1999.
	- [5] R. Wisbauer, Foundations of module and ring theory, Philadelphia: Gordon and Breach, 1991.

Hossein Khabazian

Department of Mathematical sciences Isfahan University of Technology Isfahan,Iran E-mail: khabaz@cc.iut.ac.ir

Saeid Safaeeyan

Department of Mathematical sciences Isfahan University of Technology Isfahan, Iran E-mail: ssafaee2008@yahoo.com