Hahn-Banach Theorem in Vector Spaces

M. R. Haddadi*

Yazd University

H. Mazaheri

Yazd University

Abstract. In this paper we introduce a new extension to Hahn-Banach Theorem and consider its relation with the linear operatres. At the end we give some applications of this theorem.

AMS Subject Classification: 41A65; 46B50; 46B20; 41A50. **Keywords and Phrases:** Normal cone, proximinal subspaces, Chebyshev subspaces, Hahn-Banach theorem.

1. Introduction

Huang and Zhang [2] introduced the notion of cone metric spaces and some fixed point theorems for contractive mappings were proved in these spaces. The results in [2] were generalized by Sh.Rezapour and R. Hamlbarani in [6]. Suppose that \leq is a partial order on a set S and $A \subseteq S$. The greatest lower bound of A is unique, if it exists. It is denoted by $\inf(A)$. Similarly, the least upper bound of A is unique, if it exists, and is denoted by $\sup(A)$.

Let E be a linear space and P a subset of E. P is called a cone if

(i) P is closed, non-empty and $P \neq \{0\}$.

(ii) $ax + by \in P$ for all $x, y \in P$ and non-negative real numbers a,b. (iii) $P \cap -P = \{0\}$.

Received: November 2009; Final Revised February 2010 *Corresponding author

For a given cone $P \subseteq E$, we can define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. Note that x < y will stand for $x \leq y$ and $x \neq y$, while $x \ll y$ will stand for $y - x \in intP$, where intPdenotes the interior of P.

P is called the normal cone of E, if there is a number M > 0 such that for all $x, y \in P$, $0 \leq x \leq y$ implies $||x|| \leq M ||y||$.

The least positive number satisfying the above inequality is called the normal constant of P.

2. Main Results

Hahn-Banach Theorem is one of the important theorems in analysis and many authors have investigated on this theorem and its applications ([2-6]).

In the sequel we assume that $(E, \|.\|)$ is a Banach algebra that is ordered by a normal cone P with constant normal M=1, $intP \neq \emptyset$ and \leq is partial ordering with respect to P. We recall that a Banach algebra is a pair $(E, \|.\|)$, where E is an algebra and $\|.\|$ is a complete norm such that $\|xy\| \leq \|x\| \|y\|$.

Definition 2.1. Let X be a vector space and p be a map from vector space X into E. We call that p is a sublinear map if p(tx)=tp(x) and $p(x+y) \leq p(x) + p(y)$ whenever t > 0 and $x, y \in X$.

Theorem 2.2. [Hahn- Banach Theorem] Let Y be a subspace of a vector space X and $p: X \to E$ a sublinear map. If the linear map $T_0: Y \to E$ satisfies $T_0(y) \leq p(y)$ for every $y \in Y$, then there is a linear map $T: X \to E$ such that $T_{|_Y} = T_0$ and $T(x) \leq p(x)$ whenever $x \in X$.

Proof. Let $x_1 \in X \setminus Y$ and $Y_1 = Y \bigoplus \langle \{x_1\} \rangle$. Note that each member of Y_1 can be expressed in the form $y + tx_1$, where $y \in Y$ and t is a scalar, in exactly one way. For $y_1, y_2 \in Y$,

$$\begin{array}{rcl} T_0(y_1) + T_0(y_2) &=& T_0(y_1 + y_2) \\ &\leqslant& p(y_1 - x_1 + y_2 + x_1) \\ &\leqslant& p(y_1 - x_1) + p(y_2 + x_1). \end{array}$$

Then

$$\sup\{T_0(y) - p(y - x_1) : y \in Y\} \leq \inf\{p(y + x_1) - T_0(y) : y \in Y\}$$

and so for some $t_1 \in E$

$$\sup\{T_0(y) - p(y - x_1) : y \in Y\} \leq t_1 \leq \inf\{p(y + x_1) - T_0(y) : y \in Y\}.$$

For any $y \in Y$ and scalar t, define $T_1(y + tx_1) = T_0(y) + t.t_1$. It is easy to check that T_1 is a linear map whose restriction to Y is T_0 . Therefore

$$T_1(y + tx_1) = t(T_0(t^{-1}y) + t_1) \le tp(t^{-1}y + x_1) = p(y + tx_1)$$

and

$$T_1(y - tx_1) = t(T_0(t^{-1}y) - t_1) \le tp(t^{-1}y - x_1) = p(y - tx_1).$$

So $T_1(x) \leq p(x)$ whenever $x \in Y_1$.

The second step of the proof is to show that the first step can be repeated until a linear map is obtained. It is dominated by p and its restriction to Y is T_0 . Let \mathcal{U} be the collection of all linear maps G such that the domain of G is a subspace of X that includes Y, the restriction of G to Y is T_0 , and G dominated by p. Define a preorder \preceq on \mathcal{U} by declaring that $G_1 \preceq G_2$ whenever G_1 is the restriction of G_2 to a subspace of the domain of G_2 . It is easy to see that each nonempty chain \mathcal{C} in \mathcal{U} has an upper bound in \mathcal{U} . Consider the linear map whose domain is the union Z of the domains of the members of \mathcal{C} and which agrees at each point z of Z with every member of \mathcal{C} that is defined at z. By Zorn's lemma, the preorder set \mathcal{U} has a maximal element T. The domain of T is all of X. On the other hand with by applying the first step there is a T_1 in \mathcal{U} such that $T \preceq T_1$, but $T_1 \not\preceq T$. This T satisfies all that is required. \Box

Proposition 2.3. Let Y be a closed subspace of a linear normed space X and $T_0: Y \to E$ be an injective bounded linear map. Then there exists a bounded linear map $T: X \to E$ such that $||T|| = ||T_0||$ and $T|_Y = T_0$.

Proof. For every nonzero element $x \in X$ define $p(x) = ||T_0|| ||x|| \frac{T_0(x)}{||T_0(x)||}$ and p(0) = 0. Since for every nonzero element $x \in X$, we have

$$||T_0(x)|| T_0(x) \leq ||T_0|| ||x|| T_0(x).$$

and so $T_0(x) \leq p(x)$. Now by Theorem 2.2., there exists a linear map $T: X \to E$ such that $T|_Y = T_0$ and $T(x) \leq p(x)$ whenever $x \in X$. Since P is a normal cone with constant normal 1, $||T(x)|| \leq ||T_0|| ||x||$ and $||T(x)|| \leq ||T_0||$. Therefore $||T|| = ||T_0||$. \Box

Theorem 2.4. Let X be a linear normed space and $0 \neq x \in X$. Then for every $e \in S_E$ there is a linear map $T_e : X \to E$ such that $||T_e|| = 1$, $T_e(x) = ||x||e$, where $S_E = \{x \in E : ||x|| = 1\}$.

Proof. Define $G_e : \langle x \rangle \to E$ by $G_e(\alpha x) = \alpha ||x|| e$ for every scalar α . Clearly G_e is injective, linear and $G_e(x) = ||x|| e$. Also for $\alpha \neq 0$,

$$||G_e(\alpha x)|| = |\alpha|||x|| = ||\alpha x||$$

Since E is ordered by a normal cone P with constant normal M = 1, then $||G_e|| \leq 1$. Also since,

$$||G_e|| ||x|| \ge ||G_e(x)|| = ||x||,$$

so $||G_e|| \ge 1$. Hence $||G_e|| = 1$. Let T_e be then Hahn-Banach extension of G_e from proposition 2.3, so the proof is complete. \Box

In the following we introduce immediate consequence of the above theorem.

Corollary 2.5. Let X be a linear normed space and $x \neq y \in X$. Then there is a linear map $T: X \to E$ such that $Tx \neq Ty$.

Corollary 2.6. Let X be a linear normed space and $x \in X$. Then

$$\|x\| = \sup_{T \in \mathcal{B}} \|Tx\|,$$

where $\mathcal{B} = \{T : X \to E : T \text{ is a linear map and } \|T\| = 1\}.$

Proof. By Theorem 2.4., there is a linear map $T: X \to E$ such that ||T|| = 1, ||T(x)|| = ||x||. Then $||x|| = ||T(x)|| \leq \sup_{T \in \mathcal{B}} ||Tx||$. On the other hand since $||T(x)|| \leq ||T|| ||x||$, and so $\sup_{T \in \mathcal{B}} ||Tx|| \leq ||x||$. \Box

We recall that a point $g_0 \in Y$ is said to be a best approximation for $x \in X$ if and only if $||x - g_0|| = ||x + Y|| = d(x, Y)$. The set of all best approximations of $x \in X$ in Y is shown by $P_Y(x)$. In the other words,

$$P_Y(x) = \{g_0 \in Y : \|x - g_0\| = d(x, Y)\},\$$

If $P_Y(x)$ is non-empty for every $x \in X$, then Y is called a Proximinal set. The set Y is Chebyshev if $P_Y(x)$ is a singleton set for every $x \in X$ (see [2-6]).

Now we want to present some applications of new extension Hahn-Banach theorem in approximation theory.

Proposition 2.7. Let Y be a closed subspace of a linear normed space X, and $x \in X \setminus Y$. Then for every $e \in S_E$ there is a linear map $T_e : Y \bigoplus \langle x \rangle \to E$ such that $||T_e|| = 1$, $T_e x = d(x, Y)e, T_e|_Y = 0$.

Proof. Define $T_e: Y \bigoplus \langle x \rangle \to E$ by $T_e(y + \alpha x) = \alpha d(x, Y)e$ for every $y \in Y$ and scalar α . It is clear that T_e is linear, $T_e x = d(x, Y)e$ and $T_e|_Y = 0$. For any $y \in Y$ and scalar $\alpha \neq 0$,

$$||T_e(y + \alpha x)|| = |\alpha|d(x, Y) \leq ||y + \alpha x||,$$

so $||T_e|| \leq 1$. Also since,

$$||T_e|| ||x - y|| \ge ||T_e(x - y)|| = d(x, Y) \quad y \in Y,$$

so $||T_e|| \ge 1$. Hence $||T_e|| = 1$. \Box

Theorem 2.8. Let Y be a closed subspace of a cone norm space X. Suppose that $x \in X \setminus Y$ and $g_0 \in Y$. Then $g_0 \in P_Y(x)$ iff for every $e \in S_E$ there is a linear map $T_e: Y \bigoplus \langle x \rangle \to E$ such that

$$||T_e|| = 1, \ T_e(x - g_0) = ||x - g_0||e, T_e|_Y = 0.$$

Proof. Assume $g_0 \in P_Y(x)$. Since $x \in X \setminus Y$, $||x - g_0|| = d(x, Y)$ and so by Proposition 2.7., there is a linear map $T_e: Y \bigoplus \langle x \rangle \to E$ such that

$$||T_e|| = 1, \ T_e(x - g_0) = ||x - g_0||e, T_e|_Y = 0.$$

Conversely suppose there is a linear map $T_e: Y \bigoplus \langle x \rangle \to E$ such that $||T_e|| = 1$, $T_e(x - g_0) = ||x - g_0||e$, $T_e|_Y = 0$. Then

$$||x - g_0|| = ||T_e(x - g_0)|| = ||T_e(x - g)|| \le ||T_e|| ||x - g|| = ||x - g||$$

and so $g_0 \in P_Y(x)$. \Box

Corollary 2.9. Suppose X is a normed linear spaces and $x, y \in X$. Then $x \perp y$ iff for every $e \in S_E$ there is a linear map $T_e : \langle y \rangle \bigoplus \langle x \rangle \to E$ such that $||T_e|| = 1$, $T_e(x) = ||x||e, T_e(y) = 0$.

It is clear that ℓ_{∞} is a Banach algebra and $P = \{\{x_n\} \in \ell_{\infty} : x_n \ge 0, \text{ for all } n\}$ is a normal cone with constant normal M = 1. Also in [1] proved that for every linear map $T_0 : Y \to \ell_{\infty}$ there is a linear map $T : X \to \ell_{\infty}$ such that $||T|| = ||T_0||$ and $T|_Y = T_0$. Consequently we have following result.

Corollary 2.10. Let Y be a closed subspace of a linear normed space X, and $x \in X \setminus Y$. Then $M \subseteq P_Y(x)$ iff for every $e \in S_{\ell_{\infty}}$, there is a linear map $T: X \to \ell_{\infty}$ such that for every $g \in M$

$$||T_e|| = 1, \ T_e x = ||x - g||e, T_e|_Y = 0.$$

References

- [1] J. Diestel, Sequence and Series in Banach spaces, Springer, 1984.
- [2] H. Long-Guang and Z. Xian, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
- [3] H. Mazaheri and F. M. Maalek Ghaini, Quasi-orthogonality of the best approximant sets, *Nonlinear Analysis*, 65 (2006) 534-537.
- [4] H. Mazaheri and S. M. Vaezpour, orthogonality and ε-Orthogonality in Banach spaces, Aust. J. Math. and Appl., 2 (2005), 1-5.
- [5] P. L. Papini and I. Singer, Best coapproximation in normed linear spaces, Mh. Math., 88 (1979), 27-44.

- [6] Sh. Řezapour and R. Hamlbarani, Some notes on the paper Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 345 (2008), 719-724.
- [7] W. Rudin, Functional Analysis, 2nd edition, Mc Graw-Hill, 1991.
- [8] I. Singer, Best approximation in normal linear spaces by elements of linear subspaces, Springer Verlag, New York, 1970.

Mohammad Reza Haddadi

Department of Mathematics Assistant Professor of Mathematics Yazd University Yazd, Iran E-mail: haddadi83@math.iut.ac.ir

Hamid Mazaheri

Department of Mathematics Associated Professor of Mathematics Yazd University Yazd, Iran E-mail: hmazaheri@yazduni.ac.ir