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ABSTRACT: 
The reports show a rapid growth in the numbers of attacks to the information and communication systems. Also, we 
witness smarter behaviors from the attackers. Thus, to prevent our systems from these attackers, we need to create 
smarter intrusion detection systems. In this paper, a new intelligent intrusion detection system has been proposed using 
genetic algorithms. In this system, at first, the network connection features were ranked according to their importance 
in detecting attack using information theory measures. Then, the network traffic linear classifiers based on genetic 
algorithms have been designed. These classifiers were trained and tested using KDD99 data sets. A detection engine 
based on these classifiers was build and experimented. The experimental results showed a detection rate up to 92.94%. 
This engine can be used in real-time mode. 
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1.  INTRODUCTION 

The need to accurately detect malicious intrusions 
has arisen. Intrusion detection is an increasingly 
important technology that monitors network traffic and 
recognizes illegal use, misuse of computer systems, and 
malicious attacks to computer systems. The difference 
between security products and intrusion detection 
systems is that the latter needs more intelligence. They 
must analyze all gathered information and deduce 
useful results. 

Intrusion Detection Systems (IDS) are either 
signature based or anomaly based. Most of current 
IDSs are signature based and which they search a 
signature in the captured traffic or log files and send an 
alarm. This is similar to antivirus work methodology. 
Anomaly based IDSs measure the deviation in behavior 
of normal system state, and then sends an alarm if the 
deviation exceeds a certain threshold [1]. Besides, IDS 
can be classified as Network IDS (NIDS) or host based 
IDS (HIDS). NIDS deals with network traffic while 
HIDS deals with computer system logs and calls. 

 
A. Genetic Algorithms 

Genetic Algorithms (GA) are stochastic search 
techniques based on the mechanism of natural selection 
and natural genetics. The main components of a GA are 
genes, Chromosome and the Fitness function. If we 

want to search a solution for a problem within the 
solutions space, we first determine the problem features 
or attributes, these are called genes. Then we gather all 
genes in one string called chromosome. The 
chromosome represents the problem to be solved. Next 
the chromosome must be coded into binary, numerical, 
or nominal values, but the most famous is the binary 
coding. The Fitness function is very important measure 
to calculate the "goodness" of a chromosome; this 
goodness value is called the fitness value. 

The process of a GA [2] usually starts with 
randomly selected chromosomes called the population. 
The aim of any GA based problem is to search for the 
best chromosome (solution). This is done by the 
evolution cycle as shown in Fig. 1. 

 

 
Fig. 1. Simple Genetic Algorithm structure [4] 
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2.  BACKGROUND OF SIMILAR WORK 
In [5] the authors have implemented a simple 

genetic algorithm which evolves weights for the 
features of the data set. Then k-nearest neighbor 
classifier was used for the fitness function of the GA as 
well as to evaluate the performance of the new 
weighted feature set. The main aim of work was to rank 
features according to their importance. The results 
provided an increase in intrusion detection accuracy.  

Xiao et al. [6] present an approach that uses 
information theory and genetic algorithms to detect 
abnormal network behaviors. The information theory 
was used to determine the most relevant features to the 
detection operation. A small number of network 
features are closely identified with network attacks. 
However, this approach considers only discrete features 
and ignores other important features such as duration, 
source and destination bytes. 

Chittur [7] designed a genetic algorithm that 
promoted a high detection rate of malicious behavior 
and a low false positive rate of normal behavior 
classified as malicious. The genetic algorithm was 
given “training data” from which an empirical model of 
malicious computer behavior was generated. This 
model was then tested over previously unseen data to 
gauge its real-world performance. The results were so 
good and the classification accuracy was 97.8%. Also 
these results are good but are biased towards the 
training dataset (KDD 10% training set), because the 
last rules extracted from the training phase have been 
tested on the rest (90%) of the KDD dataset, i.e. testing 
and training the dataset are from the same distribution. 
The author should test his results on the KDD 
unlabeled test dataset that contains 311029 records and 
is taken from different distribution 

Wei Lu and Issa Traore [8] present an approach that 
uses GP to directly derive a set of classification rules 
from historical network data. The approach employs 
the support-confidence framework as the fitness 
function and is able to generally detect or precisely 
classify network intrusions. However, the use of GP 
makes implementation more difficult and more data or 
time are required to train the system 

Wei Li, [2] proposed a GA-based method to detect 
anomalous network behaviors. Both quantitative and 
categorical features of network data are included when 
deriving classification rules using GA. The inclusion of 
quantitative features may lead to increased detection 
rates. However, no experimental results are available 
yet. 

G. Jim, L.D and Cui [9] have developed a rule 
based classifier to filter the abnormal traffic, the 
classifier resultant shows a high detection rate if 
applied on the training 10%KDD99 dataset, but there is 
no indication about testing this classier on another 
dataset from another distribution like KDD99 test 

dataset, besides the resultant classier depends only on 
three features "service, host-count, host_srv_count" 
which is not sufficient for detecting diverse attacks.  
 
3.  KDD99 DATA SETS DESCRIPTION 

The KDD99 dataset [10] is now the benchmark for 
training, testing and evaluating learning IDSs, so it is 
the basis for IDS developers.  

A. KDD99 Dataset Description 
The dataset was used for the Third International 

Knowledge Discovery and Data Mining Tools 
Competition, which was held in conjunction with 
KDD-99, the Fifth International Conference on 
Knowledge Discovery and Data Mining. The 
competition task was to build a network intrusion 
detector, a predictive model or a classifier that can tell 
what are "bad'' connections, called intrusions or attacks, 
and what are "good'', called normal connections. 

Lincoln Labs set up an environment to acquire nine 
weeks of raw TCP dump data for a local-area network 
(LAN) simulating a typical U.S. Air Force LAN.  They 
operated the LAN as if it were a true Air Force 
environment, and inserted multiple attacks. These 
attacks fall into four main categories: 

• DOS: denial-of-service, e.g. syn flood. 
• R2L: unauthorized access from a remote 

machine, e.g. guessing password;  
• U2R:  unauthorized access to local super user 

(root) privileges, e.g., various "buffer overflow'' 
attacks;  

• Probing: surveillance and other probing, e.g., 
port scanning. 

The KDD99 datasets is composed of records that 
are called connections. Each connection has 41 features 
and a label which indicates the attack name. The label 
is supported only for the training dataset. Fig. 2. shows 
these features. 

 
Basic Features
1 duration  
2 protocol_type 
3 service  
4 flag 
5 src_bytes  
6 dst_bytes  
7 land  
8wrong_fragme
nt  
9 urgent  
 
Content 
features 
10 hot  
11num_failed_l
ogins 
12 logged_in   

13 num_compromised 
14 root_shell  
15 su_attempted  
16 num_root  
17num_file_creations 
18 num_shells  
 
Traffic  features 
19 num_access_files  
20num_outbound_cm
ds 
21 is_host_login  
22 is_guest_login 
23 Count  
24 srv_count  
25 serror_rate  
 

26 srv_serror_rate  
27 rerror_rate  
28 srv_rerror_rate  
29 same_srv_rate  
30 diff_srv_rate 
31 srv_diff_host_rate  
32 dst_host_count 
33 dst_host_srv_count 
34 dst_host_same_srv_rate 
35 dst_host_diff_srv_rate 
36dst_host_same_src_port_r
ate 
37dst_host_srv_diff_host_ra
te 
38 dst_host_serror_rate 
39 dst_host_srv_serror_rate 
40 dst_host_rerror_rate 
41 dst_host_srv_rerror_rate 

Fig. 2. The 41 connection features of KDD99 dataset 
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B. Distribution of KDD99 Attacks  
1.1.1.The KDD99 datasets are divided into three 
parts: 

• Full training dataset which has 4898431 labeled 
records and is used for training purposes. 

• 10% training dataset which has 494021 labeled 
records. Since the full dataset is huge an IDS 
developer can train his IDS on just 10% of the 
full dataset. 

• Testing dataset. It has 311029 unlabeled 
connections. 

 
1.2.1.Table 1 shows the distribution of these 
connections. 
 

Table 1. Distribution Of Attack Classes 

Class 10% KDD Training 
Dataset 

Full Training 
Dataset 

Testing 
Dataset 

normal 97278 19.69% 972781 19.86% 60593 19.48%

DoS 391458 79.24% 3883370 79.28% 229853 73.90%

Probe 4107 0.83% 41102 0.84% 4166 1.34% 

R2L 1126 0.23% 1126 0.02% 16347 5.26% 

U2R 52 0.01% 52 0.001% 70 0.02% 
 

 
In the following, Table 2 shows the known and 

unknown attacks in both training and testing KDD99 
datasets. 
 
Table 2. Known and Unknown Attacks in Training and 

Testing datasets 

Class 
Known Attacks 

(in training + testing 
datasets) 

unknown Attacks 
(in testing data 

set) 

DoS 

back, land, neptune 
(syn flood), pod (ping 
of death), smurf, 
teardrop 

apache2, mailbomb, 
processtable, 
udpstorm 

R2L 

ftp_write, 
guess_passwd, imap, 
multihop, phf, spy, 
warezclient, 
warezmaster 

httptunnel, name, 
sendmail, 
snmpguess, 
worm,xlock, 
xsnoop 

U2R 
buffer overflow, 
loadmodule, perl, 
rootkit 

ps, sqlattack, xterm 

PROBE ipsweep, nmap, 
portsweep, satan mscan, saint. 

 
4.  FEATURES SELECTION 

Indeed it is very important to reduce the number of 
features by selecting the most important ones. For 
example in the problem of designing an intelligent 
intrusion detection system, developers are exposed to 
deal with the KDD99 data sets, the training dataset 

contains about 5 million connection records, each 
record contains 41 features. So it is time consuming to 
train the system considering all features. But if we 
could reduce the number of features for example to 8 
features we will decrease very much of the amount of 
huge computations. 

Our approach will employ the information theory to 
sort the most important features. 
Indeed it is thought that the dataset space can be 
divided into: 

• Broadly 2 main classes: Normal & Attack. 
• Or more precisely 5 classes:  Normal, DoS, 
R2L, U2R, Probe 

So the dataset space can be described by the 
following random variables: 
X: the decision random variable. Its state space is 
{Normal, DOS, U2R, R2L, and Probe} 
Y: The connection feature random variable. Indeed 
there are 41 independent random variables like 

• Y = YProtocol_type = {ICMP, TCP, UDP} 
• Y = Yland = {0, 1} 
Now to extract the importance of a connection 

feature (ex. ptotocol_type), one can calculate "the 
amount of information about X (normal connection 
or DOS or R2L or U2R or Probe) contained in Y 
(connection feature ex. protocol_type)" 

Indeed the previous statement is exactly the mutual 
Information [1] of X and Y that are explained in I-A. 

A. Case Study: Information about Attacks 
Contained In Protocol_Type Feature. 

In the following comes a case study to give an 
explanation about mutual information is calculated for 
X {normal, Attack} and Y {UDP, TCP, ICMP}. 
Step1: we calculate the distribution of connections of X 
and Y using the KDD99 training Full dataset as shown 
in Table 3. 
 

Table 3. Conn# according to protocol_type  
and traffic Class 

 X random variable  
 Normal DoS R2L U2R PROBE Total 

ICMP 12763 2808150 0 0 12632 2833545

TCP 768670 1074241 1126 49 26512 1870598

UDP 191348 979 0 3 1958 194288 

Y
pr

ot
oc

ol
_t

yp
e 

TOTAL 972781 3883370 1126 52 41102 4898431

 
Then we calculate the probability distribution of 

these connections as shown i Table 4. 
In Table 4, the upper probability value in italic is 

the intersection probability P(X, Y). The lower 
probability value is the conditional probability P (X|Y) 
= P(X,Y) / P(Y). 
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Table 4. Probability and conditional probability of X and Y=Yprotocol_type 
X random variable

 
Pnormal PDoS PR2L PU2R PPROBE P(Y) 

0.0026 0.5733 0 0 0.0026 PICMP 
0.0045 0.9910 0 0 0.0045 

0.5785 

0.1569 0.2193 0.0002 1.0003E-05 0.0054 PTCP 
0.4109 0.5743 0.0006 2.6195E-05 0.0142 

0.3819 

0.0390 0.0002 0 6.1244E-07 0.0004 PUDP 
0.984 0.0050 0 1.5441E-05 0.0101 

0.0396 

Y
pr

ot
oc

ol
_t

yp
e  

r.
v 

P(X) 0.6140 0.3581 0.0008 3.6811E-05 0.0270  

 
  
Step2: Let's calculate the entropy H(X) of X which 
means the uncertainty of X (normal or attack) 
 

normalPROBERULRDoSattack

attackattacknormalnormal

PPPPPpwhere
pppPXH

−=+++=
−−=

1
loglog)(

22

22  

H(X) = -0.614 log (0.614) - 0.3851 log (0.3851) = 
0.9622 
 
Step3: Let's calculate the conditional entropy H(X, 
connection feature) of X which means the uncertainty 
of X (normal or attack) given that the connection 
feature is protocol_type. 
H(X|Yprotocol_type)=P(icmp){H(normal|icmp)+H(attack 
|icmp)}+p(tcp){H(normal|tcp)+H(attack|tcp)}+P(udp){
H(normal |udp)+H(attack |udp)} 
H (normal |icmp) =-p (normal |icmp) log P (normal 
|icmp) H(X |protocol_type) = 0.5785 {-0.0045 log 
(0.0045) -0.9955 log (0.9955)} +0.3819 {-0.4109 log 
(0.41092)-0.5891 log (0.5891)} +0.0397{-0.9849 log 
(0.9849) - 0.0151 log (0.0151)} = 0.4016 

So when protocol_type is introduced, the 
Uncertainty decreased from 0.9622 to 0.4016.  
Step4: calculating the mutual information of X and Y  
I(X, Y) =H(X)– H(X|protocol_type) =0.9622-0.4016 = 
0.5606 

So 0.5606 is the amount of information 
about  

X {normal or attack} contained in 
protocol_type 

In the same way one can get the 
I(X,Y=Yprotocol_type)  for X={DoS, Others}, {R2L, 
Others}, {U2R, Others}, {PROBE, Others}. 

B. All Features Ranking 
In this case study we have studied the role of 

protocol_type feature in classifying a connection into 
one of the following classes {Normal, DoS, U2R, R2L, 
and PROBE}. Now we have to generalize previous 
calculation for the 41 features. So Table III, Table 4 
and mutual measures I(X,Yfi) will be recalculated 41 
times. The resulting calculations will be organized in a 
table like Table 5. 

Table 5. MUTUAL information TABLE 

Feature Normal 
/attack 

DoS/ 
Others 

R2L/ 
Others 

U2R/ 
others 

probe/ 
others 

Duration 0.052897 .0577 0.004084 0.0008 0.0014 
Protocol_type 0.304063 .3046 0.003147 0.00013 0.00180 

Service 0.570986 .5999 0.014867 0.00079 0.0341 

 
Now to rank features according to their 

importance we sort each column in descending 
order. Table VI shows the ranking results. The 
feature name was substituted with its number 
according to Fig. 2. 

C. Data Preprocessing And Normalization 
Each record in the KDD99 data sets contains 41 

features that belong to different range values as shown 
in the example in Table 6. 
 

Table 6. Features values differences 
Feature name 

(f i) 
Type Values 

example Max 

Duration Continous 565,255 58329 

Dst_Bytes Continous 125454, 
45454 1309937401 

Same_Srv_Rate Continous 0.23, 
0.65 1 

Protocol_type Discrete, 
Text 

Tcp, 
Icmp, 
Udp 

×  

Flag Discrete, 
Text 

SF, REJ, 
S1 × 

 
So normalization is needed to put all features in a 

homogenous value space. The following normalization 
measure is suggested: 

)max(
),('

i

i
ffi F

f
YXInormalizedf

ii
==       

• Where I(X,Yfi) is the mutual information 
contained feature fi  (or amount of  information 
about attack contained in fi) 
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• Max(Fi) is the maximum value of the feature fi in 
the complete KDD99 training dataset (4898431 
connections) and is defined as the following: 

o If fi ≠0 then we take the maximum over 
the complete data set. 

o If  fi =0 then Max(Fi)=1 
o If fi is text like protocol_type, flag, service 

then we sort feature values in ascending 
order according to their probability 
distributions, then we assign serial 
numbers to them from 1 to last value. 
After then we normalize according to 
relation before. The next example shows 
how to normalize text features. 

Ex. normalizing protocol_type feature: Table 7 
shows how to normalize text values by sorting in 
descending order then numbering and then dividing by 
max value. 

 
Table 7. Protocol_type feature normalization 

Protocol_type records  sorting Numbering Dividing by 
max f'

i 

ICMP 2833545  UDP 1 1/3 0.1013
TCP 1870598  TCP 2 2/3 0.2027

UDP 194288  ICMP 3 3/3 0.3041

 
In the previous example textual features are not 

only normalized between [0,1] but are given an 
importance weight according to their distribution in the 
KDD connections so: 
  fi is more important than fj  ),(),(

ji ff YXIYXI >  

All KDD99 or other traffic will be now passed 
through the "Normalization & Preprocessing Unit". 
The output will be considered the new KDD99 dataset. 
 
5.  GA BASED ANOMALY IDS 
In this section some anomaly models will be 
introduced, all these and other models will be evaluated 
according to performance measures. 

A. Algorithm Performance Measures 
To evaluate how much the detection algorithm is good, 
the following measures must be calculated (indeed 
FPR, DR, and NDR are the most important ones): 

• TP (True Positive): Number of connections that 
were correctly classified as Attack. 

• TN (True Negative): Number of connections that 
were correctly classified as Normal. 

• FP (False Positive): Number of normal 
connections that were classified as Attack. 

• FN (False Negative): Number of attack 
connections that were classified as Normal. 

• TPR = DR: Detection Rate=
FNTP

TP
+

 

• NDR : Detection Rate of new attacks 

attacknewallofnumber
attacksectedcorrectlyNewofnb

NDR
det

=  

Since the KDD99 testing dataset contains new attacks 
that were not included in the training data set. NDR can 
be called the "algorithm cleverness". 

• TNR: True Negative Rate  =
FPTN

TN
+

 

• CR :Classification Rate   
setdatasizeof

TNTP +
=  

• FPR: False Positive Rate   
TNFP

FP
+

=  

• FNR: False Negative Rate  
TPFN

FN
+

=  

B. GA Classifier 
Our genetic classifier is named GACL and has the 

following form:   

⎪
⎪
⎩

⎪⎪
⎨

⎧
<

=
∑
=

NORMALisconnelse

ATTACKisconnthenthresholdconnfWif
connGACL

j

j

n

i
jii

j
1

)(
)(

Where connj =  connectionj = (duration, service, 
src_bytes, dst_bytes, count) j 

 
The inequality < was chosen since for the previous 

features most of attack connections in the KDD training 
set have low values. For example, the KDD training 
dataset contains 396743 attack records, 396083 of them 
have a duration value equals to 0. 

Parameters Coding: 
The GACL parameters are encoded in the following 

way: 
• The GACL has six parameters: 

o 5 parameters represent the weights of 
features (W1,W2,W3,W4,W5) 

o 1 parameter represents the threshold 
value. 

• Each parameter has 11 bits, except the Threshold 
which has 10 bits:  

o 10 bits for the parameter value 
o One bit for the sign. 

• The 10 bits (parameter value) was chosen to have 
a precision of 210 ≈ 0.001. 

• The Threshold always holds a positive value 
• As an example, one can gets the value of  Gene1 

as the following: 
o Gene1= 11000000010  =  1  &  

1000000010 
o The 11th bit = 1 so the sign is negative 

(if the 11th bit = 0 then the sign is 
positive). 

o The decimal value of 1000000010  = 
1×29+0×28+0×27+0×26+0×25+0×24+0×
23+0×22+1×21+0×20=514 
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o So Gene1= 11000000010  = -514 
Table 8.a shows the chromosome genes.  

Table 8.a. Parameters Coding 
example 

Genes gene Gene 
borders Binary 

representation 
Gene 

decimal 

Gene1 Wduration [-1023,1023] 11000000010 -514 

Gene2 Wservice [-1023,1023] 01000000010 514 

Gene3 Wsrc_bytes [-1023,1023] 00000000010 2 

Gene4 Wdst_bytes [-1023,1023] 11111111111 -1023 

Gene5 Wcount [-1023,1023] 01111111111 1023 

Gene6 Threshold [0,1023] 0101011010 532 
 
The chromosome of the previous genes is 

Gene6 Gene5 Gene4 Gene3 Gene2 Gene1 
0101011010 01111111111 11111111111 00000000010 01000000010 11000000010

532 1023 -1023 2 514 -514 

 
So the GACL of this chromosome is: 

⎪⎩

⎪
⎨

⎧ <+−++−
=

NORMALisconnelseATTACKisconnthen

fffffif
connGACL

jj

countbytedstbytesrcserviceduration

j

532102310232514514
)(

__

Data Structure: 
The data structure of a classifier is shown in Fig.3. 
 
Type  INDIVIDUAL      // individual structure 
    crom (1..gensNb*genLength) As Byte    
           // classifier or GACL ex.  110101010000100110001100 
    decCode (1. . gensNb) As Integer         
          // decimal values of genes ex.  (512  340  211 -20 -10 20) 
    fitVal As Double                            
         // the fitness function value  of the chromosome 
    fitProb As Double  // the probability of fitness value 
    reFit As Boolean  //indicates if it is necessary to recalculate 
Fitness  
    TP As Long  // attack connections detected by this 
chromosome 
    TN As Long // normal connections discovered by 
chromosome 
    FP As Long  // False positive connections by chromosome 
(filter) 
    FN As Long //False negative connections by chromosome 
(filter) 

Fig. 3. Individual data structure 
 

isizepopulation
i

i chromosomi
fitVal

fitVal
fitprobWhere ==

∑1

 

Fig.4 shows the generation data structure 
 

Type generation    // generatiopn structure 
    pop (1..populationSize) As INDIVIDUAL  
        // set of  classifiers or chromosomes in the generation 
    sumFitness  As Double 
       //generation strength=sum of fitness of  population 
chromosomes  
    BestIdv As Integer         // best individual 
    WorstIDV As Integer    // worst individual 

    genrNb As integer         // generation number 
Fig. 4. Individual data structure 

 
When evolution operation starts the whole results 

will be stored in a database according to previous data 
structure, this enables to extract and build many useful 
statistics about the found solutions. 

Fitness Function: 
The fitness function explained in Fig.5 is the same 

as the classification rate:  
 

fitVal  or fitnessValue = CR 
 

Since every chromosome in the population is a 
solution (classifier), its CR value will be calculated 
according to the KDD10% training dataset which 
contains the connection features and labels (normal, 
attack). 

 
Function  GetFitnessValue  
     Input : (individual , training set) 
      // individual contains 6 genes = W1,W2,W3,W4, W5, Threshold 
      // training set = normalized & preprocessed KDD10%  
    Output:(fitVal= individual fitness value) 
       for  i = 1 to sizeof ( training dataset)   // conni  is a record from 
training set 
          if thresholdconnfW

j
ijj <∑

=

4

1

)(  then  // conni classified as an 

attack 
if  conni.label = "attack" then     //conn is realy an attack  

      individual.TP = individual.TP + 1 
else           //conn is normal in the training set 

     individual.FP = individual.FP + 1  //conn is normal 
end if 

          else   // conn is classified as normal 
if  conni.label = "normal" then    //conn is realy an attack 

      individual.TN = individual.TN + 1 
else        //conn is normal in the training set 

      individual.FN = individual.FN + 1    //conn is normal 
end if 

           end if 
        next 
      

dataset)  training( sizeof
...fitValindividual fitValreturn   TNindividualTPindividualCR +

===
 

End function 
Fig. 5. Structure of the Fitness function 

 

GA Operations: 
Our approach uses "two-point crossover" technique 

and "Bitwise bit-flipping" as a mutation method.  
The following is a brief presentation about the 

genetic operations used in proposed learning GA, these 
operations are: Selection, Crossover, and mutation. 

The "Roulette Wheel" selection method was 
adopted because it is easy to implement and converge 
quickly but a drawback is that if for example an 
individual fitness is 90% there is a low chance for other 
individuals to be selected. The main idea of this 
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selection method is that better individuals get higher 
chance and chances are proportional to their fitness 
value. To implement this, each individual was assigned 
to a part of the roulette wheel (slice) and then one can 
spin the wheel to select an individual. The following 
example explains this strategy. 

 
Selection using "Roulette Wheel" example 
Given that the population of the generation is as in 

Table 8.b. 
Calculate the sum of all fitness values for all 

individuals in the population and then calculate the 
slice value (fitness probability) of each individual. Now 
the roulette wheel will be constructed as shown in 
Fig.6. 

 
Table 8.b. Population example 

Individual Nb Chromosome Fitness 
Value 

Fitness 
Probability 

Indiv 1 10101110100010 0.60 24.00% 
Indiv 2 00101000100110 0.12 4.80% 
Indiv 3 00001110111110 0.97 38.80% 
Indiv 4 10000110111110 0.80 32.00% 

Total  2.5 100 % 

Indiv 1, 
24.00%Indiv 4, 

32.00%

Indiv 3, 
38.80%

Indiv 2, 
4.80%

 
Fig. 6. Roulette wheel according to Fitness probability 

 
To spin the wheel we select a random number 

between 0 and 1 for example 0.3451 = 34.51% then we 
compute the sum of individual's fitness value until 
reaching to 0.3451. 

24.00 %   +  4.8 %   <   34.51%  < 24.00 %  +  4.8  
%  + 38.8 % 

So the selected spice (parent) is the individual 3. 
This is predictable since individual 3 has the largest 
probability. In the same way you can select the second 
parent by reconstructing the wheel after eliminating 
individual 3. 

This strategy is good because the strongest parents 
will generates more children. 

Running a GA To Get GACL Parameters: 
Figure 7 represents the learning genetic algorithm to 

determine the GACL parameters. The following is the 
detection algorithm which determines the 6 parameters 

to build the network traffic classifier. 
Where HighCR is High Classification Rate and it 

represents the stop criteria, it may be for example in the 
range [0.975,1]. If this detection rate hasn't been 
reached then the GA will stop when the predefined 
generation's number is reached. At the end of the 
previous algorithm, the chromosome that has the 
largest HighCR will be selected and considered as the 
problem solution (classifier). 

Experimental Results: 
• Best Individual and Classifier:  The proposed 

GA in Fig. 8 was executed using  the following 
parameters: 

 
Chromosome length = 66 features selected 

=1,3,5,6,23 
Generations number=200 Population Size=500 
Training set=KDD10% 
training set 

Crossover Probability 
Pc=0.7 

Genes Number = 6 HighCR >=97.50 % 
mutation propability 
Pm=0.02 

 

 

 
Fig. 7. Genetic Algorithm to build Network traffic 

classifier 
 

The best chromosome found was: 
 

0011101000111110010101100011000000111011100101101001011
00001100111 

 

 
Table 10 shows a description of the individual of 

this chromosome. Of course this chromosome is the 
classifier aim of the search. 

CreateInitialRandomPopulation    CURRENT_GENERATION 
i=0 
While    i <= generationsNumber    OR   

CURRENT_GENERATION.BestChrom.fitValue >= HighCR  

- For each individual in CURRENT_GENERATION  calculate its fitness 
using the function  GetFitnessValue 

- For each individual in CURRENT_GENERATION  Calculate the 
fitness probability  // this step is necessary for  roulette wheel selection 

- Repeat the following steps until n offspring have been created:    
 // n = population size 

o Parent1 <- rouletteWheel selection form  
URRENT_GENERATION 

o Parent2 <-  rouletteWheel selection form 
{CURRENT_GENERATION - Parent1} 

o Cross over the two parents (2-point crossover) with probability 
Pc to form two offspring. (If no crossover occurs, the 
offspring are exact copies of the parents.) Select one of the 
offspring at random and discard the other. 

o Mutate each bit in the selected offspring with probability Pm, and 
place it in the NEW_GENERATION 

- Store NEW_GENERATION  in a database  // this step is optional but 
useful to restart the GA from this point  

- CURRENT_GENERATION = NEW_GENERATION 

- i=i+1 
end while 
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Table 9. Best Individual for our GACL 
Weights of Network Connection Features GACL parameters 

(Fitness = 0.97971) Threshold 
Wcount Wdst_bytes Wsrc_bytes Wservice Wduration 

Binary Chrom 00111010001 11110010101 10001100000 01110111001 01101001011 00001100111

Coded Chrom 465 -917 -96 953 843 103 

 
Table 10. Linear Genetic Algorithm classifier performance measures 

Rate Class Records Detected 
DR NDR 

NORMAL 60593 58330 96.27% - 
DOS 229853 222142 96.65% 16.34% 

PROBE 4166 3227 77.46% 92.34% 
R2L 16347 4953 30.30% 0.40% 
U2R 70 53 75.71% 77.42% 

TOTAL DR=91.99%  NDR=14.89% CR=92.82% FP=3.73% FN=8.01% 
 

So the Network Anomaly Intrusion Detection 
classifier is  
 

⎪⎩

⎪
⎨

⎧ <−−++
=

NORMALisconnelseATTACKisconnthen

fffffif
connGACL

jj

countbytedstbytesrcserviceduration

j

46591796953843103
)(

__

Classifier 1 
• Discussion: the previous classifier gives a 

classification rate equals to 97.971% if applied to 
the training data set. This classifier was applied 
to detect attacks in the KDD99 test dataset; and 
following results given in Table 11 were found. 

• GACL Detection Rates for all types of attacks: 
Table 12 shows our system efficiency for all 
attack types and for both known types of attacks 
that were included in the KDD10% training 
dataset and for known and unknown attacks that 
are included in the KDD99 test data set. 

GACL has detected all types of known and 
unknown attacks except "phf" and "phf" attack from the 
known group and "mailbomb", "udpstorm" and 
"snmpgetattack" from the unknown attack group. 

C. Multi GACls Anomaly IDS (GACAL ANOMALY 
IDS) 

The previous technique based on GACL can be 
improved by designing a detection engine with multi 
classifiers. Figure 8 shows the structure of this engine.  

• Classifier1 detects anomaly behavior assuming 
that attacks are in the lower area. Indeed it is 
assumed that if the classifier value is less than a 
threshold (< 465) then the connection is an 
attack, so there are some attacks that are in the 
upper area that were not detected. 

• Classifier 2 detects attacks in the upper area. The 
same learning genetic algorithm (in VII.5) was 
launched by changing the inequality condition. 

⎪⎩

⎪
⎨
⎧ >=−+++

=
NORMALisconnelseATTACKisconnthen

fffffif
connGACL

jj

countbytedstbytesrcserviceduration

j

25991232571050844
)(

__

 
Classifier 2 

Table 11. Attacks detection rates using GACL 
attackClass attack_name Total records Detected Detection Rate

back 1098 0 0.00% 
Land 9 1 11.11% 
Neptune 58001 57075 98.40% 
Pod 87 6 6.90% 
Smurf 164091 163986 99.94% 

DOS 

Teardrop 12 3 25.00% 
Ipsweep 306 3 0.98% 
Nmap 84 4 4.76% 
Portsweep 354 23 6.50% PROBE

Satan 1633 1545 94.61% 
ftp_write 3 2 66.67% 
guess_passwd 4367 4367 100.00% 
Imap 1 1 100.00% 
Multihop 18 7 38.89% 
Phf 2 0 0.00% 

R2L 

Warezmaster 1602 535 33.40% 
buffer_overflow 22 18 81.82% 
Loadmodule 2 2 100.00% 
Perl 2 2 100.00% 

K
N

O
W

N
  A

T
T

A
C

K
 

U2R 

Rootkit 13 7 53.85% 
      

apache2 794 312 39.29% 
Mailbomb 5000 0 0.00% 
Processtable 759 759 100.00% 

DOS 

Udpstorm 2 0 0.00% 
Mscan 1053 1053 100.00% PROBE
Saint 736 599 81.39% 
Httptunnel 158 2 1.27% 
Named 17 11 64.71% 
Sendmail 17 11 64.71% 
Snmpgetattack 7741 0 0.00% 
Snmpguess 2405 2 0.08% 
Worm 2 2 100.00% 
Xlock 9 9 100.00% 

R2L 

Xsnoop 4 4 100.00% 
Ps 16 12 75.00% 
Sqlattack 2 2 100.00% 

U
N

K
N

O
W

N
 A

T
T

A
C

K
 

U2R 
Xterm 13 10 76.92% 
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Table 12. Comparison BETWEEN RANDOM 
classifier and GA based chaffier 

Class RANDOM CLASIFIER OUR GACL 
NORMAL 88.61% 96.27% 

DOS 96.83% 96.65% 
PROBE 62.48% 77.46% 

R2L 0.1% 30.30% 
U2R 0 75.71% 

TOTAL 
TP=DR 89.92% 91.99% 

CR 89.67% 92.82% 
FP 11.39% 3.73% 

 
• Classifier 3: detects more PROBE attacks in the 

upper area. The GA was trained to find the best 
weight for top 5 probe features found in Table 
VI. After running this GA detector, the following 
classifier was found: 

NORMALisconnelseATTACKisconnthen

fffffif

jj

ratesrvdiffhostdstcountsrvhostdstratererrorbytessrcservice 7828988329891911020 _________ >=+−+−

 
Classifier 3 

The paper's GA was also launched using selected 
features for U2R and R2L features and it was found 
that the results were not encouraging for the training 
KDD dataset so no more classifiers were included in 
the anomaly detection engine. Table 13 shows the 
results of this engine with a comparison with previous 
approaches when applied to the KDD test dataset. 

 

 
Fig. 8. "GACL ANOMALY IDS" based on 3 genetic 

algorithms classifiers 

Table 13. Results of our GA based Detection engine 
Class Classifier1 GACL Anomaly IDS 

NORMAL 96.27% 96.14% 
DOS 96.65% 96.68% 

PROBE 77.46% 85.77% 
R2L 30.30% 30.30% 
U2R 75.71% 75.71% 

TOTAL 
TP=DR 91.99% 92.16% 

NDR 14.89% 14.95% 
CR 92.82% 92.94% 
FP 3.73% 3.86% 

 
It is seen that there is a serious improvement in 

detecting probe attack and a little improvement in 
detecting DoS attacks but the FP was lightly increased. 

D. Criticizing Using GAs In The Detection: 
• Does GA decrease the time to find a classifier? 
Of course it does. In this problem the chromosome 
length is 6*11=66 so there is 266 solutions (filters). 
While GA found a solution after 160 generations, 
so it has tested 160 × 500 = 80000 solutions 
instead of 266 which is a huge save in time. This 
GACL may be not the best solution but the results 
were satisfying. 

 
• Does GA differ from random treatment? 

In this problem one may wonder that GA technique 
doesn't differ from random solutions. To ensure or 
not this interrogation a random filters 
(chromosomes) has been generated. The number of 
chromosomes is equal to those generated by the 
GA when the best one has been found: 
 
 Number of generations × population size= 160 × 
500 = 80000 random filters 
 

These filters have been applied to the KDD99 10% 
training set and the filter with the best classification 
rate was selected. Then this best filter was applied to 
the KDD test dataset and the following results 
presented in Table 14 were found. 

 
These results support this claim that GA is not just a 

fancy form of random solutions. 
 
6.  COMPARING APPROCHES AND 
GATHERING ALL ANOMALY MODELS 

A. Comparing Approaches 
Table 15 and Fig.9 show a comparison between this 

approach and other ones [11]: 
It is observed that this approach performs better, 

especially for detecting R2L attacks. 
 

INITIALIZER 

DoS 
collector 

U2R 
collector 

R2L 
collector 

Collector 

Classificatio
n  
 

 (DOS, 
Probe, R2L, 
U2R)

Informer 
(Alarm Unit)

All traffi c  -  

Rest traffic  –  attack 

Rest traffic – attack 

Probe 
collector 

REPORTER 

5-
N

N
   

D
E

T
E

C
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IO
N

 E
N

G
IN

E
 

Unclassified traffic 
Reference 

KDD 10% training set 

Preprocessing & normalization unt 

Normal 
collector 

Rest traffic = Normal 

DOS detection 
(DOS_feature

s)

Probe 
detection 

(probe feature

U2R detection 
(U2R_features

)

R2L detection 
(u2r_features) 
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B. Gathering All Anomaly Models  
All previous approaches (this approach + others) 

can be programmed into one package which may be 
called "Anomaly IDS package" as shown in Fig.11a. 
Then it is up to the user to select one anomaly detection 
method  

Then to position the "Anomaly IDS package", there 
are two possibilities: 

 
1. Standalone: put the package immediately on 
the network. Of course firstly the following is 
needed: 

o sniffer or TCPDUMP software  
o tcpdump_to_kdd99 function to 
convert formats. 

2. After a signature based IDS like SNORT. In 
this case SNORT or  another will alarm for bad 
signatures and then the resident traffic which is 
classified as normal will be send to 
tcpdump_to_kdd99 transformer and then will be 
processed by "Anomaly IDS package". 

 
 

Table 14. Comparing our approach to design anomaly IDS with other's 
 Our IDS s Other's IDSs 

CLASS 

G
A

C
L1

 

G
A

C
L 

 
A
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O

M
A
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ID
S 
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] 

C
5 
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] 

C
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 w
in
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NORMAL 96.27 96.14 95.89 98.34 99.4 96.5 98.36 99.5 92.78 99.5 98.38 97.99 99.5 

DOS 96.65 96.68 97.00 99.33 97.5 99.7 97.20 96.9 98.91 97.1 96.99 97.56 97.10 

R2L 30.3 30.3 6.90 5.86 7.3 31.2 11.01 7.3 7.41 8.4 1.45 3.55 8.40 

U2R 75.71 75.71 14.91 63.64 11.8 76.3 15.79 11.8 88.13 13.2 14.47 10.09 13.20 
PROBE 77.46 85.77 81.61 93.95 84.5 86.8 88.6 84.5 50.35 83.3 81.88 81.61 83.30 
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Fig. 9. Detection Rate Comparison 

 
Fig. 20(a&b). Shows an illustration of these two possibilities. 
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7.  CONCLUSION 
By applying the information theory measures like 

entropy and mutual information, 41 connection features 
were ranked after the normalization process according 
to each attack class. This ranking allows decrement in 
the computing complexity by selecting the most 
important features for each attack class. Features 
selection proved that they dramatically decreased the 
detection speed without affecting the detection rates. 

Using GA, a linear classifier was designed that uses 
the top five features according to their importance in 
detecting attack using information theory measures. 
The classification rate was 92.82% and, the new 
detection rate was 14.89% which is significantly better 
than any other approach presented before. But the best 
detection rate was for detecting R2L attacks (30.30%) 
knowing that R2L attacks are hard to detect. 

Later, multi GACLs anomaly intrusion detection 
engine was proposed. This engine, based on the 
selected features for each attack classes, consists of 
three classifiers; two of them are employed to detect 
DoS attacks in the upper and lower area of the dataset 
space, and one to detect more PROBE attacks. This 
engine proved that it detects more DOS and PROBE 
attacks. 

GA based detection models were better than C5, 
C4.5, cupWinn, K-NN based models and others, 
especially in R2L attacks. The great gain is that they 
are so fast since each connection will be classified in no 
more than three steps. So GA based classifiers can be 
used in real-time mode. But the long training time still 
is the drawback of this methodology. 

A package called "Anomaly IDS package" was 
proposed to detect anomaly attack in network traffic. 
This package gathers all IDSs proposed in the paper 
and others. The package functions standalone or with a 
traditional signature based IDS like SNORT and BRO. 

Finally, one can see that all previous proposed 
models in this paper are modularized so that new 
learning algorithms are easy to be added in and tested 
or even inserted as a new module. This well suits the 
dynamics in the research world. 
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