
Arc
hi

ve
 o

f S
ID

Majlesi Journal of Electrical Engineering Vol. 4, No. 1, March 2010

 33

An Intelligent Intrusion Detection System Using Genetic

Algorithms and Features Selection

H.M. Shirazi1, Y. Kalaji2
1- Faculty of ICT, Malek-Ashtar University of Tchnology, Tehran, Iran,

Email: shirazi@mut.ac.ir
2- Faculty of ICT, Malek-Ashtar University of Tchnology, Tehran, Iran,

Email: ykalaji@gmail.com

Received: September 2009 Revised: November 2009 Accepted: January 2010

ABSTRACT:
The reports show a rapid growth in the numbers of attacks to the information and communication systems. Also, we
witness smarter behaviors from the attackers. Thus, to prevent our systems from these attackers, we need to create
smarter intrusion detection systems. In this paper, a new intelligent intrusion detection system has been proposed using
genetic algorithms. In this system, at first, the network connection features were ranked according to their importance
in detecting attack using information theory measures. Then, the network traffic linear classifiers based on genetic
algorithms have been designed. These classifiers were trained and tested using KDD99 data sets. A detection engine
based on these classifiers was build and experimented. The experimental results showed a detection rate up to 92.94%.
This engine can be used in real-time mode.

KEYWORDS: Intrusion Detection Systems, Anomaly Detection, Genetic Algorithms.

1. INTRODUCTION

The need to accurately detect malicious intrusions
has arisen. Intrusion detection is an increasingly
important technology that monitors network traffic and
recognizes illegal use, misuse of computer systems, and
malicious attacks to computer systems. The difference
between security products and intrusion detection
systems is that the latter needs more intelligence. They
must analyze all gathered information and deduce
useful results.

Intrusion Detection Systems (IDS) are either
signature based or anomaly based. Most of current
IDSs are signature based and which they search a
signature in the captured traffic or log files and send an
alarm. This is similar to antivirus work methodology.
Anomaly based IDSs measure the deviation in behavior
of normal system state, and then sends an alarm if the
deviation exceeds a certain threshold [1]. Besides, IDS
can be classified as Network IDS (NIDS) or host based
IDS (HIDS). NIDS deals with network traffic while
HIDS deals with computer system logs and calls.

A. Genetic Algorithms

Genetic Algorithms (GA) are stochastic search
techniques based on the mechanism of natural selection
and natural genetics. The main components of a GA are
genes, Chromosome and the Fitness function. If we

want to search a solution for a problem within the
solutions space, we first determine the problem features
or attributes, these are called genes. Then we gather all
genes in one string called chromosome. The
chromosome represents the problem to be solved. Next
the chromosome must be coded into binary, numerical,
or nominal values, but the most famous is the binary
coding. The Fitness function is very important measure
to calculate the "goodness" of a chromosome; this
goodness value is called the fitness value.

The process of a GA [2] usually starts with
randomly selected chromosomes called the population.
The aim of any GA based problem is to search for the
best chromosome (solution). This is done by the
evolution cycle as shown in Fig. 1.

Fig. 1. Simple Genetic Algorithm structure [4]

Generate
initial

population

Evaluate objective
Fitness Function

Are optimization
criteria met?

best
individuals

Selection

Crossover

Mutation

ye

start

result Generate new
population

no

www.SID.ir

Arc
hi

ve
 o

f S
ID

Majlesi Journal of Electrical Engineering Vol. 4, No. 1, March 2010

 34

2. BACKGROUND OF SIMILAR WORK
In [5] the authors have implemented a simple

genetic algorithm which evolves weights for the
features of the data set. Then k-nearest neighbor
classifier was used for the fitness function of the GA as
well as to evaluate the performance of the new
weighted feature set. The main aim of work was to rank
features according to their importance. The results
provided an increase in intrusion detection accuracy.

Xiao et al. [6] present an approach that uses
information theory and genetic algorithms to detect
abnormal network behaviors. The information theory
was used to determine the most relevant features to the
detection operation. A small number of network
features are closely identified with network attacks.
However, this approach considers only discrete features
and ignores other important features such as duration,
source and destination bytes.

Chittur [7] designed a genetic algorithm that
promoted a high detection rate of malicious behavior
and a low false positive rate of normal behavior
classified as malicious. The genetic algorithm was
given “training data” from which an empirical model of
malicious computer behavior was generated. This
model was then tested over previously unseen data to
gauge its real-world performance. The results were so
good and the classification accuracy was 97.8%. Also
these results are good but are biased towards the
training dataset (KDD 10% training set), because the
last rules extracted from the training phase have been
tested on the rest (90%) of the KDD dataset, i.e. testing
and training the dataset are from the same distribution.
The author should test his results on the KDD
unlabeled test dataset that contains 311029 records and
is taken from different distribution

Wei Lu and Issa Traore [8] present an approach that
uses GP to directly derive a set of classification rules
from historical network data. The approach employs
the support-confidence framework as the fitness
function and is able to generally detect or precisely
classify network intrusions. However, the use of GP
makes implementation more difficult and more data or
time are required to train the system

Wei Li, [2] proposed a GA-based method to detect
anomalous network behaviors. Both quantitative and
categorical features of network data are included when
deriving classification rules using GA. The inclusion of
quantitative features may lead to increased detection
rates. However, no experimental results are available
yet.

G. Jim, L.D and Cui [9] have developed a rule
based classifier to filter the abnormal traffic, the
classifier resultant shows a high detection rate if
applied on the training 10%KDD99 dataset, but there is
no indication about testing this classier on another
dataset from another distribution like KDD99 test

dataset, besides the resultant classier depends only on
three features "service, host-count, host_srv_count"
which is not sufficient for detecting diverse attacks.

3. KDD99 DATA SETS DESCRIPTION

The KDD99 dataset [10] is now the benchmark for
training, testing and evaluating learning IDSs, so it is
the basis for IDS developers.

A. KDD99 Dataset Description
The dataset was used for the Third International

Knowledge Discovery and Data Mining Tools
Competition, which was held in conjunction with
KDD-99, the Fifth International Conference on
Knowledge Discovery and Data Mining. The
competition task was to build a network intrusion
detector, a predictive model or a classifier that can tell
what are "bad'' connections, called intrusions or attacks,
and what are "good'', called normal connections.

Lincoln Labs set up an environment to acquire nine
weeks of raw TCP dump data for a local-area network
(LAN) simulating a typical U.S. Air Force LAN. They
operated the LAN as if it were a true Air Force
environment, and inserted multiple attacks. These
attacks fall into four main categories:

• DOS: denial-of-service, e.g. syn flood.
• R2L: unauthorized access from a remote

machine, e.g. guessing password;
• U2R: unauthorized access to local super user

(root) privileges, e.g., various "buffer overflow''
attacks;

• Probing: surveillance and other probing, e.g.,
port scanning.

The KDD99 datasets is composed of records that
are called connections. Each connection has 41 features
and a label which indicates the attack name. The label
is supported only for the training dataset. Fig. 2. shows
these features.

Basic Features
1 duration
2 protocol_type
3 service
4 flag
5 src_bytes
6 dst_bytes
7 land
8wrong_fragme
nt
9 urgent

Content
features
10 hot
11num_failed_l
ogins
12 logged_in

13 num_compromised
14 root_shell
15 su_attempted
16 num_root
17num_file_creations
18 num_shells

Traffic features
19 num_access_files
20num_outbound_cm
ds
21 is_host_login
22 is_guest_login
23 Count
24 srv_count
25 serror_rate

26 srv_serror_rate
27 rerror_rate
28 srv_rerror_rate
29 same_srv_rate
30 diff_srv_rate
31 srv_diff_host_rate
32 dst_host_count
33 dst_host_srv_count
34 dst_host_same_srv_rate
35 dst_host_diff_srv_rate
36dst_host_same_src_port_r
ate
37dst_host_srv_diff_host_ra
te
38 dst_host_serror_rate
39 dst_host_srv_serror_rate
40 dst_host_rerror_rate
41 dst_host_srv_rerror_rate

Fig. 2. The 41 connection features of KDD99 dataset

www.SID.ir

Arc
hi

ve
 o

f S
ID

Majlesi Journal of Electrical Engineering Vol. 4, No. 1, March 2010

 35

B. Distribution of KDD99 Attacks
1.1.1.The KDD99 datasets are divided into three
parts:

• Full training dataset which has 4898431 labeled
records and is used for training purposes.

• 10% training dataset which has 494021 labeled
records. Since the full dataset is huge an IDS
developer can train his IDS on just 10% of the
full dataset.

• Testing dataset. It has 311029 unlabeled
connections.

1.2.1.Table 1 shows the distribution of these
connections.

Table 1. Distribution Of Attack Classes

Class 10% KDD Training
Dataset

Full Training
Dataset

Testing
Dataset

normal 97278 19.69% 972781 19.86% 60593 19.48%

DoS 391458 79.24% 3883370 79.28% 229853 73.90%

Probe 4107 0.83% 41102 0.84% 4166 1.34%

R2L 1126 0.23% 1126 0.02% 16347 5.26%

U2R 52 0.01% 52 0.001% 70 0.02%

In the following, Table 2 shows the known and

unknown attacks in both training and testing KDD99
datasets.

Table 2. Known and Unknown Attacks in Training and

Testing datasets

Class
Known Attacks

(in training + testing
datasets)

unknown Attacks
(in testing data

set)

DoS

back, land, neptune
(syn flood), pod (ping
of death), smurf,
teardrop

apache2, mailbomb,
processtable,
udpstorm

R2L

ftp_write,
guess_passwd, imap,
multihop, phf, spy,
warezclient,
warezmaster

httptunnel, name,
sendmail,
snmpguess,
worm,xlock,
xsnoop

U2R
buffer overflow,
loadmodule, perl,
rootkit

ps, sqlattack, xterm

PROBE ipsweep, nmap,
portsweep, satan mscan, saint.

4. FEATURES SELECTION

Indeed it is very important to reduce the number of
features by selecting the most important ones. For
example in the problem of designing an intelligent
intrusion detection system, developers are exposed to
deal with the KDD99 data sets, the training dataset

contains about 5 million connection records, each
record contains 41 features. So it is time consuming to
train the system considering all features. But if we
could reduce the number of features for example to 8
features we will decrease very much of the amount of
huge computations.

Our approach will employ the information theory to
sort the most important features.
Indeed it is thought that the dataset space can be
divided into:

• Broadly 2 main classes: Normal & Attack.
• Or more precisely 5 classes: Normal, DoS,
R2L, U2R, Probe

So the dataset space can be described by the
following random variables:
X: the decision random variable. Its state space is
{Normal, DOS, U2R, R2L, and Probe}
Y: The connection feature random variable. Indeed
there are 41 independent random variables like

• Y = YProtocol_type = {ICMP, TCP, UDP}
• Y = Yland = {0, 1}
Now to extract the importance of a connection

feature (ex. ptotocol_type), one can calculate "the
amount of information about X (normal connection
or DOS or R2L or U2R or Probe) contained in Y
(connection feature ex. protocol_type)"

Indeed the previous statement is exactly the mutual
Information [1] of X and Y that are explained in I-A.

A. Case Study: Information about Attacks
Contained In Protocol_Type Feature.

In the following comes a case study to give an
explanation about mutual information is calculated for
X {normal, Attack} and Y {UDP, TCP, ICMP}.
Step1: we calculate the distribution of connections of X
and Y using the KDD99 training Full dataset as shown
in Table 3.

Table 3. Conn# according to protocol_type
and traffic Class

 X random variable
 Normal DoS R2L U2R PROBE Total

ICMP 12763 2808150 0 0 12632 2833545

TCP 768670 1074241 1126 49 26512 1870598

UDP 191348 979 0 3 1958 194288

Y
pr

ot
oc

ol
_t

yp
e

TOTAL 972781 3883370 1126 52 41102 4898431

Then we calculate the probability distribution of

these connections as shown i Table 4.
In Table 4, the upper probability value in italic is

the intersection probability P(X, Y). The lower
probability value is the conditional probability P (X|Y)
= P(X,Y) / P(Y).

www.SID.ir

Arc
hi

ve
 o

f S
ID

Majlesi Journal of Electrical Engineering Vol. 4, No. 1, March 2010

36

Table 4. Probability and conditional probability of X and Y=Yprotocol_type
X random variable

Pnormal PDoS PR2L PU2R PPROBE P(Y)

0.0026 0.5733 0 0 0.0026 PICMP
0.0045 0.9910 0 0 0.0045

0.5785

0.1569 0.2193 0.0002 1.0003E-05 0.0054 PTCP
0.4109 0.5743 0.0006 2.6195E-05 0.0142

0.3819

0.0390 0.0002 0 6.1244E-07 0.0004 PUDP
0.984 0.0050 0 1.5441E-05 0.0101

0.0396

Y
pr

ot
oc

ol
_t

yp
e

r.
v

P(X) 0.6140 0.3581 0.0008 3.6811E-05 0.0270

Step2: Let's calculate the entropy H(X) of X which
means the uncertainty of X (normal or attack)

normalPROBERULRDoSattack

attackattacknormalnormal

PPPPPpwhere
pppPXH

−=+++=
−−=

1
loglog)(

22

22

H(X) = -0.614 log (0.614) - 0.3851 log (0.3851) =
0.9622

Step3: Let's calculate the conditional entropy H(X,
connection feature) of X which means the uncertainty
of X (normal or attack) given that the connection
feature is protocol_type.
H(X|Yprotocol_type)=P(icmp){H(normal|icmp)+H(attack
|icmp)}+p(tcp){H(normal|tcp)+H(attack|tcp)}+P(udp){
H(normal |udp)+H(attack |udp)}
H (normal |icmp) =-p (normal |icmp) log P (normal
|icmp) H(X |protocol_type) = 0.5785 {-0.0045 log
(0.0045) -0.9955 log (0.9955)} +0.3819 {-0.4109 log
(0.41092)-0.5891 log (0.5891)} +0.0397{-0.9849 log
(0.9849) - 0.0151 log (0.0151)} = 0.4016

So when protocol_type is introduced, the
Uncertainty decreased from 0.9622 to 0.4016.
Step4: calculating the mutual information of X and Y
I(X, Y) =H(X)– H(X|protocol_type) =0.9622-0.4016 =
0.5606

So 0.5606 is the amount of information
about

X {normal or attack} contained in
protocol_type

In the same way one can get the
I(X,Y=Yprotocol_type) for X={DoS, Others}, {R2L,
Others}, {U2R, Others}, {PROBE, Others}.

B. All Features Ranking
In this case study we have studied the role of

protocol_type feature in classifying a connection into
one of the following classes {Normal, DoS, U2R, R2L,
and PROBE}. Now we have to generalize previous
calculation for the 41 features. So Table III, Table 4
and mutual measures I(X,Yfi) will be recalculated 41
times. The resulting calculations will be organized in a
table like Table 5.

Table 5. MUTUAL information TABLE

Feature Normal
/attack

DoS/
Others

R2L/
Others

U2R/
others

probe/
others

Duration 0.052897 .0577 0.004084 0.0008 0.0014
Protocol_type 0.304063 .3046 0.003147 0.00013 0.00180

Service 0.570986 .5999 0.014867 0.00079 0.0341

Now to rank features according to their

importance we sort each column in descending
order. Table VI shows the ranking results. The
feature name was substituted with its number
according to Fig. 2.

C. Data Preprocessing And Normalization
Each record in the KDD99 data sets contains 41

features that belong to different range values as shown
in the example in Table 6.

Table 6. Features values differences
Feature name

(f i)
Type Values

example Max

Duration Continous 565,255 58329

Dst_Bytes Continous 125454,
45454 1309937401

Same_Srv_Rate Continous 0.23,
0.65 1

Protocol_type Discrete,
Text

Tcp,
Icmp,
Udp

×

Flag Discrete,
Text

SF, REJ,
S1 ×

So normalization is needed to put all features in a

homogenous value space. The following normalization
measure is suggested:

)max(
),('

i

i
ffi F

f
YXInormalizedf

ii
==

• Where I(X,Yfi) is the mutual information
contained feature fi (or amount of information
about attack contained in fi)

www.SID.ir

Arc
hi

ve
 o

f S
ID

Majlesi Journal of Electrical Engineering Vol. 4, No. 1, March 2010

 37

• Max(Fi) is the maximum value of the feature fi in
the complete KDD99 training dataset (4898431
connections) and is defined as the following:

o If fi ≠0 then we take the maximum over
the complete data set.

o If fi =0 then Max(Fi)=1
o If fi is text like protocol_type, flag, service

then we sort feature values in ascending
order according to their probability
distributions, then we assign serial
numbers to them from 1 to last value.
After then we normalize according to
relation before. The next example shows
how to normalize text features.

Ex. normalizing protocol_type feature: Table 7
shows how to normalize text values by sorting in
descending order then numbering and then dividing by
max value.

Table 7. Protocol_type feature normalization

Protocol_type records sorting Numbering Dividing by
max f'

i

ICMP 2833545 UDP 1 1/3 0.1013
TCP 1870598 TCP 2 2/3 0.2027

UDP 194288 ICMP 3 3/3 0.3041

In the previous example textual features are not

only normalized between [0,1] but are given an
importance weight according to their distribution in the
KDD connections so:
 fi is more important than fj),(),(

ji ff YXIYXI >

All KDD99 or other traffic will be now passed
through the "Normalization & Preprocessing Unit".
The output will be considered the new KDD99 dataset.

5. GA BASED ANOMALY IDS
In this section some anomaly models will be
introduced, all these and other models will be evaluated
according to performance measures.

A. Algorithm Performance Measures
To evaluate how much the detection algorithm is good,
the following measures must be calculated (indeed
FPR, DR, and NDR are the most important ones):

• TP (True Positive): Number of connections that
were correctly classified as Attack.

• TN (True Negative): Number of connections that
were correctly classified as Normal.

• FP (False Positive): Number of normal
connections that were classified as Attack.

• FN (False Negative): Number of attack
connections that were classified as Normal.

• TPR = DR: Detection Rate=
FNTP

TP
+

• NDR : Detection Rate of new attacks

attacknewallofnumber
attacksectedcorrectlyNewofnb

NDR
det

=

Since the KDD99 testing dataset contains new attacks
that were not included in the training data set. NDR can
be called the "algorithm cleverness".

• TNR: True Negative Rate =
FPTN

TN
+

• CR :Classification Rate
setdatasizeof

TNTP +
=

• FPR: False Positive Rate
TNFP

FP
+

=

• FNR: False Negative Rate
TPFN

FN
+

=

B. GA Classifier
Our genetic classifier is named GACL and has the

following form:

⎪
⎪
⎩

⎪⎪
⎨

⎧
<

=
∑
=

NORMALisconnelse

ATTACKisconnthenthresholdconnfWif
connGACL

j

j

n

i
jii

j
1

)(
)(

Where connj = connectionj = (duration, service,
src_bytes, dst_bytes, count) j

The inequality < was chosen since for the previous

features most of attack connections in the KDD training
set have low values. For example, the KDD training
dataset contains 396743 attack records, 396083 of them
have a duration value equals to 0.

Parameters Coding:
The GACL parameters are encoded in the following

way:
• The GACL has six parameters:

o 5 parameters represent the weights of
features (W1,W2,W3,W4,W5)

o 1 parameter represents the threshold
value.

• Each parameter has 11 bits, except the Threshold
which has 10 bits:

o 10 bits for the parameter value
o One bit for the sign.

• The 10 bits (parameter value) was chosen to have
a precision of 210 ≈ 0.001.

• The Threshold always holds a positive value
• As an example, one can gets the value of Gene1

as the following:
o Gene1= 11000000010 = 1 &

1000000010
o The 11th bit = 1 so the sign is negative

(if the 11th bit = 0 then the sign is
positive).

o The decimal value of 1000000010 =
1×29+0×28+0×27+0×26+0×25+0×24+0×
23+0×22+1×21+0×20=514

www.SID.ir

Arc
hi

ve
 o

f S
ID

Majlesi Journal of Electrical Engineering Vol. 4, No. 1, March 2010

 38

o So Gene1= 11000000010 = -514
Table 8.a shows the chromosome genes.

Table 8.a. Parameters Coding
example

Genes gene Gene
borders Binary

representation
Gene

decimal

Gene1 Wduration [-1023,1023] 11000000010 -514

Gene2 Wservice [-1023,1023] 01000000010 514

Gene3 Wsrc_bytes [-1023,1023] 00000000010 2

Gene4 Wdst_bytes [-1023,1023] 11111111111 -1023

Gene5 Wcount [-1023,1023] 01111111111 1023

Gene6 Threshold [0,1023] 0101011010 532

The chromosome of the previous genes is

Gene6 Gene5 Gene4 Gene3 Gene2 Gene1
0101011010 01111111111 11111111111 00000000010 01000000010 11000000010

532 1023 -1023 2 514 -514

So the GACL of this chromosome is:

⎪⎩

⎪
⎨

⎧ <+−++−
=

NORMALisconnelseATTACKisconnthen

fffffif
connGACL

jj

countbytedstbytesrcserviceduration

j

532102310232514514
)(

__

Data Structure:
The data structure of a classifier is shown in Fig.3.

Type INDIVIDUAL // individual structure
 crom (1..gensNb*genLength) As Byte
 // classifier or GACL ex. 110101010000100110001100
 decCode (1. . gensNb) As Integer
 // decimal values of genes ex. (512 340 211 -20 -10 20)
 fitVal As Double
 // the fitness function value of the chromosome
 fitProb As Double // the probability of fitness value
 reFit As Boolean //indicates if it is necessary to recalculate
Fitness
 TP As Long // attack connections detected by this
chromosome
 TN As Long // normal connections discovered by
chromosome
 FP As Long // False positive connections by chromosome
(filter)
 FN As Long //False negative connections by chromosome
(filter)

Fig. 3. Individual data structure

isizepopulation
i

i chromosomi
fitVal

fitVal
fitprobWhere ==

∑1

Fig.4 shows the generation data structure

Type generation // generatiopn structure
 pop (1..populationSize) As INDIVIDUAL
 // set of classifiers or chromosomes in the generation
 sumFitness As Double
 //generation strength=sum of fitness of population
chromosomes
 BestIdv As Integer // best individual
 WorstIDV As Integer // worst individual

 genrNb As integer // generation number
Fig. 4. Individual data structure

When evolution operation starts the whole results

will be stored in a database according to previous data
structure, this enables to extract and build many useful
statistics about the found solutions.

Fitness Function:
The fitness function explained in Fig.5 is the same

as the classification rate:

fitVal or fitnessValue = CR

Since every chromosome in the population is a
solution (classifier), its CR value will be calculated
according to the KDD10% training dataset which
contains the connection features and labels (normal,
attack).

Function GetFitnessValue
 Input : (individual , training set)
 // individual contains 6 genes = W1,W2,W3,W4, W5, Threshold
 // training set = normalized & preprocessed KDD10%
 Output:(fitVal= individual fitness value)
 for i = 1 to sizeof (training dataset) // conni is a record from
training set
 if thresholdconnfW

j
ijj <∑

=

4

1

)(then // conni classified as an

attack
if conni.label = "attack" then //conn is realy an attack

 individual.TP = individual.TP + 1
else //conn is normal in the training set

 individual.FP = individual.FP + 1 //conn is normal
end if

 else // conn is classified as normal
if conni.label = "normal" then //conn is realy an attack

 individual.TN = individual.TN + 1
else //conn is normal in the training set

 individual.FN = individual.FN + 1 //conn is normal
end if

 end if
 next

dataset) training(sizeof
...fitValindividual fitValreturn TNindividualTPindividualCR +

===

End function
Fig. 5. Structure of the Fitness function

GA Operations:
Our approach uses "two-point crossover" technique

and "Bitwise bit-flipping" as a mutation method.
The following is a brief presentation about the

genetic operations used in proposed learning GA, these
operations are: Selection, Crossover, and mutation.

The "Roulette Wheel" selection method was
adopted because it is easy to implement and converge
quickly but a drawback is that if for example an
individual fitness is 90% there is a low chance for other
individuals to be selected. The main idea of this

www.SID.ir

Arc
hi

ve
 o

f S
ID

Majlesi Journal of Electrical Engineering Vol. 4, No. 1, March 2010

 39

selection method is that better individuals get higher
chance and chances are proportional to their fitness
value. To implement this, each individual was assigned
to a part of the roulette wheel (slice) and then one can
spin the wheel to select an individual. The following
example explains this strategy.

Selection using "Roulette Wheel" example
Given that the population of the generation is as in

Table 8.b.
Calculate the sum of all fitness values for all

individuals in the population and then calculate the
slice value (fitness probability) of each individual. Now
the roulette wheel will be constructed as shown in
Fig.6.

Table 8.b. Population example

Individual Nb Chromosome Fitness
Value

Fitness
Probability

Indiv 1 10101110100010 0.60 24.00%
Indiv 2 00101000100110 0.12 4.80%
Indiv 3 00001110111110 0.97 38.80%
Indiv 4 10000110111110 0.80 32.00%

Total 2.5 100 %

Indiv 1,
24.00%Indiv 4,

32.00%

Indiv 3,
38.80%

Indiv 2,
4.80%

Fig. 6. Roulette wheel according to Fitness probability

To spin the wheel we select a random number

between 0 and 1 for example 0.3451 = 34.51% then we
compute the sum of individual's fitness value until
reaching to 0.3451.

24.00 % + 4.8 % < 34.51% < 24.00 % + 4.8
% + 38.8 %

So the selected spice (parent) is the individual 3.
This is predictable since individual 3 has the largest
probability. In the same way you can select the second
parent by reconstructing the wheel after eliminating
individual 3.

This strategy is good because the strongest parents
will generates more children.

Running a GA To Get GACL Parameters:
Figure 7 represents the learning genetic algorithm to

determine the GACL parameters. The following is the
detection algorithm which determines the 6 parameters

to build the network traffic classifier.
Where HighCR is High Classification Rate and it

represents the stop criteria, it may be for example in the
range [0.975,1]. If this detection rate hasn't been
reached then the GA will stop when the predefined
generation's number is reached. At the end of the
previous algorithm, the chromosome that has the
largest HighCR will be selected and considered as the
problem solution (classifier).

Experimental Results:
• Best Individual and Classifier: The proposed

GA in Fig. 8 was executed using the following
parameters:

Chromosome length = 66 features selected

=1,3,5,6,23
Generations number=200 Population Size=500
Training set=KDD10%
training set

Crossover Probability
Pc=0.7

Genes Number = 6 HighCR >=97.50 %
mutation propability
Pm=0.02

Fig. 7. Genetic Algorithm to build Network traffic

classifier

The best chromosome found was:

0011101000111110010101100011000000111011100101101001011
00001100111

Table 10 shows a description of the individual of

this chromosome. Of course this chromosome is the
classifier aim of the search.

CreateInitialRandomPopulation CURRENT_GENERATION
i=0
While i <= generationsNumber OR

CURRENT_GENERATION.BestChrom.fitValue >= HighCR

- For each individual in CURRENT_GENERATION calculate its fitness
using the function GetFitnessValue

- For each individual in CURRENT_GENERATION Calculate the
fitness probability // this step is necessary for roulette wheel selection

- Repeat the following steps until n offspring have been created:
 // n = population size

o Parent1 <- rouletteWheel selection form
URRENT_GENERATION

o Parent2 <- rouletteWheel selection form
{CURRENT_GENERATION - Parent1}

o Cross over the two parents (2-point crossover) with probability
Pc to form two offspring. (If no crossover occurs, the
offspring are exact copies of the parents.) Select one of the
offspring at random and discard the other.

o Mutate each bit in the selected offspring with probability Pm, and
place it in the NEW_GENERATION

- Store NEW_GENERATION in a database // this step is optional but
useful to restart the GA from this point

- CURRENT_GENERATION = NEW_GENERATION

- i=i+1
end while

www.SID.ir

Arc
hi

ve
 o

f S
ID

Majlesi Journal of Electrical Engineering Vol. 4, No. 1, March 2010

40

Table 9. Best Individual for our GACL
Weights of Network Connection Features GACL parameters

(Fitness = 0.97971) Threshold
Wcount Wdst_bytes Wsrc_bytes Wservice Wduration

Binary Chrom 00111010001 11110010101 10001100000 01110111001 01101001011 00001100111

Coded Chrom 465 -917 -96 953 843 103

Table 10. Linear Genetic Algorithm classifier performance measures

Rate Class Records Detected
DR NDR

NORMAL 60593 58330 96.27% -
DOS 229853 222142 96.65% 16.34%

PROBE 4166 3227 77.46% 92.34%
R2L 16347 4953 30.30% 0.40%
U2R 70 53 75.71% 77.42%

TOTAL DR=91.99% NDR=14.89% CR=92.82% FP=3.73% FN=8.01%

So the Network Anomaly Intrusion Detection
classifier is

⎪⎩

⎪
⎨

⎧ <−−++
=

NORMALisconnelseATTACKisconnthen

fffffif
connGACL

jj

countbytedstbytesrcserviceduration

j

46591796953843103
)(

__

Classifier 1
• Discussion: the previous classifier gives a

classification rate equals to 97.971% if applied to
the training data set. This classifier was applied
to detect attacks in the KDD99 test dataset; and
following results given in Table 11 were found.

• GACL Detection Rates for all types of attacks:
Table 12 shows our system efficiency for all
attack types and for both known types of attacks
that were included in the KDD10% training
dataset and for known and unknown attacks that
are included in the KDD99 test data set.

GACL has detected all types of known and
unknown attacks except "phf" and "phf" attack from the
known group and "mailbomb", "udpstorm" and
"snmpgetattack" from the unknown attack group.

C. Multi GACls Anomaly IDS (GACAL ANOMALY
IDS)

The previous technique based on GACL can be
improved by designing a detection engine with multi
classifiers. Figure 8 shows the structure of this engine.

• Classifier1 detects anomaly behavior assuming
that attacks are in the lower area. Indeed it is
assumed that if the classifier value is less than a
threshold (< 465) then the connection is an
attack, so there are some attacks that are in the
upper area that were not detected.

• Classifier 2 detects attacks in the upper area. The
same learning genetic algorithm (in VII.5) was
launched by changing the inequality condition.

⎪⎩

⎪
⎨
⎧ >=−+++

=
NORMALisconnelseATTACKisconnthen

fffffif
connGACL

jj

countbytedstbytesrcserviceduration

j

25991232571050844
)(

__

Classifier 2

Table 11. Attacks detection rates using GACL
attackClass attack_name Total records Detected Detection Rate

back 1098 0 0.00%
Land 9 1 11.11%
Neptune 58001 57075 98.40%
Pod 87 6 6.90%
Smurf 164091 163986 99.94%

DOS

Teardrop 12 3 25.00%
Ipsweep 306 3 0.98%
Nmap 84 4 4.76%
Portsweep 354 23 6.50% PROBE

Satan 1633 1545 94.61%
ftp_write 3 2 66.67%
guess_passwd 4367 4367 100.00%
Imap 1 1 100.00%
Multihop 18 7 38.89%
Phf 2 0 0.00%

R2L

Warezmaster 1602 535 33.40%
buffer_overflow 22 18 81.82%
Loadmodule 2 2 100.00%
Perl 2 2 100.00%

K
N

O
W

N
 A

T
T

A
C

K

U2R

Rootkit 13 7 53.85%

apache2 794 312 39.29%
Mailbomb 5000 0 0.00%
Processtable 759 759 100.00%

DOS

Udpstorm 2 0 0.00%
Mscan 1053 1053 100.00% PROBE
Saint 736 599 81.39%
Httptunnel 158 2 1.27%
Named 17 11 64.71%
Sendmail 17 11 64.71%
Snmpgetattack 7741 0 0.00%
Snmpguess 2405 2 0.08%
Worm 2 2 100.00%
Xlock 9 9 100.00%

R2L

Xsnoop 4 4 100.00%
Ps 16 12 75.00%
Sqlattack 2 2 100.00%

U
N

K
N

O
W

N
 A

T
T

A
C

K

U2R
Xterm 13 10 76.92%

www.SID.ir

Arc
hi

ve
 o

f S
ID

Majlesi Journal of Electrical Engineering Vol. 4, No. 1, March 2010

 41

Table 12. Comparison BETWEEN RANDOM
classifier and GA based chaffier

Class RANDOM CLASIFIER OUR GACL
NORMAL 88.61% 96.27%

DOS 96.83% 96.65%
PROBE 62.48% 77.46%

R2L 0.1% 30.30%
U2R 0 75.71%

TOTAL
TP=DR 89.92% 91.99%

CR 89.67% 92.82%
FP 11.39% 3.73%

• Classifier 3: detects more PROBE attacks in the

upper area. The GA was trained to find the best
weight for top 5 probe features found in Table
VI. After running this GA detector, the following
classifier was found:

NORMALisconnelseATTACKisconnthen

fffffif

jj

ratesrvdiffhostdstcountsrvhostdstratererrorbytessrcservice 7828988329891911020 _________ >=+−+−

Classifier 3

The paper's GA was also launched using selected
features for U2R and R2L features and it was found
that the results were not encouraging for the training
KDD dataset so no more classifiers were included in
the anomaly detection engine. Table 13 shows the
results of this engine with a comparison with previous
approaches when applied to the KDD test dataset.

Fig. 8. "GACL ANOMALY IDS" based on 3 genetic

algorithms classifiers

Table 13. Results of our GA based Detection engine
Class Classifier1 GACL Anomaly IDS

NORMAL 96.27% 96.14%
DOS 96.65% 96.68%

PROBE 77.46% 85.77%
R2L 30.30% 30.30%
U2R 75.71% 75.71%

TOTAL
TP=DR 91.99% 92.16%

NDR 14.89% 14.95%
CR 92.82% 92.94%
FP 3.73% 3.86%

It is seen that there is a serious improvement in

detecting probe attack and a little improvement in
detecting DoS attacks but the FP was lightly increased.

D. Criticizing Using GAs In The Detection:
• Does GA decrease the time to find a classifier?
Of course it does. In this problem the chromosome
length is 6*11=66 so there is 266 solutions (filters).
While GA found a solution after 160 generations,
so it has tested 160 × 500 = 80000 solutions
instead of 266 which is a huge save in time. This
GACL may be not the best solution but the results
were satisfying.

• Does GA differ from random treatment?

In this problem one may wonder that GA technique
doesn't differ from random solutions. To ensure or
not this interrogation a random filters
(chromosomes) has been generated. The number of
chromosomes is equal to those generated by the
GA when the best one has been found:

 Number of generations × population size= 160 ×
500 = 80000 random filters

These filters have been applied to the KDD99 10%
training set and the filter with the best classification
rate was selected. Then this best filter was applied to
the KDD test dataset and the following results
presented in Table 14 were found.

These results support this claim that GA is not just a

fancy form of random solutions.

6. COMPARING APPROCHES AND
GATHERING ALL ANOMALY MODELS

A. Comparing Approaches
Table 15 and Fig.9 show a comparison between this

approach and other ones [11]:
It is observed that this approach performs better,

especially for detecting R2L attacks.

INITIALIZER

DoS
collector

U2R
collector

R2L
collector

Collector

Classificatio
n

 (DOS,
Probe, R2L,
U2R)

Informer
(Alarm Unit)

All traffi c -

Rest traffic – attack

Rest traffic – attack

Probe
collector

REPORTER

5-
N

N

D
E

T
E

C
T

IO
N

 E
N

G
IN

E

Unclassified traffic
Reference

KDD 10% training set

Preprocessing & normalization unt

Normal
collector

Rest traffic = Normal

DOS detection
(DOS_feature

s)

Probe
detection

(probe feature

U2R detection
(U2R_features

)

R2L detection
(u2r_features)

www.SID.ir

Arc
hi

ve
 o

f S
ID

Majlesi Journal of Electrical Engineering Vol. 4, No. 1, March 2010

 42

B. Gathering All Anomaly Models
All previous approaches (this approach + others)

can be programmed into one package which may be
called "Anomaly IDS package" as shown in Fig.11a.
Then it is up to the user to select one anomaly detection
method

Then to position the "Anomaly IDS package", there
are two possibilities:

1. Standalone: put the package immediately on
the network. Of course firstly the following is
needed:

o sniffer or TCPDUMP software
o tcpdump_to_kdd99 function to
convert formats.

2. After a signature based IDS like SNORT. In
this case SNORT or another will alarm for bad
signatures and then the resident traffic which is
classified as normal will be send to
tcpdump_to_kdd99 transformer and then will be
processed by "Anomaly IDS package".

Table 14. Comparing our approach to design anomaly IDS with other's
 Our IDS s Other's IDSs

CLASS

G
A

C
L1

G
A

C
L

A

N
O

M
A

LY

ID
S

5N
N

 [1
1]

O
th

er
's

LG
A

cl

as
si

fie
r [

6]

R
un

ne
r u

p
of

K

D
D

 [1
2]

R
SS

-D
SS

[1

3]

M
O

G
F-

ID
S

[1

1]

PN
ru

le
 [1

4]

C
Tr

ee
 [6

]

C
5

[6
]

C
4.

5
[1

1]

SV
M

 [1
1]

C
up

 w
in

ne
r

[1
5]

NORMAL 96.27 96.14 95.89 98.34 99.4 96.5 98.36 99.5 92.78 99.5 98.38 97.99 99.5

DOS 96.65 96.68 97.00 99.33 97.5 99.7 97.20 96.9 98.91 97.1 96.99 97.56 97.10

R2L 30.3 30.3 6.90 5.86 7.3 31.2 11.01 7.3 7.41 8.4 1.45 3.55 8.40

U2R 75.71 75.71 14.91 63.64 11.8 76.3 15.79 11.8 88.13 13.2 14.47 10.09 13.20
PROBE 77.46 85.77 81.61 93.95 84.5 86.8 88.6 84.5 50.35 83.3 81.88 81.61 83.30

N
O

R
M

ALD
O

S

R2LU
2R PR

O
BE

G
A

C
L1

G
A

C
L

A
N

O
M

A
LY

5-
N

N

O
th

er
's

LG
A

R
un

ne
r

up
of

 K
D

D

R
SS

-D
SS

M
O

G
F-

ID
S

Pn
ru

le

C
tr

ee C
5

C
4.

5

SV
M

C
up

w
in

ne
r

 ** OUR ** OTHER APPROCHES

Fig. 9. Detection Rate Comparison

Fig. 20(a&b). Shows an illustration of these two possibilities.

Signature based NIDS like
SNORT, BRO ,..

Network A
L
A
R
M

Normal

b) after signature

Tcpdump_to_kdd99
format Converter

NORM
Anomaly IDS

Sniffer (SNORT,
TCPDUMP,.)

Network

a)

Tcpdump_to_kdd9
9 format Converter

NORM
Anomaly IDS

C5,

GA

5 NN
RSS-DSS

O
th

er

GACL Anomaly

A
L
A
R
M

A
L
A
R
M

C5,

GA

5 NN
RSS-DSS

O
th

er

GACL Anomaly

www.SID.ir

Arc
hi

ve
 o

f S
ID

Majlesi Journal of Electrical Engineering Vol. 4, No. 1, March 2010

43

7. CONCLUSION
By applying the information theory measures like

entropy and mutual information, 41 connection features
were ranked after the normalization process according
to each attack class. This ranking allows decrement in
the computing complexity by selecting the most
important features for each attack class. Features
selection proved that they dramatically decreased the
detection speed without affecting the detection rates.

Using GA, a linear classifier was designed that uses
the top five features according to their importance in
detecting attack using information theory measures.
The classification rate was 92.82% and, the new
detection rate was 14.89% which is significantly better
than any other approach presented before. But the best
detection rate was for detecting R2L attacks (30.30%)
knowing that R2L attacks are hard to detect.

Later, multi GACLs anomaly intrusion detection
engine was proposed. This engine, based on the
selected features for each attack classes, consists of
three classifiers; two of them are employed to detect
DoS attacks in the upper and lower area of the dataset
space, and one to detect more PROBE attacks. This
engine proved that it detects more DOS and PROBE
attacks.

GA based detection models were better than C5,
C4.5, cupWinn, K-NN based models and others,
especially in R2L attacks. The great gain is that they
are so fast since each connection will be classified in no
more than three steps. So GA based classifiers can be
used in real-time mode. But the long training time still
is the drawback of this methodology.

A package called "Anomaly IDS package" was
proposed to detect anomaly attack in network traffic.
This package gathers all IDSs proposed in the paper
and others. The package functions standalone or with a
traditional signature based IDS like SNORT and BRO.

Finally, one can see that all previous proposed
models in this paper are modularized so that new
learning algorithms are easy to be added in and tested
or even inserted as a new module. This well suits the
dynamics in the research world.

REFERENCES
[1] Papoulis and Pillai S.U.; Probability, Random

Variables and Stochastic Processes, book, (2002)
[2] Wei Li; Using Genetic Algorithm for Network

Intrusion Detection, SANS Institute, USA, (2004)
[3] Melanie M.; An Introduction to Genetic Algorithms,

Cambridge, Massachusetts London, England, Fifth
printing, (1999)

[4] Hartmut P.; Genetic and Evolutionary Algorithms:
Principles, Methods and Algorithms Genetic and
Evolutionary Algorithm Toolbox. Hartmut Pohlheim,
(2003)

[5] Middlemiss M.J. and Dick G.; “Weighted Feature
Extraction Using a Genetic Algorithm for Intrusion

Detection”, Evolutionary Computation,Vol. 3 pp. 1699 -
1675, (2003)

[6] Qu X., Hariri S. and Yousif M.; “An Efficient Network
Intrusion Detection Method Based on Information
Theory and Genetic Algorithm”, Proceedings of the
24th IEEE International Performance Computing and
Communications, (2005)

[7] Chittur; “Model Generation for an Intrusion
Detection System Using Genetic Algorithms”,
http://www1.cs.columbia.edu/ids/publications/gaids-
paper01.pdf, (2005)

[8] Lu W. and Traore I.; “Detecting New Forms of
Network Intrusion Using Genetic Programming”,
Computational Intelligence, Vol. 20, pp. 3, Blackwell
Publishing, Malden, pp. 475 - 494, (2004)

[9] Jim G., Da-xin L. and in-ge C.; “An Induction
Learning Approach for Building Intrusion Detection
Models Using Genetic Algorithms” , Proceedings of
the 5Ih World Congress on Intelligent Control and
Automation, (June 15 - 19 2004)

[10] http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html

[11] Tsang, S. Kwong and Wang H.; Anomaly Intrusion
Detection using Multi-Objective Genetic Fuzzy
System and Agent-based Evolutionary Computation
Framework, Proceedings of the Fifth IEEE
International Conference on Data Mining, (2005)

[12] Levin; “KDD-99 Classifier Learning Contest LLSoft's
Results”, Overview. SIGKDD Explorations.
ACMSIGKDD, Vol. 1, No. 2, pp. 67 – 75, (2000)

[13] Song, Heywood M.1. and Zincir-Heywood A.N.;
“Training Genetic Programming on Half a Million
Patterns: An Example from Anomaly Detection”,
IEEE Transactions on Evolutionary Computation, Vol.
9, No. 3, (2005)

[14] Agarwal R.and Joshi. M.V.; “Pnrule: A New
Framework for Learning Classifier Models in Data
Mining”, Department of Computer Science, University
of Minnesota, Report No. RC-21719, (2000)

[15] Elkan; Results of the Kdd’99 Classifier Learning,
ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, Boston, MA, Vol. 1, No. 2, (2000)

www.SID.ir

