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When Can Finite Testing Ensure Infinite Trust-
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Abstract. In this paper we contribute to the general philosophical
question as to whether empirical testing can ever prove a physical law.
Problems that lead to this question arise under several contexts, and
the matter has been addressed by the likes of Bayes and Laplace.
After pointing out that a Bayesian approach is the proper way to
address this problem, we show that the answer depends on what we
start with. Namely, under certain prior assumptions, a finite amount
of testing can lead to the conclusion of total trustworthiness, though
such priors could be unrealistic. However, we do produce a new
class of priors under which a finite amount of testing can lead to
a high degree of trustworthiness, at a relatively fast pace. We use
the scenario of software testing as a way to motivate and discuss our
development.

1 Introduction

This paper discusses the general problem of whether a large but fi-
nite amount of Bernoulli testing of similar items, all of which result
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in successes, can lead to the judgement of a high trustworthiness of
all future items to be tested. The problem dates back to Bayes and
to Laplace (1774), and appears under several disguises. To philoso-
phers it is a problem of induction; namely, is it possible to claim
that a scientific law is true based on empirical observations alone?
To statisticians such as Karl Pearson (1920), this is a “Fundamental
Problem of Practical Statistics”. To biometricians it is a matter of
asserting the effectiveness of a drug for use by the population as a
whole, based on the results of a substantive testing protocol. To reli-
abilists charged with the task of stockpile stewardship and certifying
the trustworthiness of mission critical systems, it is a question of how
much testing is enough, and how to avoid indiscriminate testing. To
provide a point of focus to the general problem described above, we
will consider here the scenario of software testing to ensure its credi-
bility. Indeed, this is what has motivated our interest in this problem.
In particular, a piece of software code can receive IV distinct inputs,
where N is large, conceptually infinite. Each input is processed by
the code and this results in a success if done correctly, or a failure if
done incorrectly. The software is intended to be used in a life-critical
environment such as an air traffic control system. Thus the conse-
quences of a failure to correctly process an input are severe: that is,
no failures can be tolerated. We are therefore required to ensure that
the software is fail-safe, and to do so we are allowed to test n sample
inputs.

2 The Problem’s Architecture

Let R denote the number of inputs out of NV that can be successfully
processed. Clearly, 0 < R < N, but R is unknown. However, we
would like to know if R = N. For this, we randomly select n of the
N inputs and test these for success or failure. Suppose that n is large
and that all the n tests result in successes. Based on the above, can
we claim that R = N7

The answer to the above question is a no, because the only way
we can make such a claim is to test all the N inputs, and since N
is prohibitively large, this we cannot do. However, whilst R = N
cannot be guaranteed it can be given as a high probability as we
desire. Thus we would like to claim that P(R = N) =~ 1, and this
is what we mean when we say (in the title of this paper) “infinite
trustworthiness”. Equivalently, we ask if the software’s reliability is
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close to one against all its future distinct inputs.

In actuality, the software scenario is much more complicated than
the bare essentials that we have laid out above. For a deeper apprecia-
tion of the caveats and nuances of software testing we refer the reader
to Miller et al. (1992). However, to better align our statement of the
problem with some notions and verbiage used by software engineers,
we introduce the following as assumptions:

i) The software has many lines of code and has so many inter-
connected modules that for testing purposes it is best treated
as a “black-box”!. In essence this means that every input is of
equal importance and all that matters is whether the input is
processed successfully or not. From a statistical point of view,
this assumption tantamounts to the judgment that all the bi-
nary outputs are exchangeable [see de Finetti (1974), p. 215].

1) The n inputs used to test the software are selected randomly,
with equal probability of selection. In the language of software
engineering, this means that the software system has an “oper-
ational profile” that is uniform.

We emphasise that even though we have used the scenario of soft-
ware testing to describe the architecture of our problem, the set-up is
general enough to embrace many other contexts involving Bernoulli
testing. After all, the essence of assumptions 7) and i7) above is that
the trials are (conditionally) independent and that sampling is ran-
dom. The fact that IV is conceptually infinite may not be germane
to all scenarios (stockpile stewardship being an example) but it cer-
tainly does hold in the context of releasing a drug for general use
(like aspirin), or for establishing the truth of a physical law (like the
sun always rises). In any case, arguments based on limiting opera-
tions provide guidance about the general nature of a result; thus the
conclusions of this paper would be useful, even if N is finite (but
large).

3 Possible Approaches

The problem posed in Section 2 can be addressed via either one of the
two paradigms of statistical inference: frequentist (or sample theo-

!The term “black-box” originated during World War II. It encapsulates a pas-
sive approach to complex systems which cannot be directly observed.
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retic) and Bayesian (or Laplacian). Each approach can claim its
merits over the other and each approach tends to address the prob-
lem in its own way. However, for reasons given below, our focus here
will be on the second approach.

3.1 The Frequentist Approach

In principle, given the circumstances of the problem, the frequen-
tist approach is not designed to assess a probability of the type
P(R = N). Under the dictates of this approach probabilities can
only be estimated for sequences that are embedded in a collective (or
ensemble). This boils down to conceptualizing a large collective of
software codes, all of which are similar to each other, and each of
which can receive N distinct inputs of the type mentioned before. If
the software code is one of a kind, as is usually the case, it would be
far fetched to think in terms of a collective of software codes. Thus a
frequentist approach is unable to answer the question posed in Section
2. However, under this approach it is possible to obtain an estimate
of R, say ﬁ, by first estimating the probability that any randomly
selected input is a success and then multiplying this estimated prob-
ability by N. Since each trial can be seen as being a member of an
ensemble of size N, the aforementioned probability can be estimated

as
total number of successes in n trials

total number of trials ( = n)

When all the n trials result in a success, the estimated probability
is one. Consequently, R = N - a result whose value to a user is
suspect. All the same, the frequentist approach is able to provide
a lower confidence limit on the quantity R/N and this could serve
as a proxy for infallibility. However, confidence limits are not to be
interpreted as coverage probabilities on unknown quantities, and thus
the extent to which a frequentist approach can take place is limited.
For more details on the kind of results that can be obtained under
the frequentist approach for the kind of problems considered here, we
refer the reader to Launer (2003).

3.2 The Bayesian Approach

The Bayesian approach requires of a user the specification of a prior
distribution on the unknown R, and the conclusions of this approach
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depend on the prior distribution used. This is strikingly true for
the problem considered here. Three noteworthy priors have been
previously proposed; these are:

A. The Bayes-Laplace (Uniform) Prior,
B. A Prior by Jefferys,

C. A Prior by Bernardo.

In this paper we shall first interpret these priors vis-a-vis the
nature of results that they provide, and then introduce four new
priors each of which produces results with a different flavor. Our
proposed priors are:

D. A Pessimistic Prior,
E. A Regulated Pessimistic Prior,
F. A Scale Prior, and

G. A Portmanteau Prior.

The pessimistic prior represents a significant departure from the
previously proposed three priors, and provides some intriguing re-
sults. The regulated pessimistic prior is a variant on the pessimistic
prior and provides an alternative to the latter. The scale prior mod-
ulates a feature of the first three priors, and the portmanteau prior
combines the pessimistic and scale priors to encapsulate prior beliefs
that seem meaningful.

The Bayesian approach is able to provide an answer to the ques-
tion we have posed, namely, what is P(R = N) given n trials, all of
which result in success? In what follows we describe the priors men-
tioned above and the results they provide. We start by first discussing
a model for the likelihood, which is the hypergeometric distribution,
and the general nature of P(R = N) given all successes in n trials.

4 The Hypergeometric Model and the Poste-
rior Probability

Since testing consists of selecting n inputs without replacement and
observing whether or not they result in successes, the distribution to
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use in this problem is the hypergeometric distribution. With R fixed
but unknown, the probability that out of the n inputs considered ¢
are successful is given by

P(T = t|R) = ()

0, otherwise.

We use this as a likelihood for R. Specifically, we are assuming
that t = n, all the tests are successful, which leads to the likelihood,

R
(LN), R=nn+1,...,.N
PT=nR) ={ (3)
0

Our aim is to find P(R = N|T = n). In this approach we need
to specify P(R = r), a prior for R. Then by an application of Bayes’
Law,

P(T =n|R= N)P(R=N)
P(T =n)

P(T =n|R=N)P(R=N)

SN, P(T=n|R=r)P(R=r)

P(R=N|T=n) =

%%HR:N)

ZLWvﬂR=H+§ﬁm%%ﬂR=H

3
~—

Thus we have,

P(R=N|T =n) =

which is a simple method for finding P(R = N|T' = n, N) that only
requires a prior for R.
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5 Possible Priors for the Number of Failures

5.1 Bayes-Laplace Prior

This strategy involves expressing prior indifference among all the val-
ues that R can take, namely, R = 0,1, ..., N, and so assigns a uniform
prior on R, see Figure 1. This is in accordance with the Bayes-Laplace
principle of insufficient reason. Thus:

This is also known as an “objective” or “ignorance” or “public” prior.

P(R=r)

A

1 |

N+

0 1 2 3 4 5 6 = = = N2NI1N

Figure 1: Uniform Prior

R = 0 corresponds to the case that every trial is a failure. This
can happen when there is a flaw in a path taken by all N inputs.
R =1 can happen when practically all inputs choose a path with a
flaw, and so on for R = 2,3, ..., N. However the prior probability of
(N + 1) ! assigned to each R is small since N is large.
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We can go on to calculate the probability that R = N, namely

P(R=N|T=n) = PR =N)

=)
1
— N+1
T
ziin%%
(n)
_ n+1
- N4+1°

If we are interested in whether the next input will result in success,
this is equivalent to putting N =n + 1, so that

n+1

n+2

P ((n +1)'™ input success|T = n) =

Also ntl
n+2

input results in success tends to 1 as the number of successful tests
also increases. Indeed the probability that the next £ inputs result
in successes also approaches 1.

— 1 as n — o0, so that the probability that the next

1
However, for any fixed but large n, lim ntl_ 0. Thus, irre-
N—soo N + 1

spective of how favorable our experience has been over a large number
of trials, if the number of future trials is big compared to the number
of tests, then the probability that they will all be successful is close
to zero. In particular, even if we observe all successes during testing,
the probability that all future tests will be successful is zero. This
result goes against the grain of scientists. This state of affairs pro-
vides a motivation for finding a suitable prior that is in accord with
the disposition of scientists.

5.2 Jeffrey’s Prior

The astronomer-mathematician-philosopher, Harold Jeffreys (1961)
proposed the following as his prior on R:
1—2k
N+1’
N+1

+k, r=0,N,
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0 <k < % For k = 0, Jeffrey’s prior reduces to the Bayes-Laplace
prior.

P(R=r)

A

/Surprlse Switch Booster SWItCh\
1-2k
N+1

01 2 3 456 =« = = N-2 N1 N

Figure 2: Jeffrey’s Prior

Jeffrey’s prior puts a probability mass of K on R =0 and R = N,
and then spreads the balance of (1 — 2k) over all the N + 1 points,
R =0,1,...,N, giving the points R = 0 and N a mass of k + %
We call the probability mass at R = 0 a surprise switch, and the
probability mass at R = N a booster switch. The reasons for this
are discussed in more detail in Section 5.4. While for the Bayes-
Laplace prior, the probabilities for R = 0 and N tend to zero as
N increases, along with the probabilities for the other values of R,
this is not the case with Jeffrey’s prior. This prior gives a significant
amount of mass to the two extreme possibilities, namely the software
always works and the software always fails, and spreads the rest out
uniformly. The surprise switch at R = 0 encapsulates the possibility
of a fundamental flaw in the software that always leads to a failure,
while the booster switch at R = N encapsulates the possibility that
no flaw exists at all.

Using Equation 1 we can calculate the posterior probability of all
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N inputs resulting in success as

P(R= NI|T =n)

. 1-2k
=k
7 S , n>0
_ 12k \ | 1-2k
=y )
- 1-2k
T—2k N+%+2k T—2k .’ n=0
PES R ap DA o b
( (mn+1)[(N -1k +1] 00
(m+1)[(N-1)k+1]+ (N —n)(1-2k)’
) 1-2
k = 0.
N1 " "
We also note that, for any n > 0,
. (n+ 1)k
i PR=NIT =n) = o 57 —o, 7 0 @)

unlike the situation with the Bayes-Laplace prior. For n =1,
lim P(R = N|T =n) = 2k,
N—oo

thus the probability that the software is infallible doubles when the
very first test is sucessful.

1
For k = ~
or 1

1
hmpm:Nwzmzﬁin
N —00 n+3

which increases in n, see Figure 3.

5.3 Bernardo’s Prior

Using information-theoretic arguments, Bernardo (1985) proposes a
class of priors called the reference priors. His arguments lead to the
prior

Llir:QLZMN—l

PR=r)=¢{ N
k, r = N.
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0.8
0.6

0.4

P(software always works)

0.2

0

0 5 10 15 20 25 30
n

Figure 3: P(Software Never Fails | T = n) for Jeffrey’s Prior With
k=1
1

Using this prior, the posterior probability that the software suc-
cessfully processes all inputs as

(n+1)Nk

P(R=NIT=n) = C o N+ (W= n)d = k)’

which leads to

. B o (n+ 1)k
1\;1—r>nooP(R_N|T_n)_ (n+Dk+(1—k)

(3)

Bernardo’s prior does not put a large point mass at R = 0, which is
what Jeffrey does. In putting the & of Jeffrey’s prior equal to 1/4,
we have considered the case where the prior distributes a probability
mass of 1/2 between the extreme points and the rest uniformly over
the remaining points. Bernardo’s prior only has one large point mass,
and so if we choose to put probability mass of 1/2 at R = N, then
we get
(n+1)N
(n+1)N+ (N —n)

. _ _ _ n+1 . . .
Consequently A}l_r)nooP (R=N|T =n) = =5, which increases in

P(R=N|T =n)=

n, but faster than the equivalent result of Z—E for Jeffrey’s prior with

k= i. This is because with k& = %, Bernardo puts more prior weight
on R = N than Jeffreys, who puts a weight of approximately i.
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P(R=r)
A
Booster Swit
o Lk ooster S ch\
IS
N
> r
0 1 2 3 4 5 6 = = = N2N-1N

Figure 4: Bernardo’s Prior

However if Bernardo were to pick k = 1, so that P(R = N) is almost
the same as that for Jeffreys’ prior, then the priors would be more
compatible, and A}i_r)nooP (R=N|T =n) = Z—j;zll' This would tend to 1
slower than that under Jeffreys’ prior.

The reason for this is that although P(R = N) is almost the same
for both priors, Jeffrey’s prior has a surprise switch at R = 0, which
Bernardo’s prior does not.

Having now considered the priors that have been suggested, we
move on to develop some new priors. These will allow us to express
a wider range of prior opinions, and will also lead to interesting and
useful results.

5.4 A Pessimistic Prior

“Pessimists” are those who expect that things will go wrong. “Wise
Pessimists” are those who make provision for surprises. Thus they
build into their models two switches, at R = 0 a surprise switch
and at R = N a booster switch. These switches facilitate mood swing
between pessimism and optimism. The more powerful the switch, the
quicker the moodswing. “pure optimists” provide for a weak surprise
switch and a strong booster switch. They expect good things to
happen, and are thus not surprised when they encounter a slew of
successes. Thus their mood swings are slow.

Putting a probability mass at R = 0 tantamounts to installing a
“surprise switch”, while putting a probability mass at R = N boils



When Can Finite Testing Ensure Infinite Trustworthiness? __ 13

down to installing a “booster switch”. The priors of Jeffreys and
Bernardo both have strong booster switches, and with k£ = i for
both priors the success switches are compatible. However Jeffreys’
surprise switch is stronger than Bernardo’s, which tends to zero as N
increases. Thus the success of all n trials is no surprise to Bernardo
(the pure optimist), but for Jeffrey’s (the wise pessimist), success at
n = 1 causes him to annihilate all the probability mass at R = 0,
and redistribute this over R = 1,2,..., N, proportionately. Conse-
quently his success switch (at R = N) gains more probability mass
than Bernardo’s booster switch, resulting in a faster convergence of
P(R = N|T =n) to 1 of Jeffrey’s prior than Bernardo’s prior.

On the other hand, the Bayes-Laplace prior is devoid of person-
ality. It’s surprise switch, and booster switch are both weak, so that
even an abundance of good news cannot fundamentally change the
mood of the prior to optimism, and as a consequence,

lim P (R = N|T =n)=0.

N—oo

We now go on to use the above concepts of the booster switch and
the surprise switch to motivate a prior that is wisely pessimistic, but
can react quickly to even a very small number of successes. This could
save on the amount of testing software would have to go through,
which in turn would save money.

Instead of having a single surprise switch at R = 0, the prior pro-
posed here has several suprise switches in the vicinity of R = 0, and a
small success switch at R = N. The surprise switches are decreasing
exponentially. The switch at R = 0 encapsulates the possibility that
the software has a flaw in a path encountered by all inputs. The
switch at R = 1 encapsulates the possibility of a flaw in a path that
is rarely avoided. Similarly the success switch at N is associated with
there being no flaw and the mass at N —1 relates to there being a flaw
that is rarely encountered, etc. One way to construct such a prior
is via a geometric distribution with support on R = 0,1,.... N — 1,
i.e. starting at R = 0, and truncated at N — 1, with the addition
of a point mass of N™*, A > 0, at R = N (see Figure 5). Even
though this point mass tends to 0 as N increases, we shall still call it
a booster switch, because it functions in a similar way to the surprise
switch in the priors of Jeffreys and Bernardo. Specifically, we define
the pessimistic prior by
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Cn(l—¢q)q", r=0,1,...,.N —1

P(R = T) Nf)\’ r = N, (4)
_ 1-N*
with ¢ € (0,1), A > 0, and Cy = TN Note that Cy — 1 as
—4q

N — o0o. Thus lim P(R=N)=(1-¢q)q".
N—oo

P(R=r)
A
C\(1-9)
Surprise Switches
Cu(1-a)q
C\(1-a)g?
Booster Switch
N—k
| | Gyt | .
0 1 2 3 4 5 6 N1 N

Figure 5: Pessimistic Prior

For finite N the predictive distribution is cumbersome. However
for finite n and N — oo,

1, n>A
lim P (R=N|T =n) = [1+n! (%q)n}*l, n=x (5
0, n < A

Thus for example, for A = 1, with only one input leading to a success,
the software’s trustworthiness increases from 0 to 1 — ¢, and with 2
inputs both being successful, the trustworthiness of the software is
assertively ensured.

The cumbersome predictive distribution of R, for n = 2 and N
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finite is,

P(R=N|T=n=2)=

N 1 2¢2 — gV (*(N = 1)(N —2) —2¢N(N — 2) + N(N — 1))
N-1 (1=¢M)(1—¢q)?

-1

1+

It can easily be verified that taking the limit as N — oo, for dif-
ferent values of A\, will produce the results given in Equation 5, and
illustrated in Figure 6.

+
+
.
*
4
+
+
¢
s
¢
¢

P(Software Never Fails)
o o o o o o o
w > o o ~ -] ©o

o
)

o
e

Figure 6: P(Software Never Fails| T = n) for Pessimistic Prior with
A=3and ¢g=0.5

Thus with the pessimistic prior, we have an answer to the question
posed in the title of this paper. Finite testing can assure infinite
trustworthiness, when the prior used is a pessimistic prior of the type
given by Equation 4, and illustrated in Figure 5. A result like this
need not be too surprising. Its analogue is the tossing of a coin which
has either heads on both sides or tails on both sides, but one does not
know which. All it takes is a single toss to resolve the uncertainty
and claim that all future tosses of the coin will yield a head (or a
tail). The prior we have described uses the geometric distribution,
and adds to this a booster switch. However, any discrete probability
distribution with support on R = 0,1, ..., and a booster switch at
R = N can be used, and the behavior will be essentially the same.
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An objection to this prior is that it is too extreme in that after
only a few successful tests, the software is said to be guaranteed to
work. To put it another way, to some people finite testing should not
result in infinite trustworthiness. We next consider a modification of
the pessimistic prior that avoids this objection and at the same time
provides an improvement over the Jeffreys-Bernardo results.

5.5 Regulated Pessimistic Prior

As it stands, this pessimistic prior suffers from the problem that
if there are two succeses, the conclusion is that software will always
work with probability 1. The problem occurs because our prior essen-
tially asserts that the software either almost always fails, or it never
fails. It is necessary to add a component to the prior to represent the
middle ground regarding the software occasionally failing. For this
purpose we add a switch at N — 1. This switch competes with the

success switch, and consequently it reduces A}im P(R=N|T =n).
— 00

Thus this switch is called a regulatory switch, as it regulates the
probability of the software always working. It ensures that no finite
amount of testing can ever lead to the conclusion that the software
is guaranteed to work. The regulatory switch must decrease at the
same rate as the success switch, so that both switches will function.
Thus the regulatory switch is chosen to be a multiple A times the
size of the booster switch. Typically A will be small, but in general
the only requirement on A is that it is positive. Thus we have the
prior,

1—(14+ AN
1—¢N

with ¢ € (0,1), A >0,0< A< 1,and Cy =
Figure 7.

, see
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P(R=r)
A
Cu(1-9
Surprise Switches
C\(1-aq
Cy(1o)e?
Booster Switch
Regulatory Switc
N*
| | care pave”
0 1 2 3 4 5 6 N2 N1 N
Figure 7: Regulated Pessimistic Prior
This now leads to,
14+ A7, n> A
. ny—1
lim P(R=NIT=n)={ [1+4+n(;4)] . n=r
N—oo q

0, n < A

This is illustrated in Figure 8 for A = %, q= %, and A = 2.

Equation 7 shows that the regulated pessimistic prior leads to
a satisfactory result. After sufficient successful trials (the necessary
number is determined by A), A}i_r)n@P (R= N|T = n) goes from 0 to
[1 + A+ n! (%q)n} ' (if X is an integer) and then after a further
success it reaches [1 + A]fl, which is where it remains as long as
future tests are sucessful. However this probability does not increase
for additional successful testing, even though this would be expected
to lead to greater confidence in the reliability of the software, as
occurs with Bernardo’s and Jeffreys’ priors. Thus we now turn to
a generalized version of these priors that will useful in solving this
problem.

5.6 Scale Priors

Jeffreys’ and Bernardo’s priors are based on the uniform prior, with
the addition of switches corresponding to prior opinions concerning
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& -4 -] w -
-

P{Software Never Falls| T=n}
) o
. o

03

n

Figure 8: P(Software Never Fails| T' = n) for Pessimistic Prior with
A=01,A=2and ¢=0.5

the probabilities of the software always working and always failing.
However in the situation where software has been designed to be
extremely reliable, it is hard to justify using the uniform distribution,
especially where testing has already been performed on components
or previous versions of the software. In particular, the software might
be expected to be much more likely to work most of the time than
rarely, since serious programming errors would be carefully avoided,
and any that do occur should be easily identified and eliminated. One
way that such opinion may be expressed is with statements such as,
1/3 of the inputs resulting in failure is twice as likely as 2/3 of the
inputs resulting in failure. Such belief is consistent with a scale prior
Suppose that f(z) is a non-negative function bounded above on [0, 1].
Then f can be used to define the prior
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1— SN — BN
N—-1

Zr:l (%)

By are the surprise switch and the booster switch respectively. In
the interest of generality we allow Sy and By to be different.

where C'y = , Sy >0, By >0, Sy + By <1. Sy and

The priors of Jeffreys and Bernardo, as well as the uniform prior
are all examples of scaling priors with f(z) = 1. They all express
indifference about » = 1,2,..., N — 1. Instead of this we may wish
to use a prior that incorporates our knowledge about the numbers of
failures, for example f(z) = 22, see Figure 9.

P(R=r)

Booster Switch—>

/SurpriseSWitCh

2

v
—_—

Figure 9: Scale Prior with f(z) =

Use of Equation 1 for the scalar prior leads to

lim P(R= N|T =n)

N—o0
— -1
N—-1 r(r—1)...(r—n+1
— lim 1 — Sy — By 2r=1 N((Nfl))...((anJr)l)f(%) 41
Nooo | B ko ()
. [1— Sy — By [} «"f(z)dz
N—oo i BN f(]l f(x)dx

If we let limy 00 Sy = S and limy_,oo By = B, then,
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lim P(R=N|T =n) =

N—o00
1-S—B [ «"f(z)dz
B [ f(z)dw

, S>0

It can be easily verified that this leads to Equations 2 and 3.
Since Equation 9 is given in terms of integrals, it provides an easy
method for calculating trustworthiness, even for scale priors based on
complicated f(z). Also, since fol 2" f(z)dz — 0, as n — oo, it shows
that limy_ oo P(R = N|T = n) — 1 as n — oo, for any scale prior
with Lg > 0.

5.7 Portmanteau Prior

The scale prior has the benefit that limy_,o P(R = N|T = n) tends
to 1 as n increases, while the regulated pessimistic prior jumps very
quickly to a value that can arbitrarily close to 1 after only a few
sucessful trials, however it does not increase further. The final prior
that we propose is a hybrid of these two priors, incorporating features
from both and leading to the desirable properties of both, namely
limy_,00 P(R = N|T = n) exhibits a sudden increase to close to
1 after only a few trials, and then convergence to 1 as n increases
further.

This prior is formed from a pessimistic prior by adding a scale
section from R = % —1to N—1. This acts like a regulatory switch in
that it prevents limy_,oo P(R = N|T = n) from jumping straight up
to 1, but it retains the feature of the scale priors that limy_, . P(R =
N|T = n) also increases to 1 as n increases.

We shall use f(z) = k2%, k > 0, as the function for the scale
component. The function is evaluated for values of z, 0 < z < 1. We
avoid evaluating the function at zero in order to ensure that none of
the resulting probabilities are 0. In principle any bounded function
could be used, although it makes sense to use a function that increases



When Can Finite Testing Ensure Infinite Trustworthiness? 21

from 0.
P(R=r)=
(CN(]'_Q)qra T_Oa]-a 7[531_N—|_1
10(r +1) LAl 9N
N, r=N,

with ¢ € (0,1), A > 0, and

2
_ N-1 10(r+1 “A—
1= kN = S i (252 —9) N
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N Ty

(see Figure 10).
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Figure 10: Portmanteau Prior

The factor k, k > 0, is equivalent to T', the size of the regulatory
switch in the regulated pessimistic prior, and its effect is the same in
shrinking limy_, o, P(R = N|T = n) and so slowing its convergence to
1 as n increases. This convergence would also be affected by choosing
a different f(x), as in the section on scale priors. It is worth empha-
sizing that there are two variables for which convergence occurs. In
the first place N — oo leads to statements about the software never
failing, while we are also considering n — oo, which relates to further
successful testing.
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The final result for the probability that the software will never
fail if n tests have proven successful, using the combined prior is

lim P(R=N|T =n)=
N—oo

[1+f01f(:r,) <x$9>ndx]_1, n>

[1 +nl (l%q)n + [ F(@) (x;:)g)ndx]l, n=\

L 0, n <A

(

z4+9
10

n
Note that since fol f(x) < ) dx — 0 as n — o0,

lim P(R=N|T'=n)—1 as n — oo.

N—o00

Figure 11 illustrates lim P (R = N|T = n) for f(z) = 5.
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Figure 11: P(Software Never Fails| T'= n) for combined prior with
flz) =522, A =3,¢=0.5

Thus the combined prior leads to the conclusion of a high proba-
bility of infallibility, after only a few successful tests, while retaining
the desirable property that this probability of infallibility increases
further towards one with additional successful testing. This means
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that the software may be accepted as sufficiently reliable with only a
small amount of testing.

6 Conclusion

Ensuring an item’s trustworthiness (or reliability) by testing is very
much dependent on your prior opinions. Realistic results can be ob-
tained by using a prior where the probabilities of the extreme points
do not tend to zero as N increases, as with the priors of Jeffreys and
Bernardo. However, short amounts of testing can only be justified
under certain prior beliefs. The pessimistic prior does ensure infi-
nite trustworthiness with only finite testing, however for some this is
unrealistic. The portmanteau prior on the other hand provides high
trustworthiness after limited testing, and is more realistic because as
the amount of successful testing increases the probability of infinite
trustworthiness also increases.
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Comment

José M. Bernardo
Universitat de Valencia, Spain.

I have very much enjoyed this thought provoking paper on a very
important problem. The comments below are intended to expand the
discussion on the interpretation of the alternative priors discussed.

The authors make very clear that determination of

Pr[R=N | r =n]

is indeed a fundamental problem of practical statistics, that this prob-
lem cannot be properly addressed from a frequentist viewpoint, and
that the Bayesian solution, immediate once a prior distribution for
R € {0,1,..., N} has been assumed, is very sensitive to the choice of
the prior. Indeed, an alternative title for this paper could be “a sensi-
tivity analysis of the choice of the prior in the problem of induction”.
To perform this analysis, the authors describe the consequences of
alternative priors proposed in the literature and, building on alter-
native proposals which they actually discard for their unappealing
properties, they suggest the use of the portmanteau prior arguing
that this induces the posterior properties which software engineers
might like.

I believe it is important to specify the role which the prior dis-
tribution is intended to play. If a subjective viewpoint is taken, then
an appropriate (presumably large) family of priors with appropriate
properties should be envisaged, and the scientist instructed to select
that closest to his o her personal views. The family of portmanteau-
like priors suggested by the authors may well be a reasonable choice
for this purpose. This is of course a perfectly valid procedure, but
the conclusions reached will have limited interest to other scientists.

As a baseline for the range of conclusions which may be reached
from different priors, one needs an objective prior which, in a well de-
fined mathematical sense, may be claimed maximize the missing in-
formation about the question of interest, here whether or not R = N.
This is precisely the definition of the reference prior, and the prior
in Bernardo (1985) is the reference prior for this problem. Thus, the
question is not whether that prior is “optimistic” (a subjective evalu-
ation) or otherwise but whether or not it provides a sensible baseline
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for possible conclusions on Pr[R = N | r = n], under the sole assump-
tion of the accepted hypergeometric model. If the scientist is prepared
to spend the necessary effort to specify a prior which describes his
or her opinions about the problem, he or she should go ahead, com-
pute the corresponding posterior probability, and compare this with
the reference value provided by by the reference posterior probabil-
ity; any discrepancy is a consequence of his or her subjective prior
information, and this is relevant knowledge, for both the scientist in-
volved in specifying the subjective prior, and his or her colleagues.
Reference priors are derived from a systematic, information-theory
based procedure, which has proved to provide appropriate answers in
all known cases: see Bernardo (1977), for a general discussion, and
Bernardo (1994, Ch. 5) for technical details. Thus the Bernardo prior
for this problem is not an ad hoc proposal, but an application of a
successful general theory and should therefore be judged not only on
the merits of the specific solution found (whose behaviour I actually
like), but also on the strength borrowed from the general theory.

I would like to conclude with a comment on the “optimistic” na-
ture of the reference prior, drawn from actual experience. In January
1983 1 was invited to give some talks and do some consultancy on
Bayesian statistics at the Charles Darwin Research Station, on the
Galapagos Islands. About the first question posed to me was a par-
ticular case of the problem discussed in this paper: a scientist had
observed that all the n = 67 galapagos seen in a visit to one of the
smaller islands presented a modification on their shells, presumably
a genetic evolution to facilitate access to the prevailing food in the is-
land, and she naturally asked me what was the probability (her words)
that all galapagos in the island did have such modification. This mo-
tivated my interest in the problem, which I analyzed there, and the
scientist was very happy with my result, (n + 1)/(n + 2) ~ 0.986
(since the total number N of galapagos in the island was assumed to
be much larger than n). I then asked her what would be her reaction
if, in a future visit to the island, she founded one galapago without
the modified shell; she said that she would assume that this was a
genetic leftover from the original population, and that this subspecies
would eventually die out in the island in competition with the better
equipped, modified galapagos. Technically, she was claiming that the
unmodified galapago would not really be a member of the population
under study. Thus, the reference prior, optimistic or not, seems to
be in agreement of actual expectations from scientists.
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Comment
Philip J. Boland

National University of Ireland, Dublin, Ireland.

The question of infinite trustworthiness is of course an interesting
one, with wide potential applications. We can all think of situations
where one desires infinite trustworthiness, quasi certainty or near
perfection from successful information at hand. In many situations,
one desires such a degree of belief or confidence with a relatively small
amount of sample information.

The problem is principally motivated through concerns about
software testing and reliability - particularly when the software being
tested is for example life critical (software used in air traffic control,
space shuttle technology, or surgical instrumentation and diagnosis).
In such situations, one must have near perfect reliability before re-
lease. Although software testing does provide a focus for this research
- which is important, even for life critical software the model implied
for testing is a severe oversimplification of what actually happens (see
Boland et al., 2003). For example, to imply that all inputs are or can
be considered of equal importance is rarely (if ever) the case. Soft-
ware testing is to a large extent targeted (and usually random only
in a restricted and limited sense), where for example some primary
targets of the testing might be certain (perhaps critical) software
specifications and requirements of the software. Furthermore, soft-
ware faults are usually multivariate in nature, and in particular may
affect different functional areas of the software. They may also be
of different severities and have different priorities (if the software is
being developed by a phased iterative procedure this is often the case
- see Faundez Sekirkin, 2004). Even strategic and safety critical soft-
ware is rarely fault free (see for example Schneidewind, 1997) - but
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this may be acceptable if at the time of release the only remaining
faults are noncritical.

The essence of the discussion centers around the question - what
is P(R = N) given that n tests give n successes? In particular, what
kind of prior distributions for this quantity give reasonable conclu-
sions? Surely the Laplace prior is seldom appropriate. For example,
in a setting like that of life critical software, if you are so uncertain
and uninformed about the software reliability, then the software it-
self can really be nowhere near release stage. To say that the result
(impy 00 ]T\L,LJFII = 0) goes against the grain of most scientists is per-
haps a bit extreme - for to hope that it might be 1 or close to it is
expecting a lot from (under the assumptions) so little! Jeffrey’s prior
in the setting of life critical software is also a bit extreme (is it not
slightly abnormal to put a large mass at both of the extremes R =0
and R = N7) Bernardo’s prior is getting closer to a reasonable prior.

Most of us are risk averse, so it is to be expected that we might
cling to conservative or pessimistic type priors. The idea of sev-
eral small surprise switches is somewhat appealing (like those in the
pessimistic and regulated pessimistic priors), but one would natu-
rally worry about a prior which so quickly (that is for small n) gives
such perfection in trustworthiness. Furthermore one would like to
see some intuition in the parameters A and ¢, and why certain values
lead to such dramatic results for small samples. The idea of scaling
is interesting, and leads to a wide variety of possibly more intuitive
priors. The portmanteau concept is also of value, although a serious
challenge to constructing a good one must be in deciding on a good
change point (in this treatment it is R = % —1).

In spite of these reservations, the topic is treated in both an inter-
esting and intriguing manner, and the authors are to be complimented
in this regard.
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Comment
D. R. Cox

Nuffield College, Oxford, UK.

This very interesting paper addresses issues arising when major
extrapolation is needed in passing from the data to the aspect of
interest. Whatever approach is used sensitivity to assumptions is
virtually inevitable and this is nicely llustrated in terms of sensitivity
to choice of prior distribution. Flood forecasting and reservoir safety
are other applications where somewhat similar difficulties arise.

A rather similar formal problem with a simple solution is as fol-
lows. Suppose that a catastrophe occurs in a Poisson process of
unknown rate )\, it is required to predict whether the catastrophe
will not occur within a specified time horizon which we take to be
the time interval (0, 1), The required probability is 7 = e™*. It is
observed that the catastrophe has not occurred in (0, a),where a < 1.
Then the required predictive (posterior) probability is

E(e™)/E(e™*) = B(x)/E(x®).

Here the expectation is over the prior distribution of A or equiva-
lently 7. When a is small, strong sensitivity to the choice of prior is
easily studied, for example by taking a gamma prior for A,

The authors have entirely reasonably studied what forms of prior
are needed to achieve answers with particular broad properties. This
is quite counter to the usual Bayesian personalistic formulation in
which the prior assesses your opinion separated from the data, what-
ever it may be, and the posterior then indicates what, subject to
coherency, your opinion after obtaining the data should be. This
approach inevitably raises the question: why should anyone except
you be interested? Omne answer may sometimes be that the prior is
based on evidence, in which case we should ask in principle at least
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what that evidence is and how has it been analysed. A second an-
swer might be that it is an expert opinion. While there are occasions
when this has to be accepted, it is perilously close to settling issues by
appeal to authority and this is in principle unacceptable in scientific
contexts and in other contexts potentially very dangerous.

The paper throws light on important issues and I take the impli-
cation to be that there is really no substitute for the careful assembly
of as much evidence as possible directly or indirectly bearing on the
issue in question. Hydrologists have developed quite elaborate meth-
ods essentially for downweighting observations distant from the site
under study and these methods could be regarded as a form of em-
pirical Bayes analysis although typically not formulated that way.

Comment
Dave Higdon, Charles W. Nakhleh

Los Alamos National Laboratory.

We congratulate authors on an interesting paper. The problem
of determining when trustworthiness is high with very limited test-
ing is particularly important to applications we are involved with at
Los Alamos National Laboratory. In addition to sofware testing, the
question is clearly relevant to a wide variety of reliability, engineering
and industrial applications.

The authors rightly point out that whether or not it is possible
to attain infinite — or even just high — trustworthiness depends on
the nature of the prior distribution P(R = r) over the subset of the
support given by [pN],..., N (note p < 1 is taken to be 9/10 in
the portmanteau prior of Section 5.7). This is because if there is
appreciable prior mass in the region pN < r < N — 1, then there is
some chance a failure will occur for a small proportion of the possible
input states. This is exactly the case when only a large amount of
testing can dispel this possibility.

We find it useful to consider how the complexity of the computer
code can affect the prior mass over this critical support region of
the prior. To this end, Figure 1 shows a simplistic binary tree-based
model of a computer code. We assume the tree has K levels, so that
there are N = 2% possible input states. To process state j, the code
must execute a sequence of subroutines denoted by the black nodes
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in Figure 1. This sequence is uniquely determined for each state. We
further specify that the chance a node/subroutine works correctly is
pi for each node in level k of the tree. Specifying prior probabilities
Po, - - -, Pr then induces the prior on the number of states the code
correctly processes.

level nodes P(node works)

k=0 2° Do

k=1 2t j 41

O/\ /\3 k=2 2? P2
ANANA L.

b3

yZ

input states

Figure 1: Binary tree-based model for a computer code.

For simplicity, we only consider priors for which a single p;, < 1, while
the remaining probabilities are exactly one. For any such prior we fix
the booster switch to have probability 0.25; hence p = 0.251/2" . In
this case, the number of nodes X in level k£ that work correctly follows
a Binomial(2¥,p;) distribution. The total number of states that the
code correctly processses is then R = X 22—1: giving the induced prior
shown in the top row of Figure 3 for k = 2,4, and 6. The choice of k
essentially gives the prior complexity of the code under investigation.

We can gain some insight into complexity by considering the en-
tropy of R (MacKay, 2003) for a given level k:

2k
Hy(R) == p(j)logy p(4). (11)
j=0

The entropy of a distribution over a finite set of points provides a
logarithmic measure of the likely diversity of that set. By “likely
diversity” we mean that if all the points are equally likely, then the
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entropy of the set is the logarithm of the number of points; moreover,
any point that has zero probability does not contribute to the entropy.
(We take 0log0 = 0.) As the number of points 2¥ in a uniform
distribution increases, the entropy increases like log 2¥ = k. Note for
R and X as defined above that Hy(R) = Hy(X).

By fixing the booster switch at 0.25 for each level, we are ef-
fectively increasing the reliability of the nodes at a given level as k
increases. This prevents the entropy of a level from increasing with-
out bound as the number of levels increases. If the booster switch
were not fixed at each level, and instead the reliability of each node
were simply kept constant, then the entropy of the levels would in-
crease linearly with k£ as the number of nodes in each level increased
exponentially. A plot of Hj; by k (Figure 2) illustrates these two
cases. This figure illustrates the fact that a constant booster switch
is essentially equivalent to a constant entropy. Clearly, as the en-
tropy for the prior code model increases, it takes more code tests n
to ensure adequate trustworthiness. The entropy measure also cap-
tures quantitatively how increased component reliability can offset
increased complexity.

However, although Hy(R) = Hj(X), the factor 25X =F that appears
in the definition of R means that the support of the distribution for R
is pushed to higher and higher values of r, as illustrated in the upper
row of Figure 3. This is due to the fact that the constant booster
switch constrains the entropy to be nearly constant, and therefore
the level k is also needed to specify the complexity of the code. If
we had not imposed the constant booster switch constraint, then the
entropy would be an equally good measure of complexity as k.

This mechanism for obtaining the prior P(R = r) controls the
amount of probability assigned to the range pN < r < N, as does the
portmanteau prior. The resulting posterior probability the software
never fails given T' = n is shown in the bottom row of Figure 3. Here
high trustworthiness can be obtained with small n when the code has
small k. Note that this probability does not depend on N in the limit
—only k.

We suspect there are cases where it is more more natural to base
the prior on the assumed complexity of the computer code. For ex-
ample, we would consider the complexity of a routine to compute the
cholesky decomposition of a matrix to be relatively small so that a
small number of tests should lead to high — or even complete — trust-
worthiness. On the other hand, a very complex code — for example, a
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Figure 2: Entropy of the binary tree-based prior as a function of k.
4
Filled squares have py = 0.251/2k, open squares have pj, = 0.25/2".

telephone switching code (Eick et al., 2001) — still has an appreciable
chance of failing, even after extensive testing. This simplistic prior
we propose here gives an example of how a complexity-based prior
could be constructed. Again, we thank the authors for a thoughtful
paper which lays out a framework for dealing with an important and
difficult problem.
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Figure 3: Tree based priors at various levels of complexity along
with their corresponding posterior P(software never fails|T = n).
Low complexity priors quickly give high trustworthiness while the
high complexity prior requires many trials before P(software never
fails|T' = n) approaches 1. Each prior has a booster switch probability
of .25.
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Rejoinder
Nozer D. Singpurwalla, Philip Wilson

We thank the discussants for taking the time to comment on this
paper and for the many insightful suggestions they make. We are
grateful to Professor José Bernardo for orchestrating the discussion.
Due to a severe time limitation imposed upon us by the Editor, Pro-
fessor Ahmad Parsian, we are unable to fully capitalize upon some
excellent points and ideas that the discussion has spawned. What we
give below are a few cursory reactions.

Professor Bernardo suggests an alternative title to the paper, a
title that better encapsulates the essence of the work. Whereas José’s
suggested title is more coherent than ours, we have succumbed to the
Pygmallion effect and have retained ours; we think that ours whets
a user’s appetite. José is entirely correct in stating that in a purely
subjectivistic context a large family of priors should be put on the
table and the assessor instructed to select the prior that comes closest
to the assessor’s views. More important, the conclusions reached
from such an exercise will be of limited interest to other scientists — a
point also made by Sir David Cox. The point of our paper was not to
advocate one particular prior over another. Rather it was to dissect
each prior and look at its anatomy from the point of view of offering
an explanation for the kind of result that each can produce. José’s
reference prior which inspired this work, and for which we applaud
him, can indeed be used as a benchmark. What we may have ended
up doing is to point out that José’s information-theory based criteria
may have, hidden behind it, elements of optimism. An issue which
now needs to be explored is whether a general theory that is based
on the premise of optimism is the one that is germane to all problems
of scientific induction.

Professor Philip Boland questions the suitability of the set-up we
consider for software testing. We share his concern because, what
we have as a point of focus is “black-box” testing. This is a form
of portmanteau testing. Such “black-box” testing is often done after
all other forms of testing for specifics have been completed. But
in a more truthful vein, our answer to Philip is that the software
scenario was chosen in the spirit of a motivating illustration. We
were attracted to the problem more from a foundational perspective,
in the spirit of Pearson and José, than any particular application.
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Philip also points out to some misprints in the paper; this of course
is the fault of (the other) Philip who should never be trusted to write
software code. And if he ever does write code, then let it be known
to all that the most pessimistic prior be used!

We thank Sir David Cox for his kind words. There are two striking
issues in David’s discussion. The first is that the scope of the “funda-
mental problem of practical statistics” has been expanded from the
discrete scenario of binomial trials considered before, to the continu-
ous scenario of observations over time encountered in flood forecasting
and reservoir safety. This expansion is insightful and is particularly
appealing to us because of our interest in reliability and survival anal-
ysis wherein items are test observed for some time and then released
for general use. David’s second — more philosophical — point pertains
to his question “why should anyone except you be interested?” A
question like this could generate the view that the only place for sub-
jective probability is personal (or group) decision making. David’s
answers to his question suggest that a decision maker, say D, elic-
its priors from someone else — say an expert £ — and then either
questions these priors or takes them as a word of authority before
invoking Bayes’ Law for fusing the prior with the data. By itself,
such a process would not be coherent. Rather, what D needs to do
is use Bayes’ Law to fuse £’s testimony with D’s own prior using a
likelihood whose nature encapsulates D’s questioning of £’s sources of
evidence and also the extent to which D acknowledges £’s authority.
Once D does this, a prior that can be fused with the data evolves.

The discussion of Drs. Dave Higdon and Charles Nakhleh brings
into the arena two features. The first is a binary tree model for
conceptualizing a software’s success/failure process. The second is
constructing a prior based on the tree model. An ingenious aspect of
Dave and Charlie’s contribution is their construction of a binomial
probability model with p, = 0.251/ 2k; this ensures that for all k, the
size of (our) booster switch is always 0.25. The value of k encapsu-
lates the complexity of the code. Consequently, codes having a low
complexity provide a quick assessment of high trustworthiness. All
this makes good sense. Where we encounter a difficulty with these
discussants is their connecting of complexity with entropy. We are
inclined to believe that entropy may not be the right metric of com-
plexity. In our particular scenario the entropy would be the same
whether the switch is a booster switch or a surprise switch. Yet the
rate at which trustworthiness is achieved would be different under
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the two scenarios. The difficulty with using the entropy measure
alone, is that entropy is invariant with respect to the placement of
probabilities. What is therefore needed is a measure of complexity
that addresses both the nature of the probability masses and their
location.

Once again, we thank all the discussants for their contribution to
our learning and to Professor Ahmad Parsian for inviting us to write
a paper for JIRSS which we wish much success.



