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Abstract. In this paper, we introduce the following positive-additive
functional equation in C∗-algebras
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3
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f(x) + f(y).

Using the fixed point method, we prove the stability of the positive-
additive functional equation in C∗-algebras. Moreover, we prove the
Hyers-Ulam stability of the above functional equation in C∗-algebras
by the direct method of Hyers-Ulam.
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1. Introduction

The stability problem of functional equations was originated from a ques-
tion of Ulam ([43]) concerning the stability of group homomorphisms.
Hyers ([24]) gave a first affirmative partial answer to the question of
Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki ([1])
for additive mappings and by Th.M. Rassias ([39]) for linear mappings
by considering an unbounded Cauchy difference.

Theorem 1.1. (T. M. Rassias) Let f be an approximately additive
mapping from a normed vector space E into a Banach space E′, i.e., f
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satisfies the inequality

|f(x+ y)− f(x)− f(y)|
‖x‖r + ‖y‖r

6 ε

for all x, y ∈ E−{0}, where ε and r are constants with ε > 0 and 0 6 r <

1. Then the mapping L : E → E′ defined by L(x) := limn→∞ 2−nf(2nx)
is the unique additive mapping which satisfies,

|f(x)− L(x)|
|x|r

6
2ε

2− 2r
,

for all x ∈ E − {0}.

The paper of Th.M. Rassias ([39]) has provided a lot of influence in the
development of what we call generalized Hyers-Ulam stability or Hyers-
Ulam-Rassias stability of functional equations. A generalization of the
Th.M. Rassias theorem was obtained by Găvruta ([20]) by replacing
the unbounded Cauchy difference by a general control function in the
spirit of the Th.M. Rassias’ approach. J.M. Rassias [36]-[38] followed
the innovative approach of the Th.M. Rassias’ theorem [39] in which
he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ R with
p + q 6= 1. The stability problems of several functional equations have
been extensively investigated by a number of authors and there are many
interesting results concerning this problem (see [2]-[15],[17]-[42]).

Definition 1.2. [16] Let A be a C∗-algebra and x ∈ A a self-adjoint
element, i.e., x∗ = x. Then x is said to be positive if it is of the form
yy∗ for some y ∈ A. The set of positive elements of A is denoted by A+.

Note that A+ is a closed convex cone (see [16]). It is well-known that
for a positive element x and a positive integer n there exists a unique
positive element y ∈ A+ such that x = yn. We denote y by x

1
n (see

[16]).
In this paper, we introduce the following functional equation

f
(
x+ 4 4

√
x3y + 6

√
xy + 4 4

√
xy3 + y

)
= f(x) + 4f(x)

3
4

4
√
f(y)

+ 6
√
f(x)f(y)

+ 4f(y)
3
4

4
√
f(x) + f(y) (1)
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in the set of for all x, y ∈ A+ , which is called a positive-additive func-
tional equation. Each solution of the positive-additive functional equa-
tion is called a positive-additive mapping.
Note that the function f(x) = cx, c > 0, in the set of non-negative
real numbers is a solution of the functional equation (1).
Let X be a set. A function d : X × X → [0,∞] is called a generalized
metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) 6 d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.

Theorem 1.3. Let (X, d) be a complete generalized metric space and
let J : X → X be a strictly contractive mapping with Lipschitz constant
L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such
that

(1) d(Jnx, Jn+1x) <∞, ∀n > n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X |

d(Jn0x, y) <∞};
(4) d(y, y∗) 6 1

1−Ld(y, Jy) for all y ∈ Y .

In 1991, Baker ([10]) used the Banach fixed point theorem to give gen-
eralized Hyers-Ulam stability results for a nonlinear functional equa-
tion. In 2003, Radu ([35]) applied the fixed point alternative theorem
to prove the generalized Hyers-Ulam stability. Mihet ([29]) applied the
Luxemburg-Jung fixed point theorem in generalized metric spaces to
study the generalized Hyers-Ulam stability for two functional equations
in a single variable and L. Găvruta ([19]) used the Matkowski’s fixed
point theorem to obtain a new general result concerning the generalized
Hyers-Ulam stability of a functional equation in a single variable. In
1996, G. Isac and Th.M. Rassias ([26]) were the first to provide appli-
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cations of stability theory of functional equations for the proof of new
fixed point theorems with applications.
This paper is organized as follows: In Section 2, using the fixed point
method, we prove the Hyers-Ulam stability of the functional equation
(1) in C∗-algebras. In Section 3, using the direct method, we prove the
Hyers-Ulam stability of the functional equation (1) in C∗-algebras.
Throughout this paper, let A+ and B+ be the sets of positive elements
in C∗-algebras A and B, respectively.

2. Stability of Eq. (1): Fixed Point Approach

In this section, we investigate the positive-additive functional equation
(1) in C∗-algebras.

Lemma 2.1. Let T : A+ → B+ be a positive-additive mapping satisfying
(1). Then T satisfies T (16nx) = 16nT (x) for all x ∈ A+ and all n ∈ Z.

Proof. Putting x = y in (1.1), we obtain T (16x) = 16T (x) for all
x ∈ A+. By induction on n, one can show that T (16nx) = 16nT (x) for
all x ∈ A+ and all n ∈ Z. �
Using the fixed point method, we prove the Hyers-Ulam stability of the
positive-additive functional equation (1) in C∗-algebras. Note that the
fundamental ideas in the proofs of the main results in this section are
contained in [12, 13].

Theorem 2.2. Let ϕ : A+ ×A+ → [0,∞) be a function such that there
exists an L < 1 with

16
L
ϕ
( x

16
,
y

16

)
6 ϕ (x, y) (2)

for all x, y ∈ A+. Let f : A+ → B+ be a mapping satisfying∥∥∥f (x+ 4 4
√
x3y + 6

√
xy + 4 4

√
xy3 + y

)
− f(x)

−4f(x)
3
4

4
√
f(y)− 6

√
f(x)f(y)− 4f(y)

3
4

4
√
f(x)− f(y)

∥∥∥
6 ϕ(x, y) (3)
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for all x, y ∈ A+. Then there exists a unique positive-additive mapping
A : A+ → A+ satisfying (1) and

‖f(x)−A(x)‖ 6
Lϕ(x, x)
16− 16L

(4)

for all x ∈ A+.

Proof. Letting y = x in (3), we get

‖f(16x)− 16f(x)‖ 6 ϕ(x, x) (5)

for all x ∈ A+. Consider the set

X := {g : A+ → B+}

and introduce the generalized metric on X:

d(g, h) = inf{µ ∈ (0,+∞) : ‖g(x)− h(x)‖ 6 µϕ(x, x), ∀x ∈ A+},

where, as usual, inf φ = +∞. It is easy to show that (X, d) is complete
(see [30]). Now we consider the linear mapping J : X → X such that

Jg(x) := 16g
( x

16

)
for all x ∈ A+. Let g, h ∈ X be given such that d(g, h) = ε. Then,
‖g(x)− h(x)‖ 6 ϕ(x, x) for all x ∈ A+. Hence

‖Jg(x)− Jh(x)‖ =
∥∥∥16g

( x
16

)
− 16h

( x
16

)∥∥∥ 6 Lϕ(x, x)

for all x ∈ A+. So d(g, h) = ε implies that d(Jg, Jh) 6 Lε. This means
that, d(Jg, Jh) 6 Ld(g, h) for all g, h ∈ X.
It follows from (5) that∥∥∥f(x)− 16f

( x
16

)∥∥∥ 6
L

16
ϕ(x, x)

for all x ∈ A+. So d(f, Jf) 6 L
16 . By Theorem 1.3., there exists a

mapping A : A+ → B+ satisfying the following:
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(1) A is a fixed point of J , i.e.,

A
( x

16

)
=

1
16
A(x) (6)

for all x ∈ A+. The mapping A is a unique fixed point of J in the
set M = {g ∈ X : d(f, g) < ∞}. This implies that A is a unique
mapping satisfying (6) such that there exists a µ ∈ (0,∞) satisfying
‖f(x)−A(x)‖ 6 µϕ(x, x) for all x ∈ A+;

(2) d(Jnf,A) → 0 as n→∞. This implies the equality

lim
n→∞

16nf
( x

16n

)
= A(x)

for all x ∈ A+;
(3) d(f,A) 6 1

1−Ld(f, Jf), which implies the inequality

d(f,A) 6
L

16− 16L
.

This implies that the inequality (4) holds. By (2) and (3),∥∥∥A(x+ 4 4
√
x3y + 6

√
xy + 4 4

√
xy3 + y

)
−A(x)

−4A(x)
3
4 4
√
A(y)− 6

√
A(x)A(y)− 4A(y)

3
4 4
√
A(x)−A(y)

∥∥∥
= lim

n→+∞

∥∥∥16n
[
f

(
x

16n
+ 4 4

√
x3y

65536n
+ 6
√

xy

256n
+ 4 4

√
xy3

65536n
+

y

16n

)

−f
( x

16n

)
− 4f

( x

16n

) 3
4 4

√
f
( y

16n

)
− 6
√
f
( x

16n

)
f
( y

16n

)
−4f

( y

16n

) 3
4 4

√
f
( x

16n

)
− f

( y

16n

)]∥∥∥
6 lim

n→+∞
16nϕ

( x

16n
,
y

16n

)
6 lim

n→+∞
16n × Ln

16n
ϕ (x, y)

= 0

for all x, y ∈ A+. So

A
(
x+ 4 4

√
x3y + 6

√
xy + 4 4

√
xy3 + y

)
= A(x) + 4A(x)

3
4

4
√
A(y)
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+6
√
A(x)A(y) + 4A(y)

3
4

4
√
A(x) +A(y)

for all x, y ∈ A+. Thus the mapping A : A+ → B+ is positive-additive,
as desired. �

Corollary 2.3. Let p > 1 and θ1, θ2 be non-negative real numbers, and
let f : A+ → B+ be a mapping such that∥∥∥f (x+ 4 4

√
x3y + 6

√
xy + 4 4

√
xy3 + y

)
− f(x) (7)

−4f(x)
3
4

4
√
f(y)− 6

√
f(x)f(y)− 4f(y)

3
4

4
√
f(x)− f(y)

∥∥∥
6 θ1(‖x‖p + ‖y‖p) + θ2 · ‖x‖

p
2 · ‖y‖

p
2

for all x, y ∈ A+. Then there exists a unique positive-additive mapping
A : A+ → B+ satisfying (1) and

‖f(x)−A(x)‖ 6
(2θ1 + θ2)||x||p

16p − 16

for all x ∈ A+.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) = θ1(‖x‖p+
‖y‖p)+ θ2 · ‖x‖

p
2 · ‖y‖

p
2 for all x, y ∈ A+. Then we can choose L = 161−p

and we get the desired result. �

Theorem 2.4. Let ϕ : A+ ×A+ → [0,∞) be a function such that there
exists an α < 1 with

ϕ(x, y) 6 16Lϕ
( x

16
,
y

16

)
for all x, y ∈ A+. Let f : A+ → B+ be a mapping satisfying (3). Then
there exists a unique positive-additive mapping A : A+ → A+ satisfying
(1) and

‖f(x)−A(x)‖ 6
ϕ(x, x)

16− 16L

for all x ∈ A+.
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Proof. Let (X, d) be the generalized metric space defined in the proof
of Theorem 2.2.
Consider the linear mapping J : X → X such that

Jg(x) :=
1
16
g (16x)

for all x ∈ A+.
It follows from (5) that∥∥∥∥f(x)− f(16x)

16

∥∥∥∥ 6
1
16
ϕ(x, x)

for all x ∈ A+. So d(f, Jf) 6 1
16 .

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let 0 < p < 1 and θ1, θ2 be non-negative real numbers,
and let f : A+ → B+ be a mapping satisfying (7). Then there exists a
unique positive-additive mapping A : A+ → B+ satisfying (1) and

‖f(x)−A(x)‖ 6
2θ1 + θ2
16− 16p

||x||p

for all x ∈ A+.

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y) =
θ1(‖x‖p + ‖y‖p) + θ2 · ‖x‖

p
2 · ‖y‖

p
2 for all x, y ∈ A+. Then we can

choose L = 16p−1 and we get the desired result. �

3. Stability of Eq. (1): Direct Method

In this section, using the direct method, we prove the Hyers-Ulam sta-
bility of the positive-additive functional equation (1) in C∗-algebras.

Theorem 3.1. Let f : A+ → B+ be a mapping for which there exists a
function ϕ : A+ ×A+ → [0,∞) satisfying (3) and

ϕ̃(x, y) :=
∞∑

j=0

16jϕ
( x

16j
,
y

16j

)
< ∞ (8)
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for all x, y ∈ A+. Then there exists a unique positive-additive mapping
A : A+ → A+ satisfying (1) and

‖f(x)−A(x)‖ 6
1
16
ϕ̃(x, x) (9)

for all x ∈ A+.

Proof. It follows from (5) that∥∥∥f (x)− 16f
( x

16

)∥∥∥ 6 ϕ
( x

16
,
x

16

)
for all x ∈ A+. Hence∥∥∥16lf

( x

16l

)
− 16kf

( x

16k

)∥∥∥ 6
1
16

k∑
j=l+1

16jϕ
( x

16j
,
x

16j

)
(10)

for all nonnegative integers k and l with k > l and all x ∈ A+. It
follows from (8) and (10) that the sequence

{
16jf

(
x

16j

)}
is Cauchy for

all x ∈ A+. Since B+ is complete, the sequence
{
16jf

(
x

16j

)}
converges.

So one can define the mapping A : A+ → B+ by

A(x) := lim
j→∞

16jf
( x

16j

)
for all x ∈ A+. By (3) and (8),∥∥∥A(x+ 4 4

√
x3y + 6

√
xy + 4 4

√
xy3 + y

)
−A(x)

−4A(x)
3
4 4
√
A(y)− 6

√
A(x)A(y)− 4A(y)

3
4 4
√
A(x)−A(y)

∥∥∥
= lim

n→+∞

∥∥∥16n
[
f

(
x

16n
+ 4 4

√
x3y

65536n
+ 6
√

xy

256n
+ 4 4

√
xy3

65536n
+

y

16n

)

−f
( x

16n

)
− 4f

( x

16n

) 3
4 4

√
f
( y

16n

)
− 6
√
f
( x

16n

)
f
( y

16n

)
−4f

( y

16n

) 3
4 4

√
f
( x

16n

)
− f

( y

16n

)]∥∥∥
6 lim

n→+∞
16nϕ

( x

16n
,
y

16n

)
= 0
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for all x, y ∈ A+. So∥∥∥A(x+ 4 4
√
x3y + 6

√
xy + 4 4

√
xy3 + y

)
−A(x)− 4A(x)

3
4

4
√
A(y)− 6

√
A(x)A(y)− 4A(y)

3
4

4
√
A(x)−A(y)

∥∥∥ = 0

for all x, y ∈ A+. Hence the mapping A : A+ → B+ is positive-additive.
Moreover, letting l = 0 and passing the limit k →∞ in (10), we get (9).
So there exists a positive-additive mapping A : A+ → B+ satisfying (1)
and (9).
Now, let B : A+ → B+ be another positive-additive mapping satisfying
(1) and (9). Then we have

‖A(x)−B(x)‖ = 16q
∥∥∥A( x

16q

)
−B

( x

16q

)∥∥∥
6 16q

∥∥∥A( x

16q

)
− f

( x

16q

)∥∥∥+ 16q
∥∥∥B ( x

16q

)
− f

( x

16q

)∥∥∥
6 2 · 16q−1ϕ̃

( x

16q
,
x

16q

)
,

which tends to zero as q →∞ for all x ∈ A+. So we can conclude that
A(x) = B(x) for all x ∈ A+. This proves the uniqueness of A. �

Corollary 3.2. Let p > 1 and θ1, θ2 be non-negative real numbers, and
let f : A+ → B+ be a mapping satisfying (7). Then there exists a unique
positive-additive mapping A : A+ → B+ satisfying (1) and

‖f(x)−A(x)‖ 6
2θ1 + θ2
16p − 16

||x||p

for all x ∈ A+.

Proof. Define ϕ(x, y) = θ1(‖x‖p + ‖y‖p) + θ2 · ‖x‖
p
2 · ‖y‖

p
2 , and apply

Theorem 3.1. Then we get the desired result. �

Theorem 3.3. Let f : A+ → B+ be a mapping for which there exists a
function ϕ : A+ ×A+ → [0,∞) satisfying (3) such that

ϕ̃(x, y) :=
∞∑

j=0

ϕ(16jx, 16jy)
16j

<∞
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for all x, y ∈ A+. Then there exists a unique positive-additive mapping
A : A+ → B+ satisfying (1) and

‖f(x)−A(x)‖ 6
1
16
ϕ̃(x, x)

for all x ∈ A+.

Proof. It follows from (5) that∥∥∥∥f(x)− f(16x)
16

∥∥∥∥ 6
1
16
ϕ(x, x)

for all x ∈ A+. The rest of the proof is similar to the proof of Theorem
3.1. �

Corollary 3.4. Let 0 < p < 1 and θ1, θ2 be non-negative real numbers,
and let f : A+ → B+ be a mapping satisfying (7). Then there exists a
unique positive-additive mapping A : A+ → B+ satisfying (1) and

‖f(x)−A(x)‖ 6
2θ1 + θ2
16− 16p

||x||p

for all x ∈ A+.

Proof. Define ϕ(x, y) = θ1(‖x‖p + ‖y‖p) + θ2 · ‖x‖
p
2 · ‖y‖

p
2 , and apply

Theorem 3.3. Then we get the desired result. �

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces,
J. Math. Soc., Japan, 2 (1950), 64-66.

[2] H. Azadi Kenary, On the stability of a cubic functional equation in random
normed spaces, J. Math. Extension, 4(1) (2009), 105-113.

[3] H. Azadi Kenary, On the Hyers-Ulam-Rassias stability of a functional
equation in non-Archimedean and random normed spaces, Acta Univ.
Apul., 27 (2011), 173-186.

[4] H. Azadi Kenary, Stability of a Pexiderial Functional Equation in Random
Normed Spaces, Rend. Circ. Mat., Palermo, (2011), 59-68.

www.SID.ir



Arch
ive

 of
 SID

62 H. AZADI KENARY

[5] H. Azadi Kenary and Y. J. Cho, Stability of mixed additive-quadratic
Jensen type functional equation in various spaces, Computer and Mathe-
matics with Applications, doi:10.1016/j.camwa.2011.03.024.

[6] H. Azadi Kenary, Sun Young Jang and Choonkil Park, A fixed point
approach to the Hyers-Ulam stability of a functional equation in vari-
ous normed spaces, Fixed Point Theory and Applications, 2011, 2011:67,
doi:10.1186/1687-1812-2011-67.

[7] H. Azadi Kenary, Jung Rye Lee and Choonkil Park, Nonlinear approxi-
mation of an ACQ-functional equation in nan-spaces, Fixed Point Theory
and Applications, 60 (2011), 1-22.

[8] H. Azadi Kenary, Choonkil Park and Jung Rye Lee, Non-Archimedean
stability of an AQQ functional equation, J. Comp. Anal. Appl., (in press).

[9] H. Azadi Kenary Kh. Shafaat, M. Shafei and G. Takbiri, Hyers-Ulam-
Rassias Stability of the Apollonius type Quadratic Mapping in RN-Spaces,
J. Nonlinear Sci. Appl., 4 (2011), 110-119.

[10] J. A. Baker, The stability of certain functional equations, Proc. Amer.
Math. Soc., 112 (1991), 729-732.
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