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Abstract. Applications in which data take nonnegative values but
have a substantial proportion of values at zero occur in many dis-
ciplines. The modeling of such “clumped-at-zero” or “zero-inflated”
data is challenging. We survey models that have been proposed. We
consider cases in which the response for the non-zero observations is
continuous and in which it is discrete. For the continuous and then
the discrete case, we review models for analyzing cross-sectional data.
We then summarize extensions for repeated measurement analyses
(e.g., in longitudinal studies), for which the literature is still sparse.
We also mention applications in which more than one clump can oc-
cur and we suggest problems for future research.

1 Introduction

In some applications, the response variable can take any nonnegative
value but has positive probability of a zero outcome. We refer to
a variable as semicontinuous when it has a continuous distribution
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8 Min and Agresti

except for a probability mass at 0. Semicontinuous data are common
in many areas. For example, when each observation is a record of the
total rainfall in the previous day, many days have no rainfall. In a
study of household expenditures, some households spend nothing on
a certain commodity during the period of investigation. In a study
of annual medical costs, a portion of the population has zero medical
expense. With semicontinuous data, unlike left-censored data, the
zeros represent actual response outcomes.

A related type of data are zero-inflated count data. These are data
that have a higher proportion of zeros than expected under standard
distributional assumptions such as the Poisson. Such data are also
common in a variety of disciplines. Examples of variables that one
might expect to be zero-inflated are observations for the past month
of the reported number of times participating in sports activities, the
number of times one has visited a doctor, and the frequency of sexual
intercourse.

One difficulty with semicontinuous data analysis is that the ex-
istence of a probability mass at zero makes common response dis-
tributions such as the normal or gamma inappropriate for modeling
the data. Likewise for zero-inflated count data, a generalized linear
model based on Poisson or overdispersed count distributions usually
encounters lack of fit due to disproportionately large frequencies of
zeros. Thus, these types of data stimulate interesting modeling prob-
lems. Some statistical methodology has been developed to deal with
them. This article surveys methods that have been proposed for
modeling these two types of data that have clumping at 0.

Section 2 introduces models for semicontinuous data and then
summarizes their advantages and disadvantages. Section 3 introduces
models for zero-inflated count data. Section 4 surveys extensions of
these two types of models to handle repeated measurement, such as
in longitudinal studies. Section 5 discusses a data type that has a
clump at both boundaries of a sample space, such as occurs with
the medical application of studying subjects’ compliance in taking
prescribed drugs. The final section suggests possible areas for future
research.

2 Models for Semicontinuous Data

This section introduces some methods for modeling semicontinuous
data. The early research on modeling such data appeared mainly in
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Modeling Nonnegative Data with Clumping at Zero 9

the econometrics literature. Tobin (1958) proposed a censored re-
gression model to describe household expenditures on durable goods.
This model is now commonly referred to as the Tobit model. The term
“Tobit” arose from its similarities in derivation to the probit model,
based on a normal latent variable construction described below. Since
then, related literature contains numerous econometric applications
as well as various generalizations of the Tobit model (e.g., Cragg 1971,
Amemiya 1973, Gronau 1974, Heckman 1974, 1979). These all posit
an underlying normal random variable that is censored by a random
mechanism.

An alternative strand of literature for semicontinuous data does
not assume an underlying normal distribution. Duan, Manning, Mor-
ris, and Newhouse (1983) proposed a two-part model to fit data on ex-
penditures for medical care. Jørgensen (1987) proposed a compound
Poisson exponential dispersion model for semicontinuous data. Saei,
Ward, and McGilchrist (1996) applied an ordinal response model that
requires grouping the response outcomes into categories. The Tobit
model and these alternative models are described in the following
subsections.

2.1 Tobit models

For response variable Y , let yi denote the observation for subject
i, i = 1, . . . , n. The Tobit model assumes an underlying normally
distributed variable Y ∗

i such that:

yi =

{
y∗i , if y∗i > 0
0, if y∗i ≤ 0

When y∗i ≤ 0, its value is unobserved.
Including explanatory variables, the model assumes that the un-

derlying variable is generated by

y∗i = x′iβ + ui

where xi is a column vector of explanatory variable values for subject
i and {ui} are independent from a normal N(0, σ2) distribution. Let
Φ(·) and φ(·) denote the cumulative distribution function (cdf) and
the probability density function (pdf) of the N(0, 1) distribution. For
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10 Min and Agresti

the Tobit model, the probability of a zero response is

P (Yi = 0) = P (x′iβ + ui ≤ 0) = P (ui ≤ −x′iβ)

= Φ
(
−x′iβ

σ

)
= 1− Φ

(
x′iβ

σ

)
Conditional on yi > 0, its probability density function is

f(yi;β, σ) = σ−1φ

(
yi − x′iβ

σ

)
Thus, the likelihood function for a sample of n independent observa-
tions is

`(β, σ) =
[ ∏

yi=0

{1− Φ
(

x′iβ

σ

)
}
][ ∏

yi>0

σ−1φ

(
yi − x′iβ

σ

)]

Tobin (1958) used a Newton-Raphson algorithm to find the maximum
likelihood (ML) estimates of β and σ. Amemiya (1984) presented a
comprehensive survey of the Tobit model and its generalizations.1

The Tobit model assumes normality for the distribution of the
error term, with constant variance. In many applications this is un-
realistic. When the model form is correct but the distribution of ui

is not normal, the ML estimators are inconsistent (Robinson 1982).
Powell (1986) proposed semi-parametric estimation for the Tobit

model. He used a symmetrically trimmed least squares (STLS) esti-
mator. This assumes that {ui} are symmetrically distributed about
zero. The STLS estimator is defined as

β̂STLS = arg minβ

n∑
i=1

I(x′iβ > 0)[min(yi, 2x′iβ)− x′iβ]2

where I is the indicator function. For a given β, the sum in this
expression deletes the observations with x′iβ ≤ 0. When x′iβ > 0, the
lower tail of the distribution of Yi is censored at zero; symmetrically
censoring the upper tail of the distribution (essentially by replacing yi

by min{yi, 2x′iβ}) restores the symmetry of distribution of Y ∗. The
resulting estimator β̂STLS is consistent and asymptotically normal

1James Tobin, Sterling Professor Emeritus of Economics at Yale University,
won the 1981 Nobel Prize in Economics; he died on March 11, 2002.
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Modeling Nonnegative Data with Clumping at Zero 11

under the symmetrical distribution assumption (Powell 1986). An
iterative procedure yields β̂STLS .

Yoo, Kim, and Lee (2001) used this method with the bootstrap
to estimate the covariance matrix of β̂STLS . For M bootstrap repli-
cations with estimate β̂j in replication j, their estimate is

Σ̂ =
1
M

M∑
j=1

(β̂j − β̄STLS)(β̂j − β̄STLS)′

where β̄STLS = (1/M)
∑M

j=1 β̂j . In an empirical study, Yoo et al.
showed that semi-parametric estimation significantly outperforms es-
timation assuming normality (i.e., the Tobit model).

2.2 Two-part models

The Tobit model allows the same underlying stochastic process to
determine whether the response is zero or positive as well as the
value of a positive response. That is, the same parameters influence
whether the outcome is zero or positive as well as the magnitude of the
outcome, conditional on its being positive. The next two subsections
discuss “two-part models” that allow the two components to have
different parameters.

Without assuming an underlying normal distribution, Duan et al.
(1983) proposed a two-part model that uses two equations to separate
the modeling into two stages. The first stage refers to whether the
response outcome is positive. Conditional on its being positive, the
second stage refers to its level.

The first part is a binary model for the dichotomous event of
having zero or positive values, such as the logistic regression model

logit[P (Yi = 0)] = x′1iβ1

Conditional on a positive value, the second part assumes a log-normal
distribution; that is,

log(yi|yi > 0) = x′2iβ2 + εi

where εi is distributed as N(0, σ2). The likelihood function for this
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12 Min and Agresti

two-part model is

`(β1,β2, σ) =
[ ∏

yi=0

P (yi = 0)
][ ∏

yi>0

P (yi > 0)f(yi|yi > 0)
]

=
[ ∏

yi=0

ex
′
1iβ1

1 + ex
′
1iβ1

]
[ ∏

yi>0

1

1 + ex
′
1iβ1

σ−1φ

(
log(yi)− x′2iβ2

σ

)]
Duan et al. (1983) showed that the likelihood function has a unique
global maximum. ML calculations are relatively simple, because the
likelihood function factors into two terms. The first term has only
the logit model parameters,

`1(β1) =
[ ∏

yi=0

ex
′
1iβ1

][ n∏
i=1

1

1 + ex
′
1iβ1

]
The second term involves only the parameters of the second model
part,

`2(β2, σ) =
∏
yi>0

σ−1φ

(
log(yi)− x′2iβ2

σ

)
One can obtain ML estimates by separately maximizing the two
terms. Duan et al. (1983) applied this model to describe demand
for medical care. For another application, see Grytten, Holst, and
Laake (1993).

2.3 Sample selection models

Heckman (1974, 1979) extended the Tobit model to a two-part model.
His model has been commonly applied to model sample selection
and the related potential bias. There are many variants of sample
selection models. We use the version by van de Ven and van Praag
(1981) to illustrate. For observation i, let {(u1i, u2i)} be iid from a
bivariate N(0,Σ) distribution, where

Σ =
(

σ2
1 σ12

σ12 σ2
2

)
The model assumes that

Ii = x′1iβ1 + u1i,
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Modeling Nonnegative Data with Clumping at Zero 13

y∗i = x′2iβ2 + u2i,

yi = exp(y∗i ) if Ii > 0,

= 0 if Ii ≤ 0

When Ii > 0, yi > 0 is observed and y∗i = log(yi); when Ii ≤ 0, yi = 0
is observed and y∗i is ‘missing’. The covariate and parameter vectors
(x1i, β1) for Ii may differ from (x2i, β2) for y∗i . Two estimation
methods employed with this model are ML and a two-step procedure
due to Heckman (1979).

For ML estimation, the likelihood function of the model is given
by

`(β1,β2,Σ) =
[ ∏

yi=0

P (Ii ≤ 0)
][ ∏

yi>0

f(y∗i |Ii > 0)P (Ii > 0)
]

=
[ ∏

yi=0

P (Ii ≤ 0)
][ ∏

yi>0

∫ ∞

0
f(y∗i , Ii)dIi

]
=

[ ∏
yi=0

{1− Φ
(

x′1iβ1

σ1

)
}
]

×
[ ∏

yi>0

Φ{
(

x′1iβ1

σ1
+

log(yi)− x′2iβ2

σ−1
12 σ1σ2

2

)
×(1− σ2

12σ
−2
1 σ−2

2 )−
1
2 }σ−1

2 φ

(
log(yi)− x′2iβ2

σ2

)]
An iterative method can be used to find the ML estimates.

Heckman’s two-step procedure does not perform as well as the ML
estimators. But this method is very simple and easy to implement. It
is widely used and has become the standard estimation procedure for
empirical microeconometrics studies. With the two-step procedure,
the subsample regression function for Y ∗

i is

E[Y ∗
i |x2i, Ii > 0] = x′2iβ2 + E[u2i|u1i > −x′1iβ1] = x′2iβ2 +

σ12

σ1
λi

(1)
where λi = φ(zi)/Φ(zi), and zi = x′1iβ1/σ1. So, we have

log(Yi) = E[Y ∗
i |x2i, Ii > 0] + εi

= x′2iβ2 +
σ12

σ1
λi + εi,

where Heckman (1979) showed that εi has mean 0 and variance
σ2

2[(1 − ρ2) + ρ2(1 + ziλi − λ2
i )], where ρ2 = σ2

12/(σ2
1σ

2
2). One can
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14 Min and Agresti

estimate the parameters β1 and σ1 by a probit model using the full
sample. Therefore, zi and hence λi can be easily estimated. The
estimated value of λi is used as a regressor in equation (1). Then one
can estimate β2 using least squares.

Duan et al. (1983, 1984) pointed out that the model has poor
numerical and statistical properties. The likelihood function may
have non-unique local maxima (Olsen 1975), and computations are
more involved than in the Duan et al. (1983) two-part model. The
model relies on untestable assumptions in that the censored data are
unobservable, so standard diagnostic methods based on the empirical
error distribution cannot be applied. When a high correlation exists
between λ and x2, the estimator in the sample selection model is very
nonrobust. Some researchers have suggested that x1 and x2 should
not have variables in common, but this is not realistic in practice.

Both the Duan et al. (1983) two-part model and Heckman’s sam-
ple selection model use two equations to separately model whether
the outcome is positive and the magnitude of a positive response. The
sample selection model posits an underlying bivariate normal error.
It estimates an unconditional equation that describes the level that
subjects would have if they all had outcomes. The two-part model
estimates a conditional equation that describes only the level of out-
comes for those that truly are positive. The econometrics literature
contains discussion comparing the sample selection model and the
two-part model. See, for instance, Duan et al. (1983, 1984), Manning
et al. (1987), and Leung and Yu (1996).

2.4 Compound Poisson exponential dispersion models

Jørgensen (1987, 1997) proposed using a single distribution from the
exponential dispersion family to analyze semicontinuous data. This
distribution is a type of compound Poisson distribution. The expo-
nential dispersion family, which is used in generalized linear models,
has form

f(yi; θi, φ) = c(yi, φ) exp
(

θiyi − b(θi)
φ

)
It is characterized by its variance function v(µi), expressed in terms
of the mean µi (Jørgensen 1987). For this family, θ relates to µ by
µ = ∂b(θ)/∂θ. An important class of exponential dispersion models
uses the power function, v(µ) = µp. When p = 1, this is the Poisson
distribution.
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Modeling Nonnegative Data with Clumping at Zero 15

Jørgensen (1997) applied this family for 1 < p < 2, for which

b(θi) = (
α− 1

α
)(

θi

α− 1
)
α

where α = (p− 2)/(p− 1), and

c(yi, φ) =

{
1
yi

∑∞
n=1

bn(−φ/yi)
φnΓ(−αn)n! yi > 0

1 yi = 0

For this distribution,

µi = ∂b(θi)/∂θi =
(

θi

α− 1

)α−1

Jørgensen (1997) showed that when 1 < p < 2, this distribution
results from the compound Poisson construction,

Yi =
Ni∑
j=0

Wij

where Ni has a Poisson(b(θi)/φ) distribution and Wij has a gamma
(αφ/θi,−α) distribution. When Ni and {Wij} are independent,
P (Yi = 0) = P (Ni = 0). Given Ni > 0, the distribution of Yi is
continuous on the positive real line.

With link function g, one can specify a model for the mean re-
sponse as g(µi) = x′iβ. Obtaining the ML estimator for β does not
involve c(yi, φ). When p is known, this model can be fitted with soft-
ware for generalized linear models. Normally, however, p would itself
be unknown and need to be estimated. Since it occurs (through α)
in the infinite sum and gamma function in c(yi, φ), estimating it can
be computationally difficult (Jørgensen 1987). Alternative moment-
based estimation may perform well. Tweedie (1984) suggested an es-
timate of p based on a single random sample as p̂ = k̂1k̂3k̂

−2
2 , where k̂t

is an estimate of cumulant t of the distribution. Jørgensen proposed
a possible generalization of this approach for a regression model. Let
y and µ̂ represent vectors of observations and fitted values. A mo-
ment estimator for φ is φ̂ = X2/(n − k), where k is the number of
unknown parameters amd X2 = (y − µ̂)T V (µ̂)−1(y − µ̂).
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16 Min and Agresti

2.5 Ordinal threshold models

Saei, Ward, and McGilchrist (1996) suggested grouping the possible
outcome values into k ordered categories and applying an ordinal re-
sponse model. Let Yg be the grouped response variable. The thresh-
old model for an ordinal response posits an unobservable variable Z,
such that one observes Yg = j (i.e., in category j) if Z is between
θj−1 and θj . Suppose that Z has a cumulative distribution function
G(z − η), where η is related to explanatory variables by

η = x′β

Then,

P (Yg ≤ j) = P (Z ≤ θj) = G(θj − x′β)

The threshold model then follows, by which

G−1[P (Yg ≤ j;x)] = θj − x′β, j = 1, 2, . . . , k − 1

That is, the inverse of the cdf serves as the link function.
In application with semicontinuous data and a clump at 0, one

would take the first category to be the 0 outcome, and then one would
select cutpoints on the positive outcome scale to define the other k−1
categories. Assuming that G is logistic leads to a logit model for the
cumulative probabilities, called a cumulative logit model. Assuming
that G is normal leads to a cumulative probit model (McCullagh
1980). A score test is available to check the assumption that covariate
effects are the same for each cutpoint (Peterson and Harrell 1990).
Chang and Pocock (2000) applied the cumulative logit model for
modeling the amount of personal care for the elderly.

This model has the simplicity of a single model to handle the
clump at 0 and the positive outcomes. Elements of β summarize
effects overall, rather than conditional on the response being posi-
tive. For instance, to compare different groups that are levels of the
explanatory variables, one can use β̂ directly, whereas for two-part
models one needs to average results from the two components of the
model to make an unconditional comparison (e.g., to estimate E(Y )
for the groups). Two obvious concerns with this model are that the
way the positive scale is collapsed into categories is arbitrary, and by
grouping the data one loses some information.
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Modeling Nonnegative Data with Clumping at Zero 17

2.6 Advantages and disadvantages of existing
approaches

The Tobit model was the first to deal with semicontinuous data. The
sample selection model extends the Tobit model to allow different
coefficients to affect the two components. Both models assume an
underlying normal random variable that is censored by a random
mechanism. These models are sometimes suitable for modeling a
limited or censored response variable. When zeros represent actual
outcome values instead of censored or missing values, the underly-
ing normal assumption becomes dubious. By contrast, the Duan et
al. (1983) two-part model has several appealing properties, including
a well-behaved likelihood function and more appropriate interpreta-
tions than the Tobit and Heckman models if the zeros are true values.

The compound Poisson exponential dispersion model makes it
possible to analyze data with a single model that includes both as-
pects described in the two-part model. In this sense, it is relatively
simple. Given the power p in the variance function, this model is
easy to fit, but otherwise the model seems problematic. It does not
seem to have received attention in practice other than in Jørgensen’s
work. Ordinal response models also can model the zero and non-zero
values in one model, and they are simple to fit. A drawback is that
they model grouped data instead of the original data.

Of these models, it seems to us that the Duan et al. (1983) two-
part model is a reasonable choice for many applications. Compared
with other models we’ve discussed, this model addresses the data
in their original form, is simple to fit, and is relatively simple to
interpret.

3 Models for Zero-Inflated Count Data

Count responses with a relatively large clump at zero can occur in
many situations (e.g., Cameron and Trivedi 1998, pp. 10-15). Having
a large number of observations at zero is not by itself sufficient to rule
out a particular discrete distribution. However, often the remaining
counts show considerable variability, which is inconsistent with the
Poisson distribution (for which the mean determines both the vari-
ance and the probability at 0). This may be caused by overdispersion
due to unobserved heterogeneity. Then, a distribution that allows the
Poisson mean to vary at fixed values of predictors may be appropri-
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18 Min and Agresti

ate. Examples are the negative binomial regression model (which
can be derived with a gamma mixture of Poisson means) and the
generalized linear mixed model that adds a normal random effect to
a model for the log of the Poisson mean. See, for instance, Cameron
and Trivedi (1998) and Chapter 13 of Agresti (2002) for discussion
of such approaches.

Sometimes such simple models for overdispersion are themselves
inadequate. For instance, the data might be bimodal, with a clump
at zero and a separate hump around some considerably higher value.
This might happen for variables for which a certain fraction of the
population necessarily has a zero outcome, and the remaining frac-
tion follows some distribution having positive probability of a zero
outcome. This happens for variables referring to the number of times
one takes part in a certain activity, when some subjects never do so
and others may occasionally not do so. Examples are the number
of papers one published in the previous year (for a sample of profes-
sors), and the number of times one exercised in a gym in the previous
month. For such zero-clumped data, standard discrete distributions
are suspect. The above representation of two types of subjects leads
naturally to a mixture model, some examples of which are presented
in this section on the modeling of zero-inflated count data.

3.1 Zero-inflated discrete distributions

Lambert (1992) introduced zero-inflated Poisson (ZIP) regression mod-
els to account for overdispersion in the form of excess zero counts for
the Poisson distribution. Since her article, zero-inflated discrete mod-
els have been developed and applied in the econometrics and statistics
literature.

Lambert’s model treats the data as a mixture of zeros and out-
comes of Poisson variates. For subject i, she assumed that

Yi ∼

{
0 with probability pi

Poisson(λi) with probability 1− pi

The resulting distribution has

P (Yi = 0) = pi + (1− pi)e−λi ,

P (Yi = j) = (1− pi)
e−λiλj

i

j!
, j = 1, 2, . . .
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Modeling Nonnegative Data with Clumping at Zero 19

With explanatory variables, the parameters are themselves modeled
by

logit(pi) = x′1iβ1 and log(λi) = x′2iβ2

The log likelihood function is

L(β1,β2) =
∑
yi=0

log[ex
′
1iβ1 + exp(−ex

′
2iβ2)]

+
∑
yi>0

(yix
′
2iβ2 − ex

′
2iβ2)

−
n∑

i=1

log(1 + ex
′
1iβ1)−

∑
yi>0

log(yi!)

A latent class construction that yields this model posits an unob-
served binary variable Zi. When Zi = 1, yi = 0, and when Zi = 0,
Yi is Poisson(λi). Lambert (1992) suggested using the EM algorithm
for ML estimation of the parameters, treating zi as a missing value.

Hall (2000) adapted Lambert’s method to an upper-bounded count
setting to yield a zero-inflated binomial model. With upper bound
for Yi of ni, he took

Yi ∼

{
0 with probability pi

binomial(ni, πi) with probability 1− pi

He modeled pi with logit(pi) = x′1iβ1 and modeled πi with logit(πi)
= x′2iβ2, using the EM algorithm to obtain ML estimates.

In practice, overdispersion is common with count data, even con-
ditional on a positive count or for a component of a latent class model.
The equality of mean and variance assumed by the ZIP model, con-
ditional on Zi = 0, is often not realistic. Zero-inflated negative bino-
mial models would likely often be more appropriate than ZIP models.
Grogger and Carson (1991) used zero-truncated Poisson models to fit
data simulated from zero-truncated negative binomial distributions.
They observed biases of estimated parameters up to 30 percent. Sim-
ilar arguments extend to zero-inflated models. With an inappropri-
ate Poisson assumption, standard error estimates can be biased very
dramatically. Ridout, Hinde and Demetrio (2001) provided a score
test for testing zero-inflated Poisson models against the zero-inflated
negative binomial alternative. For an application of the zero-inflated
negative binomial model, see Shankar, Milton, and Mannering (1997).

With more than a single unusually high probability, extensions of
zero-inflated count models may be needed. For instance, in studying
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20 Min and Agresti

Swedish female fertility, Melkersson and Rooth (2000) inspected the
number of births for a sample of women. They found more 0 and 2
outcomes than expected in a standard count data model. They used
a multinomial logit model to estimate the extra probabilities of zero
and two children.

3.2 Hurdle models

The hurdle model is a two-part model for count data proposed by
Mullahy (1986). One part of the model is a binary model, such
as logistic or probit regression, for whether the response outcome is
zero or positive. If the outcome is positive, the “hurdle is crossed.”
Conditioning on a positive outcome, to analyze its level the second
part uses a truncated model that modifies an ordinary distribution
by conditioning on a positive outcome. This might be a truncated
Poisson or truncated negative binomial. Applications of such models
have been given by Pohlmeier and Ulrich (1995), Arulampalam and
Booth (1997), and Gurmu and Trivedi (1996).

Suppose we use a logistic regression for the binary process and a
truncated Poisson model for the positive outcome; that is,

logit[P (Yi = 0)] = x′1iβ1 and log(λi) = x′2iβ2

The log likelihood then has two components:

L1(β) =
∑
yi=0

[log P1(yi = 0;β1,x1i)]

+
∑
yi>0

[log(1− P1(yi = 0;β1,x1i))]

=
∑
yi=0

x′1iβ1 −
n∑

i=1

log(1 + ex
′
1iβ1)

is the log-likelihood function for the binary process, and

L2(β2) =
∑
yi>0

[yix
′
2iβ2 − ex

′
2iβ2 − log(1− e−ex

′
2iβ2 )]−

∑
yi>0

log(yi!)

is the log-likelihood function for the truncated model. The joint log-
likelihood function is

L(β1,β2) = L1(β1) + L2(β2)
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Modeling Nonnegative Data with Clumping at Zero 21

One can maximize this by separately maximizing L1 and L2.
In some applications, the data may have a long right tail reflecting

some extremely large positive counts. Gurmu (1997) proposed a semi-
parametric hurdle model for a highly skewed distribution of counts.
It is based on a Laguerre series expansion for the unknown density
of the unobserved heterogeneity.

3.3 Finite mixture models

Another approach for zero-inflated count data uses a finite mixture
model. It assumes that the response comes from a mixture of several
latent distributions. With q latent groups, the mixture density is

f(yi;θ) =
q∑

j=1

πjfj(yi; θj), y = 0, 1, 2, . . .

where πj is the true proportion in group j, fj(yi; θj) is the mass
function (e.g., Poisson or negative binomial) for group j, and {πj}
and {θj} are unknown parameters. The zero-inflated count models
of Sec. 3.1 are special cases of the finite mixture model in which
one of the mixture mass functions is degenerate at zero. The more
general mixture model allows for additional population heterogeneity
but avoids the sharp dichotomy between the population of zeros and
non-zero counts.

One approach to fitting a finite mixture model relates it to latent
class analysis (Aitkin and Rubin 1985). Let dij denote an indicator
to represent whether yi comes from latent group j, with

∑
j dij = 1.

Assume that {(yi, di1, . . . , diq), i = 1, . . . , n} are independent, such
that {dij , j = 1, . . . , q} have the multinomial distribution

q∏
j=1

π
dij

j

and conditional on their values, yi has probability mass function
q∑

j=1

dijf(yi; θj) =
q∏

j=1

f(yi; θj)dij , yi = 0, 1, 2, . . .

Then, the likelihood function is

`(θ,π) =
n∏

i=1

[ q∑
j=1

π
dij

j f(yi; θj)dij

]
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Treating {dij} as missing data, one can use the EM algorithm to fit
the model.

Deb and Trivedi (1997) used a finite mixture model to study the
demand for medical care by the elderly. They found that a two-
point mixture negative binomial model fits better than the standard
negative binomial model and its hurdle extension. Wedel et al. (1993)
applied this method to analyze the effects of direct marketing on book
selling. Gerdtham and Trivedi (2001) used it in studying the equity
issue in Swedish health care.

3.4 Neyman type A distribution

Dobbie and Welsh (2001) proposed modeling zero-inflated count data
using the Neyman type A distribution. This distribution is a com-
pound Poisson-Poisson mixture. For observation i, let Ni denote a
Poisson variate with expected value λi. Conditional on Ni, let Wit

(t = 1, . . . , Ni) denote independent observations from a Poisson dis-
tribution with expected value φi. The model expresses Yi using the
decomposition,

Yi =
Ni∑
t=0

Wit , i = 1, 2, . . . , n

The probability mass function for Yi is

P (Yi = yi) =
∞∑

j=0

[
P (

Ni∑
t=0

Wit = yi|Ni = j)P (Ni = j)
]

=
∞∑

j=0

[
e−jφi(jφi)yi

yi!

][
e−λiλj

i

j!

]

=
e−λiφyi

i

yi!

∞∑
j=0

(λie
−φi)jjyi

j!

Using this distribution, one can form a model that relates λi and
φi to explanatory variables through

log(λi) = x′1iβ1,

log(φi) = x′2iβ2
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Since E(Yi) = λiφi,

log[E(Yi)] = log(λi) + log(φi) = x′1iβ1 + x′2iβ2

Dobbie and Welsh used a four-step procedure with the Newton-Raph-
son algorithm to estimate parameters, iterating between estimating
β1 for a given β2 and estimating β2 for a given β1. The infinite sums
in the density function make model-fitting complicated. They applied
it to model the abundance of Leadeater’s Possum in mountain ash
forests of southeastern Australia. Here, λi denotes the mean number
of possum clusters per site, and φi denotes the average number of
possums per cluster.

3.5 Advantages and disadvantages of existing
approaches

The zero-inflated model and the hurdle model are similar. The zero-
inflated models are more natural when it is reasonable to think of
the population as a mixture, with one set of subjects that necessarily
has a 0 response. However, they are more complex to fit, as the
model components must be fitted simultaneously. By contrast, one
can separately fit the two components in the hurdle model. The
hurdle model is also suitable for modeling data with fewer zeros than
would be expected under standard distributional assumptions.

The finite mixture model is semi-parametric. If the observations
can realistically be viewed as being drawn from different populations,
this approach is attractive. A potential disadvantage with this model
is that it may overestimate the number of components when there is
a lack of model fit. The Neyman type A model makes it possible to
fit the data using a single distribution. However, it is not a member
of the exponential family, so the mathematical and inferential advan-
tages associated with this family are not available, and model fitting
is complicated by the infinite sum in the mass function.

4 Modeling Repeated Measurement of Zero-
Clumped Data

Compared with the substantial literature on cross-sectional observa-
tions of data with clumping at zero, few papers have discussed the
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modeling of clustered, correlated observations, such as occur with
longitudinal data. This section surveys this literature.

4.1 Repeated measurement of semicontinuous data

Cowles, Carlin, and Connett (1996) and Hajivassiliou (1994) ex-
tended the Tobit model and the sample selection model to longitu-
dinal data. Both models assume an underlying normal distribution,
which is dubious in most applications, especially when zeros repre-
sent actual responses instead of censored or missing values. We do
not discuss their approaches here. Olsen and Schafer (2001) extended
the two-part model of Duan et al. (1983) to longitudinal data. We
describe their model next.

Let yij be the semicontinuous response for subject (or cluster)
i (i = 1, . . . , n) at occasion j (j = 1, . . . , ti). The first part of the
model is a logistic random effects model for the dichotomous event
of having zero or positive values. Suppose that

yij

{
= 0 with probability pij

6= 0 with probability 1− pij

Let {ci} be random effects to account for within-subject correlation.
Conditional on ci, we assume that

logit(pij) = x′1ijβ1 + z′1ijci

where x1ij and z1ij are covariate vectors pertaining to the fixed effects
β and random effects ci. In practice, the simple random intercept
form of model is often adequate, in which ci = ci is univariate and
z1ij = 1.

In the second part of the model, let

Vij =

{
yij , if yij > 0
unspecified, if yij = 0

When Vij is positive, conditional on a random effect di the model
assumes that Vij follows a log-normal distribution. Thus, the model
for the positive outcomes is

log(Vij) = x′2ijβ2 + z′2ijdi + εij
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where the residuals {εij} are assumed to be independent from N(0, σ2).
Again, often the simple random intercept form of model is often ad-
equate, in which di = di is univariate and z2ij = 1.

When the response is observed at repeated times, a high level of a
positive response at one time may affect the probability of a positive
outcome at another time. So, one can tie the two parts of the model
together by taking the random effects from the two parts as jointly
normal and correlated,

bi =
(

ci

di

)
∼ N (0, Σ)

where

Σ =
(

Σcc Σcd

Σdc Σdd

)
To fit the model, one first obtains a marginal likelihood by integrat-
ing out the random effects. However, these integrals are analytically
intractable, so the marginal likelihood does not have a closed-form
expression. Numerical or stochastic approximation of the integrals
is needed, as in the fitting of generalized linear mixed models (e.g.,
Agresti 2002, Chapter 12). With univariate random intercepts, nu-
merical approximation using Gauss-Hermite quadrature, which ap-
proximates the integral by a finite sum, should be adequate. Then
one can maximize the approximated likelihood using standard opti-
mization methods such as Newton–Raphson.

Olsen and Schafer (2001) studied many fitting methods. They
compared Markov chain Monte Carlo (MCMC), the EM algorithm,
penalized quasi-likelihood (PQL), Gauss-Hermite quadrature, and
Laplace approximations. Simulations by Raudenbush et al. (2000)
showed that a high-order Laplace approximation can be as accurate
as Gauss-Hermite quadrature yet is much faster than the other meth-
ods. Olsen and Schafer noted that it took MCMC and EM algorithms
more than one day to obtain accurate estimates for their example,
while the sixth-order Laplace method needed less than one minute.

Saei et al. (1996) extended the ordinal threshold model to ana-
lyze clustered semicontinuous data. Again, this requires breaking the
continuous scale into categories. Let yij,g be the grouped response
for observation j on subject i. Let G be the cumulative distribu-
tion function for an underlying unobservable variable. For outcome
category k, the model assumes

P (Yij,g ≤ k) = G(θk − ηij)
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where
ηij = x′ijβ + z′ijbi

for a vector bi ∼ N(0,Σ) of random effects that account for within-
subject correlation. They took G to be the standard normal cdf,
yielding a cumulative probit model, and they used penalized quasi-
likelihood (PQL) to fit the model.

4.2 Repeated measurement of zero-inflated data

As with semicontinuous data, there is little literature on modeling
clustered zero-inflated count data. Hall (2000) extended the zero-
inflated Poisson and zero-inflated binomial models to handle longitu-
dinal data, adding random effects to account for the within-subject
dependence.

Hall assumed that Yij = 0 with probability pij and
Yij ∼ Poisson(λij) with probability 1 − pij . The parameters pij and
λij are modeled by

logit(pij) = x′1ijβ1,

log(λij) = x′2ijβ2 + bi

where bi ∼ N(0, σ2) is a random effect. The Poisson(λij) distribution
applies conditional on bi; unconditionally, there is overdispersion rel-
ative to the Poisson when σ > 0. The log-likelihood function for the
longitudinal zero-inflated Poisson model is

L(β1,β2, σ) =
n∑

i=1

[
log

∫ +∞

−∞
[

ti∏
j=1

P (Yij = yij |bi)]φ(bi)dbi

]
Hall employed the EM algorithm with Gauss-Hermite quadrature to
fit the model. In a corresponding longitudinal zero-inflated binomial
model, Hall assumed that Yij is binomial(ni, πij) with probability 1−
pij (conditional on a random effect bi), where logit(πij) = x′2ijβ2 +bi.

Note that Hall’s model does not have a random effect for the part
of the model determining the zero inflation. By contrast, Yau and Lee
(2001) proposed adding a pair of uncorrelated normal random effects
(bi, ci) for the two components of a hurdle model. They used a logistic
model for the probability pij of a positive outcome. Conditional on
positive outcome, they applied a loglinear model for the mean λij in
a truncated (conditionally) Poisson distribution. That is,

logit(pij) = x′1ijβ1 + bi,
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log(λij) = x′2ijβ2 + ci

With uncorrelated random effects, the two components of the hurdle
model can be fitted separately. Yau and Lee used a penalized quasi-
likelihood approach for this.

5 An Application with Two Boundary Clumps

The form of data discussed in this article usually has only a single
clump, occurring at zero, or a clump at zero and a mound around
some larger value. Some applications, however, have data with two
clumps, one at zero and one at the maximum possible response value.

An application in which such data commonly occur is in the study
of patient compliance. Compliance is usually defined as the extent
to which a subject’s behavior (in terms of taking medications, fol-
lowing diets, or executing lifestyle changes) coincides with medical
or health advice (Haynes, Taylor, and Sackett 1979). The response
distribution usually has a proportion of subjects with 0% compliance,
a proportion of subjects with 100% compliance, and other subjects
having compliances spread between 0% and 100%. An appropriate
model permits two clumps with positive probability at the extremes
and treats the remaining scale as continuous.

Thus far, little attention has been paid to specialized models for
compliance data. One possibility uses the logit to transform the re-
sponse values between zero and one to the real line, as is often done
with compositional data (Aitchison and Shen 1980) and continuous
proportion data (Bartlett 1937). However, this transformation can-
not handle 0% or 100% compliance. Another possibility is to use a
quasi-likelihood approach with variance function v(µ) = [µ(1 − µ)]2

(Wedderburn 1974), which corresponds to constant asymptotic vari-
ance for the logit of compliance. Another possibility is to use the Saei
et al. (1996) approach with ordered categories for the outcomes, in
which the extreme outcomes refer to the clumped outcomes. We are
currently conducting research on models for this form of data.

6 Future Research

For cross-sectional nonnegative data with clumping at zero, we have
surveyed a considerable amount of research. However, methods for
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longitudinal data are less developed and could use more work. For
instance, it may be of interest to extend the exponential dispersion
model with V (µ) = µp (1 < p < 2) to longitudinal data analysis. So
far this method has essentially been ignored even for cross-sectional
analysis.

Or, one could develop further the ordinal threshold model for
longitudinal data analysis. Saei et al. (1996) proposed a cumulative
probit model to fit clustered semicontinuous data, and they used a pe-
nalized quasi-likelihood (PQL) approach to estimate the parameters.
However, Breslow and Lin (1995) showed that the PQL estimates
are biased and inconsistent for binomial responses when the random
effects have large variance and the binomial denominator is small.
We suspect that using the PQL approach to fit the cumulative probit
model will have similar problems. The use of different distribution
functions and more accurate estimation algorithms is open for future
research. This type of model is also suitable for zero-inflated count
data analysis. For ordinal threshold models, study is also needed
about how close the parameters fitted by the grouped data tend to
be to the ones fitted by ungrouped data.

In analyzing longitudinal count data with a zero-inflated Poisson
model, Hall (2000) added a random intercept only to one component
of the model. Yau and Lee (2001) added a pair of random effects to
both components of a hurdle model. However, they assumed uncor-
related random effects and used PQL for model fitting. When the
response is observed at several occasions, a high positive outcome at
one time may affect the probability of a positive outcome at another
time. These two processes are likely correlated and influenced by
covariates in different ways. It makes sense to allow correlated ran-
dom effects in the model, which then requires a more complex fitting
process, preferably using ML.

For semicontinuous data analysis, most of the methods we men-
tioned assume that the positive continuous responses have a log-
normal distribution. This need not be realistic, especially in ap-
plications in which some especially large observations create a right
tail that is too long for a log-normal distribution. For instance, in a
survey of medical care expenses, the right tail may be poorly modeled
by the log normal. Semi-parametric methods may be appropriate for
such highly skewed data. Finally, the modeling of compliance data
and other types of data with more than one clump remains a fertile
area for future research.
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