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ABSTRACT:  
In this paper, a control strategy for a non-holonomic robot based on an Adaptive Neural Fuzzy Inference System is 
proposed. The neuro-controller makes it possible for the robot to track a given reference trajectory. After a short 
introduction about Adaptive Neural Fuzzy Inference System, the control strategy which is used on our virtual 
non-holonomic robot is described. And finally, the simulations’ results where the robot has to pass into a narrow path 
and also the first validation results concerning the implementation of the proposed concepts on a real robot is given. 
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1. INTRODUCTION 

Research about the multi-robot systems have started 
in the late 1980s, for instance, the project CEBOT 
(Fukuda, 1998). Indeed, the multi-robot systems offers 
many advantages in comparison with systems using only 
one robot (Parker, 2008) (Cao, 1997):  

 In first, cooperation between a group of several 
robots can carried out more complex tasks,  

 Secondly, the use of several robots for a given 
task allows to increase robustness,  

 And finally, the design and the use of several 
simple robots can be cheaper and more flexible.  

Today, and in the future, many applications can 
benefit of advantages of multiple robot systems like, for 
instance, in the warehouse management, for the 
industrial assembling, in military applications, or for 
daily tasks, so on. However generally, the design of one 
control strategy for systems with several robots requires 
cooperation and coordination between all robots. This 
means that robots can communicate between them and 
self-organize in the group. With the new recent 
technologies like wireless communication, one robot 
can easily send information to another robot. 
Consequently, in the future works, the main challenge 
will focus on the design of control strategies allowing to 
a group of robots to self-organize with, if possible, 
emergent behaviors. In this context, the goal of our 
laboratory is to design control strategies for multi-robot 
systems. However, one major problem about the control 
of a multi-robot system is coordination and formation 
control, and namely, the design of control strategy 

making it possible for a wheeled robot to track a desired 
trajectory. And generally, the wheeled robots are 
nonholonomic robots increasing the difficulty to design 
the control strategy.  

Most of the control approaches are based on 
asymptotic stabilization with the feedback controls. 
Different methods have been used to reduce or to 
transform the nonlinear kinematic equation into a linear 
approximation system. For instance, Samson (1995) 
transformed the nonlinear system into a chained system 
with the feedback control to solve the path-following 
problem. Several authors have addressed the problem of 
tracking admissible trajectory by applying dynamic 
feedback linearization techniques (Kolmanovsky, 
1995), (D’Andrea-Novel, 1995), (De Luca, 
1993),(Fliess, 1995).  

In Morin (2003), the authors are certainly the first to 
address the problem of tracking arbitrary trajectories 
(i.e., not necessarily feasible for the controlled robot) 
based on the conception of transverse functions. And in 
Barfoot (2004) , the feedback control law inherits the 
strong robustness properties associated with stable linear 
systems, but it yields slow convergence. In this short 
overview about control strategies for nonholonomic 
robots, all approaches are based on a kinematic 
modeling and most of them have a slow convergence. 
The main drawback of this is the control strategy must 
be failed in some cases. An alternative solution to the 
kinematic modeling is to use neural networks.  

In this paper, we propose a new approach to control 
nonholonomic robot based on Adaptive Neural Fuzzy 
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The kinematic modeling of this wheeled robot (i.e. 
unicycle-type mobile robot) may be represented by Eqs. 
10 and 11 (Pascal, 2008):  

ቐ
௫ܸ ൌ ܸ cos	 ߠ
௬ܸ ൌ ܸ sin	 ߠ

ሶߠ ൌ Ω
 (10)

 

൞
ܸ ൌ

ݎ
2
ሺΩ௧  Ω௧ሻ

Ω ൌ
ݎ
2݈
ሺΩ௧ െ Ω௧ሻ

 (11) 

Where ௫ܸ  and ௬ܸ  represent respectively the 
instantaneous horizontal and vertical velocities of the 
point ܲ located at mid-distance of the actuated wheels. 

ܸ  represents the intensity of the longitudinal 
velocity and Ω the angular velocity of the robot. Ω୪ୣ୲ 
and Ω୰୧୲୦ are the angular velocity of the left and right 
wheels, respectively. ݎ is the radius of the wheels and ݈ 
is the distance between the two wheels.  

For an unicycle-type mobile robot, the goal of the 
control strategy is to compute the velocities of each 
wheel in order to the robot follows the desired path. The 
given trajectory can be expressed as a function of time 
ܲௗሺݔௗሺݐሻ, ,ሻݐௗሺݕ  ሻ represents ofݐௗሺߠ ሻሻ, with theݐௗሺߠ
the trajectory’s curvature at each step time ݐ. But, in the 
case of non-holonomic robots, where the kinematic 
model is represented by Eqs. 10 and 11, this control is 
not a trivial problem.  

In this paper, we propose a new approach based on 
neural networks. The goal of these neural networks are 
to control the velocity of each wheel in order to 
minimize both error between position and desired 
position (ݔ െ ,ௗݔ ݕ െ  ௗ), and orientation and desiredݕ
orientation (ߠௗ െ  .(ௗߠ

  
3.1. Orientation control 

The orientation control allows to the robot to rotate 
on itself in following the target angle. Consequently, the 
ANFIS needs one input ݔఏ  which is the difference 
between of the angle between the robot’s direction ߠ 
and the desired angle ߠௗ (see Eq. 12 ), and one output, 
which is an angular velocity.  
ሻݐఏሺݔ ൌ ሻݐሺߠ െ  ሻ (12)ݐௗሺߠ

ሻݐఏሺݕ ൌ
∑ ݑ

ఏ
ୀଵ ݓ

ఏ

∑ ݑ
ఏ

ୀଵ
 (13) 

The relation between ݕఏሺݐሻ and ΔΩ (the difference 
between the right Ω

୰୧୲୦ and left Ω୪ୣ୲ angular velocity) 
is given by the following equation:  
ΔΩሺݐሻ ൌ Ωఏ

௧ሺݐሻ െ Ωఏ
௧ሺݐሻ ൌ  ሻ (14)ݐఏሺݕ

A each step time, the parameters ݓఏ are updated in 
order to minimize the following equation:  
ఏܸሺݐሻ ൌ ሺߠሺݐሻ െ  ሻሻଶ (15)ݐௗሺߠ

 

3.2. Position control 
The position control allows to the robot to follow the 

target point (ݔௗሺݐሻ,ݕௗሺݐሻ) on a desired path. In this case, 
the neural network needs two inputs ݔ௫  and ݔ௬ 
which are given by Eqs. 16 and 17, respectively:  
ሻݐ௫ሺݔ ൌ ሻݐሺݔ െ  ሻ (16)ݐௗሺݔ
ሻݐ௬ሺݔ ൌ ሻݐሺݕ െ  ሻ (17)ݐௗሺݕ
Where ݔሺݐሻ and ݕሺݐሻ correspond to the coordinates of 
the robot, and ݔௗሺݐሻ  and ݕௗሺݐሻ  correspond to the 
desired coordinates of the robot. The neural network 
have only one output ݕሺݐሻ:  

ሻݐሺݕ ൌ
∑ ݑ


ୀଵ ݓ



∑ ݑ


ୀଵ
 (18)

And the relation between ݕሺݐሻ and the right Ω୮
୰୧୲୦ 

and left Ω୮୪ୣ୲ angular velocity is given by the following 
equation:  
ߗ
௧ ൌ ߗ

௧ ൌ  ሻ (19)ݐሺݕ
 
4. CONTROL STRATEGY 

In order to explain clearly the proposed approach, we 
present a practical example where the robot must move 
from an initial position to goal position by passing a 
narrow path (figure 2). This approach may be 
decomposed in two part: the first one allows to 
decompose the path into several desired trajectories 
(section 4.1), and the second is composed of two 
neuro-controller, both position and orientation control, 
allowing to track these desired trajectories (section 4.2). 

  

 
Fig. 2. Description of the path of the robot from 

point A to point C. 
 

4.1. Desired trajectory 
The figure 2 shows the trajectory of the robot from 

the initial position to the final position. The proposed 
example may be decomposed in three parts: firstly, the 
robot moves from the point A toward the obstacles. 
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