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Abstract. In this paper we prove the convergence of homotopy analy-
sis method (HAM) and present the application of the homotopy analy-
sis method to obtain the exact analytical solution of the Fokker-Planck
equation. In the current paper this scheme will be investigated in details
and efficiency of the approach will be shown by applying the procedure
on several interesting and important examples.
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1. Introduction

In 1992, Liao ([6]) employed the basic ideas of the homotopy in topology
to propose a general analytic method for linear and nonlinear problems,
namely homotopy analysis method (HAM) ([7]). Based on homotopy of
topology, the validity of the HAM is independent of whether or not there
exist small parameters in the considered equation. Therefore, the HAM
can overcome the foregoing restrictions and limitations of perturbation
techniques. This method has been successfully applied to solve many
types of nonlinear problems ([5,9,11,16]). In this paper we prove theorem
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of convergence of homotopy analysis method and apply this method
to solve the Fokker-Planck equation. If a small particle of mass m is
immersed in a fluid, the equation of motion for the distribution function
W (x, t) is given by:

∂W

∂t
= γ

∂vW

∂v
+ γ

KT

m

∂2W

∂v2
, (1)

where v is the velocity for the Brownian motion of a small particle, t

is the time, γ is the fraction constant, K is Boltzmann’s constant and
T is the temperature of fluid [14]. Eq. (1) is one of the simplest type
of Fokker-Planck equations. By solving (1) starting with distributions
function W (x, t) for t = 0 and subject to the appropriate boundary
conditions, one can obtain the distributions function W (x, t) for t > 0.
The general Fokker-Planck equation for the variable x has the form [14]:

∂u

∂t
=

[
− ∂

∂x
A(x) +

∂2

∂x2
B(x)

]
u, (2)

with the initial condition given by:

u(x, 0) = f(x), x ∈ R, (3)

where u(x, t) is unknown. In (2) B(x) > 0 is called the diffusion coeffi-
cient and A(x) is the drift coefficient. The drift and diffusion coefficients
may also depend on time, i.e.

∂u

∂t
=

[
− ∂

∂x
A(x, t) +

∂2

∂x2
B(x, t)

]
u. (4)

Eq. (1) is seen to be a special case of the Fokker-Planck equation where
the drift coefficient is linear and the diffusion coefficient is constant.
Eq. (2) is an equation of motion for the distribution function u(x, t).
Mathematically, this equation is a linear second order partial differential
equation of parabolic type. Roughly speaking, it is a diffusion equation
with an additional first order derivative with respect to x. In the mathe-
matical literatures, (2) is also called forward Kolmogorov equation. The
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similar partial differential equation is a backward Kolmogorov equation
that is in the form [14]:

∂u

∂t
=

[
−A(x, t)

∂

∂x
+ B(x, t)

∂2

∂x2

]
u. (5)

A generalization of (2) to N variables x1, · · · , xN has the form:

∂u

∂t
=

− N∑
i=1

∂

∂xi
Ai(x) +

N∑
i,j=1

∂2

∂xi∂xj
Bi,j(x)

u, (6)

with the initial condition:

u(x, 0) = f(x), x ∈ RN , (7)

where x = (x1, · · · , xN ). The drift vector Ai and diffusion tensor Bi,j

generally depend on the N variables x1, · · · , xN . One may find analyt-
ical solutions of the Fokker-Planck equation. Generally, however, it is
difficult to obtain solutions, especially if no separation of variables is pos-
sible or if the number of variables is large. Various methods of solution
are: simulation methods, transformation of a Fokker-Planck equation
to a Schrödinger equation, numerical integration methods and etc.[14].
There is a more general form of Fokker-Planck equation. Nonlinear
Fokker-Planck equation has important applications in various areas such
as plasma physics, surface physics, population dynamics, biophysics, en-
gineering, neuroscience, nonlinear hydrodynamic, polymer physic, laser
physic, pattern formation, psychology and marketing (see[2] and refer-
ences therein). In one variable case the nonlinear Fokker-Planck equa-
tion is written in the following form:

∂u

∂t
=

[
−A(x, t, u)

∂

∂x
+ B(x, t, u)

∂2

∂x2

]
u. (8)

For N variables x1, · · · , xN , it has the form:

∂u

∂t
=

− N∑
i=1

∂

∂xi
Ai(x, t, u) +

N∑
i,j=1

∂2

∂xi∂xj
Bi,j(x, t, u)

u, (9)
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where x = (x1, · · · , xN ). Notice that when Ai(x, t, u) = Ai(x) and
Bi,j(x, t, u) = Bi,j(x) the nonlinear Fokker-Planck equation (9) reduces
to the linear Fokker-Planck equation (6). Because of the large number
of applications of the Fokker-Planck equation, a lot of work is done in
order to find the numerical solution of this equation. For example, we
refer the readers to [1, 18, 17, 12, 13, 3].

2. Basic Idea of HAM

We consider the following differential equation

N [u(τ)] = 0, (10)

where N is a nonlinear operator, τ denotes independent variable, u(τ) is
an unknown function, respectively. For simplicity, we ignore all bound-
ary or initial conditions, which can be treated in the similar way. By
means of generalizing the traditional homotopy method, Liao [8] con-
struct the so-called zero-order deformation equation

(1− p)L[φ(τ ; p)− u0(τ)] = p ~H(τ)N [φ(τ ; p)], (11)

where p ∈ [0, 1] is the embedding parameter, h 6= 0 is a non-zero aux-
iliary parameter, H(τ) 6= 0 is an auxiliary function, u0(τ) is an initial
guess of u(τ) and φ(τ ; p) is an unknown function and L an auxiliary
linear operator with the property

L[f(τ)] = 0 when f(τ) = 0. (12)

It is important, that one has great freedom to choose auxiliary things in
HAM. Obviously, when p = 0 and p = 1, it holds

φ(τ ; 0) = u0(τ), φ(τ ; 1) = u(τ), (13)

respectively. Thus, as p increases from 0 to 1, the solution φ(τ ; p) varies
from the initial guess u0(τ) to the solution u(τ). Expanding φ(τ ; p) in
Taylor series with respect to p, we have

φ(τ ; p) = u0(τ) +
+∞∑
m=1

um(τ)pm, (14)
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where

um(τ) =
[

1
m!

∂mφ(τ ; p)
∂pm

]
p=0

. (15)

If the auxiliary linear operator, the initial guess, the auxiliary parame-
ter ~, and the auxiliary function are so properly chosen, the series (4)
converges at p = 1, then we have

u(τ) = u0(τ) +
+∞∑
m=1

um(τ), (16)

which must be one of solutions of original nonlinear equation, as proved
by [13]. As ~ = −1 and H(τ) = 1, Eq. (2) becomes

(1− p)L[φ(τ ; p)− u0(τ)] + p N [φ(τ ; p)] = 0, (17)

which is used mostly in the homotopy perturbation method [4], where
as the solution obtained directly, without using Taylor series ([10]). Ac-
cording to the definition (5), the governing equation can be deduced
from the zero-order deformation equation (2). Define the vector

−→u n = {u0(τ), u1(τ), · · · , un(τ)} .

Differentiating equation (2) m times with respect to the embedding pa-
rameter p and then setting p = 0 and finally dividing them by m!, we
have the so-called mth-order deformation equation

L[um(τ)− χmum−1(τ)] = ~H(τ)Rm(−→u m−1), (18)

where

Rm(−→u m−1) =
[

1
(m− 1)!

∂m−1N [φ(τ ; p)]
∂pm−1

]
p=0

, (19)

and

χm =
{

0, m 6 1,
1, m > 1.

(20)

It should be emphasized that um(τ) for m > 1 is governed by the lin-
ear equation (8) under the linear boundary conditions that come from
original problem, which can be easily solved by symbolic computation
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software such as Matlab. For the convergence of the above method we
refer the reader to Liao’s work [8]. If Eq. (1) admits unique solution,
then this method will produce the unique solution. If equation (1) does
not possess unique solution, the HAM will give a solution among many
other (possible) solutions.

3. Convergence of HAM

In this section, we will prove that, as long as the solution series (16)
given by the homotopy analysis method is convergent, it must be the
solution of the considered nonlinear problem.
Theorem 3.1. As long as the series

u0(t) +
+∞∑
m=1

um(t).

is convergent, where um(t) is governed by the high-order deformation
equation (18) under the definitions (19) and (20), it must be a solution
of Equation (10).
Proof: Let

s(t) = u0(t) +
+∞∑
m=1

um(t),

denote the convergent series. Using (18) and (20), we have

~H(t)
+∞∑
m=1

<m(um−1)

=
+∞∑
m=1

L [um(t)− χmum−1(t)]

= L

[
+∞∑
m=1

um(t)−
+∞∑
m=1

χmum−1(t)

]

= L

[
(1− χ2)

+∞∑
m=1

um(t)

]
= L [(1− χ2)(s(t)− u0(t))] ,
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which gives, since ~ 6= 0, H(t) 6= 0 and from (12),

+∞∑
m=1

<m(um−1) = 0. (21)

On the other side, we have according to the definition (19), that

+∞∑
m=1

<m(um−1) =
+∞∑
m=1

1
(m− 1)!

∂m−1N [φ(t; q)]
∂qm−1

|q=0 = 0. (22)

In general, φ(t; q) does not satisfy the original nonlinear equation (10).
Let

ε(t; q) = N [φ(t; q)],

denote the residual error of Equation (10). Clearly,

ε(t; q) = 0.

Corresponds to the exact solution of the original equation (10). Accord-
ing to the above definition, the Maclaurin series of the residual error
ε(t; q) about the embedding parameter q is

+∞∑
m=0

1
m!

∂mε(t; q)
∂qm

qm|q=0 =
+∞∑
m=0

1
m!

∂mN [φ(t; q)]
∂qm

qm|q=0.

When q = 1, the above expression gives, using (22),

ε(t; q) =
+∞∑
m=0

1
m!

∂mε(t; q)
∂qm

|q=0 = 0.

This means, according to the definition of ε(t; q), that we gain the exact
solution of the original equation (10) when q. Thus, as long as the series

u0(t) +
+∞∑
m=1

um(t),

is convergent, it must be one solution of the original equation (10). This
ends the proof.
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4. Application

In order to assess the advantages and the accuracy of homotopy analysis
method for solving nonlinear systems, we will consider the following
example [15].

Example 4.1. Consider (1) with

f(x) = x, x ∈ R. (23)

Let in Eq. (2)
A(x) = −1, B(x) = 1. (24)

To solve the Eq. (2) by means of homotopy analysis method, we choose
the linear operator

L[φ(x, t; p)] =
∂φ(x, t; p)

∂t
. (25)

Now we define a nonlinear operators as

N [φ(x, t; p)] =
∂φ(x, t; p)

∂t
− ∂φ(x, t; p)

∂x
− ∂2φ(x, t; p)

∂x2
. (26)

Thus, by the above definitions we obtain the mth-order deformation
equations

L[um(x, t)− χmum−1(x, t)] = ~H(x, t)Rm(~um−1) (27)

where

Rm(~um−1) =
∂um−1

∂t
− ∂um−1

∂x
− ∂2um−1

∂x2
. (28)

Now the solutions of the mth-order deformation equations (27) with
H(x, t) = 1, ~ = −1

um(x, t) = χmum−1(x, t)− L−1[Rm]. (29)

With an initial approximations u0(x, t) = x and by means of the above
iteration formula (29) we can obtain directly the other components as

u1(x, t) = t,

un(x, t) = 0, n > 2.
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Continuing the expansion to the last term gives the solution of (2) as

u(x, t) =
+∞∑
n=0

un(x, t) = x + t,

which is the exact solution of the problem.

Example 4.2. Consider (3) with

f(x) = cosh(x), x ∈ R, (30)

and we assume that in Eq. (4)

A(x) = et coth(x) cosh(x) + et sinh(x)− coth(x), B(x) = et cosh(x).
(31)

To solve the Eq. (4) by means of homotopy analysis method, we choose
the linear operator

L[φ(x, t; p)] =
∂φ(x, t; p)

∂t
. (32)

Now we define a nonlinear operators as

N [φ(x, t; p)] =
∂φ(x, t; p)

∂t
− ∂φ(x, t; p)

∂x
A(x, t)− ∂2φ(x, t; p)

∂x2
B(x, t). (33)

With an initial approximations u0(x, t) = sinh(x) we can obtain directly
the other components as

u1(x, t) = t sinh(x),

u2(x, t) =
t2

2!
sinh(x),

u3(x, t) =
t3

3!
sinh(x),

...

Continuing the expansion to the last term gives the solution of (4) as

u(x, t) =
+∞∑
n=0

un(x, t) = et sinh(x),
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which is the exact solution of the problem.

Example 4.3. In our final example we apply the homotopy analysis
method on the nonlinear FokkerPlanck equation. Consider Eq. (9) with:

A(x, t, u) =
4u

x
− x

3
, B(x) = u, (34)

and we assume that in Eq. (3)

f(x) = x2, x ∈ R. (35)

Now we define a nonlinear operators as

N [φ(x, t; p)] =
∂φ(x, t; p)

∂t
− ∂φ(x, t; p)

∂x
A(x, t)− ∂2φ(x, t; p)

∂x2
B(x, t), (36)

Thus, by the above definitions we obtain the mth-order deformation
equations

L[um(x, t)− χmum−1(x, t)] = ~H(x, t)Rm(~um−1), (37)

where

Rm(~um−1) =
∂um−1

∂t
+

4
x

m−1∑
i=0

∂ui

∂x
um−1−i−

x

3
∂um−1

∂x
−

m−1∑
i=0

∂2ui

∂x2
um−1−i.

(38)
Now the solutions of the mth-order deformation equations (37) with
H(x, t) = 1, ~ = −1

um(x, t) = χmum−1(x, t)− L−1[Rm(~um−1)]. (39)

With an initial approximations u0(x, t) = x2 we can obtain directly the
other components as

u1(x, t) = x2t,

u2(x, t) = x2 t2

2!
,

u3(x, t) = x2 t3

3!
,

...
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Continuing the expansion to the last term gives the solution of (4) as

u(x, t) =
+∞∑
n=0

un(x, t) = x2et,

which is the exact solution of the problem.

5. Conclusions

Homotopy analysis method was employed successfully for solving the lin-
ear and nonlinear FokkerPlanck equation. This method finds an exact
solution of the equation using the initial condition only. It is also impor-
tant that the homotopy analysis method does not require discretization
of the variables, i.e. time and space, it is not affected by computation
round-off errors and one is not faced with the necessity for a large com-
puter memory and time. One important objective of our research is the
proof of the convergence of homotopy analysis method. The results show
us the validity and great potential of the HAM for nonlinear problems
in science and engineering.
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