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Abstract. In this paper by using the notion of τ -distance, we will
prove Mizoguchi-Takahashi’s fixed point theorem, which is a general-
ization of fixed point theorem which has been given by Nadler.
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1. Introduction

In 1922, Banach ([1]) proved the famous fixed point theorem known as
the Banach contraction principle which is a very useful tool in nonlinear
analysis, control theory, economic theory and global analysis. Later on,
the theorem has been generalized in several directions. For example,
In 1969, Nadler generalized it to set-valued mappings and proved some
fixed point theorems about set-valued contraction mappings ([6]).
A point x is said to be a fixed point of a single-valued mapping f(set-
valued mapping F ) provided f(x) = x, (x ∈ F (x)). We denote by
CB(X) the class of all nonempty bounded closed subset of X. Since
the mapping i : X → CB(X), given by i(x) = {x} for each x ∈ X is an
isometry, the fixed point theorem in this paper for set-valued mapping
are generalized of their single-valued analogues.
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Definition 1.1. Let (X, d) be a metric space. The Hausdorff metric
with respect to d, denoted by H and defined by

H(A,B) = max{supu∈Ad(u,B), supν∈Bd(ν, A)}

for every A,B ∈ CB(X), where d(x,A) = inf{d(x, y); y ∈ A} for every
A ⊂ X.

Theorem 1.2. (Nadler [6]), Let (X, d) be a complete metric space and
T be a mapping from X into CB(X). Assume that there exists r ∈ [0, 1)
such that H(Tx, Ty) 6 rd(x, y) for all x, y ∈ X. Then there exists z ∈ X

such that z ∈ Tz.

Mizoguchi and Takahashi ([5]) proved a generalization of the the-
orem, which is a partial answer of problem 9 in Rich ([7]). See also
[3,4,8].

Theorem 1.3. ( Mizoguchi and Takahashi ([5])), Let (X, d) be a com-
plete metric space and T be a mapping from X into CB(X). Assume
H(Tx, Ty) 6 α(d(x, y)).d(x, y) for all x, y ∈ X, where α is a function
from [0,∞) into [0, 1) satisfying lim sup

s→t+
α(s) < 1 for all t ∈ [0,∞).

Then there exists z0 ∈ X such that z0 ∈ Tz0 .

Recently, Suzuki ([9]) introduced the notion of τ -distance on a met-
ric space, which is the generalization of the concept of ω-distance and
Tatarou’s distance. He also improved some fixed point theorems. In
this paper, by using the notion of τ -distance, we will prove Mizoguchi-
Takahashi’s fixed point theorem for set-valued mappings which is a real
generalization of Nadler’s.

2. τ-Distance

Through out of this paper, we denote by N , the set of all positive integers
and by R+, the set of all nonnegative real numbers. In this section, we
state the definition of τ -distance which was first introduce by Suzuki [9].
Then we give some propertises will be connected to τ -distance.
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Definition 2.1. ([9]). Let (X, d) be a metric space. A function p from
X ×X into [0,∞) is called a τ -distance on X, if there exists a function
η from X × [0,∞) into [0,∞) and following are satisfied;
(τ1) p(x, z) 6 p(x, y) + p(y, z) for all x, y, z ∈ X ;
(τ2) η(x, 0) = 0 and η(x, t) > t for all x ∈ X and t ∈ [0,∞), and η is
concave and continuous in its second variable;
(τ3) limnxn = x and limnsup{η(zn, p(zn, xm)) : m > n} = 0 imply
p(w, x) 6 limninfp(w, xn) for all w ∈ X;
(τ4) limnsup{p(xn, ym) : m > n} = 0 and limnη(xn, tn) = 0 imply
limnη(yn, tn) = 0;
(τ5) limnη(zn, p(zn, xn)) = 0 and limnη(zn, p(zn, yn)) = 0 imply
limnd(xn, yn) = 0.

We may replace (τ2) by (τ2)
′
(see [9]):

(τ2)
′

inf{η(x, t) : t > 0} for all x ∈ X, and η is nondecreasing in its
second variable.
Many useful examples of τ -distance are stated in [9,10].

Definition 2.2. ([9]). Let (X, d) be a metric space and p a τ -distance
on X. A sequence {xn} of X is called p-Cauchy if there exist a function
η from X ×R+ into R+satisfying (τ2)− (τ5) and a sequence {zn} of X

such that limnsup{η(zn, p(zn, xm)) : m > n} = 0.
The following two lemmas are very useful in the proof of fixed point

theorem in Section 3.

Lemma 2.3. ([9]). Let (X, d) be a metric space and a τ -distance on
X. If {xn} is a p-Cauchy sequence, then {xn} is a Cauchy sequence.
Moreover, if {yn} is a sequence satisfying limnsup{p(xn, ym) : m >
n} = 0, then {yn} is also a p-Cauchy sequence and limnd(xn, yn) = 0.

Lemma 2.4. ([9]). Let (X, d) be a metric space and p a τ -distance on
X. If a sequence {xn} in X satisfies limnsup{p(xn, xm) : m > n} = 0
, then {xn} is a p-Cauchy sequence. Moreover, if a sequence {yn} in X

satisfies limnp(xn, yn) = 0, then {yn} is also a p-Cauchy sequence and
limnd(xn, yn) = 0.
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3. Main Result

In this section by using τ -distance, we give a proof of Mizoguchi-Takahashi’s
fixed point theorem which is simpler than previous proofs ([2,5]).

Theorem 3.1. Let (X, d) be a complete metric space and let p be a τ -
distance on X. Let T be a mapping from X into CB(X). Assume that
H(Tx, Ty) 6 α(p(x, y)).p(x, y) for all x, y ∈ X, where α is a function
from [0,∞) into [0, 1) satisfying lim sup

s→t+
α(s) < 1 for all t ∈ [0,∞).

Then there exists z0 ∈ X such that z0 ∈ Tz0 and p(z0, z0) = 0.

Proof. Define a function β from [0,∞) into [0, 1) by β(t) = (α(t)+1)/2.
Then the following hold:

1) lim sup
s→t+

β(s) < 1.

2) ∀x, y ∈ X , u ∈ Tx ∃ν ∈ Ty ; p(u, ν) 6 β(p(x, y)).p(x, y).
Fix u0 ∈ X and u1 ∈ Tu0. Then there exists u2 ∈ Tu1 such that

p(u1, u2) 6 β(p(u0, u1)).p(u0, u1). Thus, we have a sequence {un} in X

such that un+1 ∈ Tun and

p(un+1, un+2) 6 β(p(un, un+1)).p(un, un+1)

for all n ∈ N . Since β(t) < 1 for all t ∈ [0,∞) then {p(un, un+1)}
is a nonincreasing sequence. Hence {p(un, un+1)} converges to some
nonnegative real number λ. Since lim sup

s→λ+

β(s) < 1 and β(λ) < 1, there

exists r ∈ [0, 1) and ε > 0 such that β(s) 6 r for all s ∈ [λ, λ + ε). We
can take k ∈ N such that λ 6 p(un, un+1) < λ + ε for all n ∈ N with
n > k. Since

p(un+2, un+1) 6 β(p(un, un+1)).p(un, un+1) < r.p(un, un+1), (1)

for any n ∈ N with n > k, then we have

∑∞
n=1 p(un, un+1) =

∑k
n=1 p(un, un+1) +

∑∞
n=k+1 p(un, un+1)

6
∑k

n=1 p(un, un+1) +
∑∞

n=1 rn.p(uk, uk+1) < ∞,

hence limnsup p(un, un+1) = 0. By Lemma 2.4., {un} is a p-Cauchy
sequence and hence, by Lemma 2.3., {un} is a Cauchy sequence. Since
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X is complete, {un} converges to some point ν0 ∈ X. From (τ3), we
have

p(un, ν0) 6 limminfp(un, um) 6 rn

1− r
p(uk, uk+1) (2)

for m > n > k. We have also wn ∈ Tν. Since

limnsup{p(un, wm);m > n} = 0

by Lemma 2.3., {wn} is a p-Cauchy sequence and we have limnd(un, wn) =
0. But

d(wn, ν0) 6 d(wn, un) + d(un, ν0)

then {wn} converges to νo. By closedness of Tν0, we have ν0 ∈ Tν0.
So we have a sequence {νn} such that νn+1 ∈ Tνn and by (1), for all
n ∈ N

p(ν0, νn+1) 6 β(p(ν0, νn)).p(ν0, νn) 6 r.p(ν0, νn).

Also
p(ν0, νn) 6 r.p(ν0, νn−1) 6 ... 6 rn.p(ν0, ν0).

Hence

limnsup p(un, νn) 6 limn(p(un, ν0) + p(ν0, νn)) = 0.

By Lemma 2.4., {νn} is a p-Cauchy sequence and converges to ν0. So
we have

p(ν0, ν0) 6 limnp(ν0, νn) = 0.

This completes the proof. ¤
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