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Abstract. An ordered tree with height h is b-balanced if all its
leaves have a level ` with h − b ≤ ` ≤ h, where at least one leaf
has a level equal to h− b. For large n, we shall compute asymptotic
equivalents to the number of all b-balanced ordered trees with n nodes
and of all such trees with height h. Furthermore, assuming that all
b-balanced ordered trees with n nodes are equally likely, we shall
determine the exact asymptotic behaviour of the average height of
such a tree together with the variance.

1 Introduction

The concept of balanced trees such as AVL-trees, B-trees, or 2-3-
trees is used in many types of data structures appearing in sorting
and searching algorithms. Although the algorithmic importance of
such trees is out of the question, only few results are known on the
enumeration of such trees or on the exact average behaviour of impor-
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Figure 1: All b-balanced ordered trees with less than six nodes.

tant parameters defined on these trees. A conspicuous general result
in the relevant sense has been presented in [12] for balanced 2-3-trees
with a specified number of leaves. This enumeration result also in-
cludes the counting of a variety of balanced trees such as B-trees with
a specified order.

In this article we shall continue with the study of the class of
0-balanced ordered trees introduced in [5] by extending the notion
‘0-balanced’: Given an ordered tree T with the set of leaves L, such
a tree is called b-balanced, b ∈ IN0, if

max{`ev(x)|x ∈ L} −min{`ev(x)|x ∈ L} = b;

here, the level `ev(x) of a node x is equal to the number of nodes
appearing on the simple path from the root to the node x includ-
ing the root and node x. Thus, an ordered tree with height h :=
max{`ev(x)|x ∈ L} is b-balanced if all its leaves have a level ` with
h − b ≤ ` ≤ h, where at least one leaf has the level equal to h − b.
All b-balanced ordered trees with less than six nodes are drawn in
Figure 1. Clearly, b + 2 ≤ h < n + δb,0, n ≥ 2, where δn,k denotes
Kronecker’s delta. Note that all leaves appearing in a 0-balanced
ordered tree have the same level. The parameter b ∈ IN0 appearing
in the definition of a b-balanced ordered tree with n ≥ 3 nodes obvi-
ously describes the transition from all totally balanced n-node trees
characterized by b = 0 to all (unbalanced) ordered trees with n nodes
characterized by b ≤ n− 3.

The 0-balanced ordered trees are a fundamental constructive de-
vice in combinatorial considerations on enumerating specified nodes
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b-Balanced Ordered Trees 177

appearing in block code trees [6] or in other classes of trees [8, Re-
mark 1]. The enumeration of various types of 0-balanced ordered
trees together with an average case analysis of important parame-
ters defined on these trees (e.g. the height; the path length; the
root-degree) have been presented in [5]; aspects with respect to the
generation of such trees have been discussed in [7, Section 3.8]. In
the former paper, the author has been successful in proving that the
number of all 0-balanced n-node ordered trees of height h is given by
F

(h−1)
n−2 , 2 ≤ h ≤ n, where F (p)

n is the pth order Fibonacci number
defined by F (p)

n = δn,p−1 for 0 ≤ n < p, and by F (p)
n =

∑
1≤k≤p F

(p)
n−k

for n ≥ p ([9, p. 77]). This result essentially reflects a one-to-one
correspondence between 0-balanced n-node ordered trees of height h
and the ordered partitions of the integer n − h ([7, Section 3]; [9, p.
287]). Assuming that all 0-balanced n-node ordered trees are equally
likely, further detailed considerations (cf. [5]) imply that

– the number t0(n) of all 0-balanced ordered trees with n nodes
is asymptotically given by t0(n) ∼ 2n−1 n−1 [1 + f(n)], n→∞;

– the average height h0(n) of a 0-balanced ordered tree with n

nodes has the asymptotic behaviour h0(n) ∼ log2(n) + γ
ln(2) +

χ(n) with the variance σ2
0(n) ∼ π2

6[ ln(2) ]2
+ ϕ(n), n→∞.

Here, γ = .577 215 . . . is Euler’s constant and h(n), h ∈ {f, χ, ϕ}, are
bounded oscillating functions with a very small amplitude satisfying
the equality h(n) = h(2n).

In this paper we shall generalize these results to b-balanced n-
node ordered trees with b ≥ 1. For large n, we shall first derive an
asymptotic equivalent to the number of all b-balanced ordered trees
of height h with n nodes (Theorem 4.1(a)). Then, assuming that all
b-balanced ordered trees with n nodes are equally likely, we shall find
for fixed b that

– the number tb(n) of all b-balanced ordered trees with n nodes is
asymptotically given by tb(n) ∼ − 1−rb+2

ln(rb+2) r
−n
b+2 n

−1 [1 + η0,b(n)],
n→∞ (Theorem 4.1(b));

– the average height hb(n) of a b-balanced ordered tree with n

nodes has the asymptotic behaviour
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hb(n) ∼ − 1
ln(rb+2)

[
ln(n) + ln

(
eγ

(1−rb+2)(4rb+2−1)

(b+4)rb+3
b+2

)]
+χb(n)

with the variance σ2
b (n) ∼ π2

6[ ln(rb+2) ]2
+ϕb(n), n→∞ (Theorem

4.2).

Here, rw :=
[
4 cos2

(
π

w+2

)]−1
and hb(n), hb ∈ {η0,b, χb, ϕb}, are

bounded oscillating functions with hb(n) = hb(rb+2 n) possessing a
small amplitude not exceeding .04.

The general structure of this paper is as follows: In Section 2
we shall present basic enumeration results with respect to b-balanced
ordered trees of height h with n nodes. It turns out that we have to
focus our further considerations on a specific rational function which
is discussed in Section 3. The determination of the dominant poles of
this function (Subsection 3.2) requires subtle analytical investigations
using some technical lemmata presented in Subsection 3.1. Exploit-
ing all this information, we are able to compute the exact asymptotic
behaviour of the Taylor coefficients of the rational function in dis-
cussion by standard methods (Subsection 3.3). Finally in Section 4,
we shall use this result in order to prove the asymptotical relations
for tb(n) and hb(n) pointed out above.

2 Basic Enumeration Results

We begin our study by reviewing some known results. Let ah(n,m)
be the number of all 0-balanced ordered trees with n nodes, m leaves
and height h, and let

Ah(z, y) :=
∑
n≥0

∑
m≥0

ah(n,m)znym

be the corresponding generating function. It is well known ([5]) that
Ah(z, y) is explicitly given by

Ah(z, y) =
yzh(1− z)

1− z(y + 1) + yzh
, h ≥ 1. (1)

Now, let th,b(n) be the number of all n-node ordered trees of height
less than or equal to h with leaves appearing at a level greater than
or equal to h− b. We obtain such a tree
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b-Balanced Ordered Trees 179

– by taking a 0-balanced ordered tree τ0 of height h − b with n0

nodes and m0 leaves `i, 1 ≤ i ≤ m0, and

– by replacing the leaves `i by ordered trees τi with ni nodes and
height less than or equal to b+1 such that n0+

∑
1≤i≤m0

ni = n.

Hence, the generating function of the numbers th,b(n) is given by

Th,b(z) :=
∑
n≥0

th,b(n)zn = Ah−b(z, z−1Fb+1(z)), 0 ≤ b < h, (2)

where Fk(z) is the generating function of the number φk(n) of all
ordered trees with n nodes and height less than or equal to k. The
classical paper [1] tells us that

Fk(z) :=
∑
n≥0

φk(n)zn = z
pk(z)
pk+1(z)

, (3)

where

pk(z) :=
1

2kε(z)
[(1 + ε(z))k − (1− ε(z))k], (4)

ε(z) :=
√

1− 4z, k ≥ 0,

is the kth Fibonacci polynomial satisfying the linear recurrence

p0(z) = 0, p1(z) = 1, pk(z) = pk−1(z)− z pk−2(z), k ≥ 2. (5)

Now, inserting (1) and (3) into (2) and applying (5) to the denom-
inator of the resulting expression, we obtain Th,b(z) = Gh+1,b+1(z),
where

Gh,b(z) :=
zh−b (1− z) pb(z)
pb+3(z) + zh−b pb(z)

, 1 ≤ b < h. (6)

Note that Gh,0(z) = 0 and we set Gh,b(z) := 0 for b < 0. Introduc-
ing the number dh,b(n) of all n-node ordered trees of height h with
leaves appearing at a level greater than or equal to h − b, a similar
construction as presented above for the generating function Th,b(z)
immediately yields

Dh,b(z) :=
∑
n≥0

dh,b(n)zn

= Ah−b(z, z−1Fb+1(z))−Ah−b(z, z−1Fb(z))

= Th,b(z)− Th−1,b−1(z)

= Gh+1,b+1(z)−Gh,b(z), 0 ≤ b < h. (7)
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b = 0 b = 1

n \ h 1 2 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9

1 1
2 1
3 1 1
4 1 1 1 2
5 1 2 1 1 5 2
6 1 3 2 1 1 12 7 2
7 1 5 4 2 1 1 26 20 7 2
8 1 8 7 4 2 1 1 55 55 22 7 2
9 1 13 13 8 4 2 1 1 114 143 63 22 7 2

10 1 21 24 15 8 4 2 1 1 234 363 175 65 22 7 2

b = 2 b = 3 b = 4 b = 5 b = 6

n \ h 4 5 6 7 8 5 6 7 8 6 7 8 7 8 8

5 2
6 9 2 2
7 33 11 2 13 2 2
8 107 45 11 2 61 15 2 17 2 2
9 326 166 47 11 2 247 77 15 2 97 19 2 21 2 2

Table 1: The number `h,b(n) of all b-balanced ordered trees with
n ≤ 9 nodes and height h.

Obviously, the quantity `h,b(n) := dh,b(n) − dh,b−1(n), 0 ≤ b < h,
is the number of all n-node ordered trees of height h with leaves
appearing at a level greater than or equal to h− b such that at least
one leaf has the level h − b. Hence, `h,b(n) is the number of all b-
balanced ordered trees of height h with n nodes and the corresponding
generating function is given by

Lh,b(z) :=
∑
n≥0

`h,b(n)zn = Dh,b(z)−Dh,b−1(z)

= [Gh+1,b+1(z)−Gh+1,b(z)]− [Gh,b(z)−Gh,b−1(z)], (8)

where Gh,b(z) is explicitly given by (6). The first few values of `h,b(n)
are summarized in Table 1. Clearly, since p0(z) = 0, p1(z) = 1
and ps(z) = 1 − (s − 2)z, 2 ≤ s ≤ 4, we rediscover the known
result Lh,0(z) = Gh+1,1(z) = Ah(z, 1) (see [5]). Using (5), another
straightforward computation yields the equalities Gh,h−2(z) + z =
Gh,h−1(z) = z

ph−1(z)
ph(z) = Fh−1(z). These relations together with (8)
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b-Balanced Ordered Trees 181

immediately imply the evident equality Lh,h−1(z) = 0 because a leaf
cannot appear at level one of the root. Furthermore, we find∑

0≤b≤h−2

Lh,b(z)
(8)
= Gh+1,h−1(z)−Gh,h−2(z)

= z
ph(z)
ph+1(z)

− z
ph−1(z)
ph(z)

(3)
= Fh(z)− Fh−1(z), (9)

because all b-balanced ordered trees with 0 ≤ b ≤ h − 2, are all
ordered trees of height h.

In summary, an inspection of (7) and (8) shows that we first
have to consider the enumerator Gh,b(z), 0 ≤ b < h, defined in (6)
more detailed in order to derive explicit asymptotical enumeration
and distribution results.

3 The Enumerator Gh,b(z)

3.1 Technical Lemmata

In this subsection we shall present some basic results on the Fi-

bonacci polynomials pk(z) introduced in (5) and on the polynomial
Ph,k(z) := pk+3(z) + zh−k pk(z) appearing in the denominator of the
enumerator Gh,k(z) given in (6).

Lemma 3.1. Let αw(j) := 4 cos2
(

πj
w

)
and rw := [αw+2(1)]−1,

(w, j) ∈ IN2. The Fibonacci polynomials pk(z) fulfill the following
properties:

(a) The polynomial pk(z) has the b1
2(k − 1)c simple roots rk−2 =

[αk(1)]−1< [αk(j)]−1 < [αk(j+1)]−1, 2 ≤ j < b1
2(k−1)c, k ≥ 0.

(b) The polynomial pk(z) has the representation

pk(z)=
∏

1≤j≤b 1
2
(k−1)c

(1− αk(j) z), k ≥ 0.

(c) The derivatives p(s)
k ([4 cos2(υ)]−1), 0 ≤ s ≤ 3, k ≥ 0, are given

by

p
(s)
k ([4 cos2(υ)]−1) =

ϑ
[s]
k (υ)

2k−1 sin2s+1(υ) cosk−2s−1(υ)
,
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where

ϑ
[0]
k (υ) = sin(k υ),

ϑ
[1]
k (υ) = −k sin((k − 2) υ) + (k − 2) sin(k υ),

ϑ
[2]
k (υ) = k (k − 1) sin((k − 4) υ)− 2 k (k − 4) sin((k − 2) υ)

+ (k − 3) (k − 4) sin(k υ),

ϑ
[3]
k (υ) = −k (k − 1) (k − 2) sin((k − 6) υ)

+ 3 k (k − 1) (k − 6) sin((k − 4) υ)

− 3 k (k − 5) (k − 6) sin((k − 2) υ)

+ (k − 4) (k − 5) (k − 6) sin(k υ).

(d) The polynomial pk(z) and its derivatives take the following spe-
cial values:

pk(rk−4) = −r
1
2
(k−2)

k−4 , pk(rk) = r
1
2
(k−2)

k ,

pk(rk−3) = −r
1
2
(k−1)

k−3 , pk(rk+1)= (1− rk+1) r
1
2
(k−3)

k+1 ,

pk(rk−1) = r
1
2
(k−1)

k−1 ,

p′k(rk−4) = −(k−2)
4 rk−4−1 r

1
2
(k−2)

k−4 , p′k(rk−1) = 2 (k−1) rk−1−k
4 rk−1−1 r

1
2
(k−3)

k−1 ,

p′k(rk−3) = −2 (k−1)
4 rk−3−1 r

1
2
(k−1)

k−3 , p′k(rk) = (3k−2) rk−k
4 rk−1 r

1
2
(k−4)

k ,

p′k(rk−2) = −k
4 rk−2−1 r

1
2
(k−2)

k−2 , p′k(rk+1) =
−2 (k−1) r2

k+1+2 (2k−1) rk+1−k

4 rk+1−1

× r
1
2
(k−5)

k+1 ,

p′′k(rk−2) = −k 2 (2 k−5) rk−2−k+1
(4 rk−2−1)2

r
1
2
(k−4)

k−2 ,

p′′k(rk+1) = −4 (k−3) (k−1) r3
k+1−(13 k2−37 k+12) r2

k+1+k (7 k−13) rk+1−k (k−1)

(4 rk+1−1)2

× r
1
2
(k−7)

k+1 ,

p′′′k (rk−2) = −k 12 (k2−7k+11) r2
k−2−(k−1) (7k−26) rk−2+(k−1) (k−2)

(4 rk−2−1)3
r

1
2
(k−6)

k−2 .

(e) The polynomial pk(z), k ≥ 3, is strictly monotonically decreas-
ing in the interval [0, rk−2[ and the inequality pk(z) > 0 holds
for all z in that interval.
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b-Balanced Ordered Trees 183

(f) The polynomial p′k(z), k ≥ 5, is strictly monotonically increas-
ing in the interval [rk+1, rk] and the inequality p′k(z) < 0 holds
for all z in that interval.

(g) The inequality p′′k(z) > 0 holds for all z ∈ [rk+1, rk], k ≥ 5.

Proof: (a), (b): These relations are well known (see [1]). They
reflect corresponding relationships fulfilled by the Chebyshev poly-
nomials Uk(z) of the second kind because the identity

pk(z) = z
1
2
(k−1)Uk−1(

1
2
√
z
)

holds.

(c): The explicit expression for pk([4 cos2(υ)]−1) can be found in [1],
too. It follows from (4) by setting z := [4 cos2(υ)]−1 and by using Eu-

ler’s formula eiz = cos(z) + i sin(z), i2 := −1. The expressions for
the higher derivatives are obtained by taking successively the deriva-
tives on both sides of the equation for pk([4 cos2(υ)]−1).

(d): Choosing z ∈ {rs|k − 4 ≤ s ≤ k + 1} in part (c) and applying
elementary trigonometric relations as well as the identity cos( π

k+2) =
1
2 r

− 1
2

k , the explicit expressions for the special values can be derived
by a straightforward lengthy computation.

(e): Taking the derivative on both sides of the equality presented in
(b), we find

p′k(z) = −
∑

1≤j≤b 1
2
(k−1)c

αk(j)
∏

1≤λ≤b 12 (k−1)c
λ 6=j

(1− αk(λ) z).

For z ∈ [0, rk−2[, we have 1 − αk(λ) z > 1 − αk(λ)
αk(1) > 0 (resp. = 0) if

λ ≥ 2 (resp. λ = 1). Hence, p′k(z) < 0 for 0 ≤ z < rk−2, and pk(z)
is strictly monotonically decreasing in [0, rk−2[. Therefore, we have
1 ≥ pk(0) ≥ pk(z) > pk(rk−2) = 0.

(f), (g): First, we shall show that p′′k(z), k ≥ 5, is positive for
z ∈ [rk+1, rk]. Instead of considering the function p′′k(z) for z ∈
[rk+1, rk], we change the variable and consider the function fk(υ) :=
p′′k([4 cos2(υ)]−1) for υ ∈ Ik := [ π

k+3 ,
π

k+2 ]. Using part (c) with s = 2,

we obtain fk(υ) = ϑ
[2]
k (υ) [2k−1 sin5(υ) cosk−5(υ)]−1. Since sin(υ)
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(resp. cos(υ)) is positive and monotonically increasing (resp. de-
creasing) in Ik, k ≥ 5, the denominator 2k−1 sin5(υ) cosk−5(υ) is
positive. Using elementary trigonometric formulae, the nominator
ϑ

[2]
k (υ) can be transformed into

ϑ
[2]
k (υ) = −4 k (k − 1) sin2(υ) sin((k − 2) υ)

−12 k sin(υ) cos((k − 1) υ) + 12 sin(k υ).

Now, a moment’s reflection shows that the functions sin(k υ), sin((k−
2) υ) and cos((k − 1) υ) are monotonically decreasing in Ik, k ≥ 7,
and that sin(k υ) and sin((k− 2) υ) (resp. cos((k− 1) υ)) are positive
(resp. negative) in that interval. Therefore,

ϑ
[2]
k (υ) > −4 k (k − 1) sin2( π

k+2) sin(k−2
k+3 π)

− 12 k sin( π
k+3) cos(k−1

k+3 π) + 12 sin( k
k+2 π)

= −4 k (k − 1) sin2( π
k+2) sin( 5π

k+3) + 12 k sin( π
k+3)

− 24 k sin( π
k+3) sin2( 2π

k+3) + 12 sin( 2π
k+2).

Using the inequality sin(x) < x − 1
6x

3 + 1
120x

5, x > 0, for the factor
sin( 5π

k+3) and the inequalities x − 1
6x

3 < sin(x) < x, x > 0, for the
other factors, we further obtain by a lengthy computation

ϑ
[2]
k (υ) > π

6 (k+2)3 (k+3)5

(
c+ (k − 12)

∑
0≤j≤7

cj k
j
)
,

where c and cj , 0 ≤ j ≤ 7, are positive constants given by

c0 = −2 (48 125π6 − 8 662 500π4 + 652 327 128π2 − 5 893 959 168),
c1 = −8 125π6 + 1 444 500π4 − 108 716 040π2 + 982 291 536,
c2 = −625π6 + 120 500π4 − 9 051 216π2 + 81 811 296,
c3 = 4 (2 375π4 − 186 543π2 + 1 695 546),
c4 = 4 (125π4 − 14 472π2 + 137 016),
c5 = −12 (299π2 − 3 360),
c6 = −24 (5π2 − 96),
c7 = 72,
c = −600 (1 925π6 − 346 500π4 + 26 093 124π2 − 235 758 600).

Hence, ϑ[2]
k (υ) > 0 for k ≥ 12. For 5 ≤ k ≤ 11, we find directly the

explicit expressions

ϑ
[2]
5 (υ) = 32 sin5(υ),
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b-Balanced Ordered Trees 185

ϑ
[2]
6 (υ) = 192 cos(υ) sin5(υ),

ϑ
[2]
7 (υ) = 96 [4 cos(2 υ) + 3] sin5(υ),

ϑ
[2]
8 (υ) = 128 [5 cos(3 υ) + 9 cos(υ)] sin5(υ),

ϑ
[2]
9 (υ) = 192 [5 cos(4 υ) + 10 cos(2 υ) + 6] sin5(υ),

ϑ
[2]
10(υ) = 192 [7 cos(5 υ) + 15 cos(3 υ) + 20 cos(υ)] sin5(υ),

ϑ
[2]
11(υ) = 64 [28 cos(6 υ) + 63 cos(4 υ) + 90 cos(2 υ) + 50] sin5(υ).

Evidently, the function ϑ
[2]
k (υ), 5 ≤ k ≤ 11, takes no negative value

in the interval Ik because the arguments appearing in the sin- and
cos-functions are less than π

2 . It is easily verified that ϑ[2]
k (υ) ≥

ϑ
[2]
k ( π

k+3) > 0, 5 ≤ k ≤ 11.
In summary, we have shown that p′′k(z) > 0 for all z ∈ [rk+1, rk],

k ≥ 5. Hence, p′k(z) is strictly monotonically increasing in that in-
terval and we have p′k(z) < p′k(rk). The value of p′k(rk) given in part
(d) is clearly negative for k ≥ 3. 2

Lemma 3.2. Let αw(j) := 4 cos2
(

πj
w

)
, rw := [αw+2(1)]−1, (w, j) ∈

IN2, pk(z) be the Fibonacci polynomial defined in (4) and Ph,k(z) :=
pk+3(z) + zh−kpk(z).

(a) The polynomial Ph,k(z), h ≥ k + 1, k ≥ 2, is strictly mono-
tonically decreasing in [rk+1, rk] and the inequality P ′

h,k(z) <

− (k−1) rk+1

4 rk+1−1 r
1
2
k

k < 0 holds for all z in that interval.

(b) The inequality P ′′
h,k(z) > 0 holds for all z ∈ [rk+1, rk], h ≥

k + 1 + δk,1, k ≥ 1.

Proof: (a): Since the relations p′k(z) = −(k − 2), 2 ≤ k ≤ 4, (resp.
p′k(z) < 0 for z ∈ [rk+1, rk], k ≥ 5) hold by the definition of pk(z)
(resp. by Lemma 3.1(f)), we have P ′

h,k(z) ≤ η̂h,k(z) := p′k+3(z)+(h−
k) zh−k−1pk(z) for rk+1 ≤ z ≤ rk. Instead of considering the function
η̂h,k(z) for z ∈ [rk+1, rk], we change the variable and deal with the
function ηh,k(υ) := η̂h,k([4 cos2(υ)]−1) for υ ∈ Ik := [ π

k+3 ,
π

k+2 ], k ≥ 2.
Using Lemma 3.1(c) with s ∈ {0, 1}, we find

ηh,k(υ) =
ϕ̃h,k(υ)

2k+2 sin3(υ) cosk(υ)
, (10)
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where

ϕ̃h,k(υ) = −(k + 3) sin((k + 1) υ) + (k + 1) sin((k + 3) υ)

+ 4 (h− k) [4 cos2(υ)]−(h−k−1) sin(k υ) sin(2 υ) sin(υ).

Obviously, the denominator appearing in (10) is positive for υ ∈ Ik,
k ≥ 2, because 0 < υ ≤ π

4 <
π
2 . By the monotonicity of the functions

sin(υ) and cos(υ) in Ik, we obtain

2k+2 sin3(υ) cosk(υ) ≥ 2k+2 sin3( π
k+3) cosk( π

k+2)

= 1
2 (4 rk+1 − 1)

3
2 r

− 3
2

k+1 r
− 1

2
k

k . (11)

Next, let us turn to the nominator ϕ̃h,k(υ) appearing in (10). It is
easily verified that the functions sin((k + 1) υ) and sin((k + 3) υ),
k ≥ 2, and sin(k υ), k ≥ 3, are monotonically decreasing in Ik; the
functions sin(υ), sin(2 υ) and cos−2(υ) are monotonically increasing
in Ik. Hence, we obtain

ϕ̃h,2(υ) ≤ −5 sin(3π
4 ) + 4 (h− 2) [4 cos2(π

4 )]−(h−3) sin2(π
2 ) sin(π

4 )

= 1√
2

(
− 5 + h−2

2h−5

)
≤ − 1√

2
< − sin(π

5 ), (12)

and for k ≥ 3

ϕ̃h,k(υ) ≤ −(k + 3) sin(k+1
k+2 π)

+ 4 (h− k) [4 cos2( π
k+2)]−(h−k−1) sin( k

k+3 π) sin( 2 π
k+2) sin( π

k+2)

= sin( π
k+2)

[
− (k + 3) + 4 (h− k) sin( 3π

k+3)︸ ︷︷ ︸
≤1

sin( 2π
k+2)︸ ︷︷ ︸

<1

rh−k−1
k

]
< − (k − 1) sin( π

k+2) < − (k − 1) sin( π
k+3), (13)

because (h − k) rh−k
k ≤ rk for h ≥ k + 1. Now, combining (10),

(11), (12) and (13), we find the inequality stated in part (a) of the
lemma implying that Ph,k(z) is strictly monotonically decreasing in
the interval [rk+1, rk].

(b) Using additionally Lemma 3.1(g), the stated inequality can be
proved in a similar way. The details are left to the reader. 2

Lemma 3.3. Let αw(j) := 4 cos2
(

πj
w

)
, rw := [αw+2(1)]−1, (w, j) ∈

IN2 and χ(x, ϕ) := 1 + x2 − 2x cos(ϕ), 0 ≤ ϕ < 2π. We have:
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(a) χ(x, ϕ) = 0 iff (ϕ, x) ∈ {(0, 1), (π,−1)}, and χ(x, ϕ) > 0, other-
wise. Furthermore, χ(x, ϕ), x > 0, has a minimum (resp. max-
imum) at ϕ = 0 (resp. ϕ = π) and the inequalities (1 − x)2 ≤
χ(x, ϕ) ≤ (1 + x)2 hold.

(b) χ(rw αw+3(j), ϕ) > 0, and χ(rw αw(j), ϕ) > 0, for all ϕ ∈
[0, 2π[, and all 1 ≤ j ≤ b1

2(w + 2)c.

(c) Let qw(j, ϕ) := χ(rw αw+3(j),ϕ)
χ(rw αw(j),ϕ) . The inequality

fw(ϕ) :=
∏

1≤j≤b 1
2
(w+2)c

qw(j, ϕ) > 1
4 r

4
w

holds for all w ≥ 3 and ϕ ∈ [0, 2π[.

Proof: (a): An elementary discussion of the function χ(x, ϕ) yields
the established statements.

(b): Since j ∈ IN, it is easily verified that 0 < rw αw+3(j) 6= 1
and 0 < rw αw(j) 6= 1 for 1 ≤ j ≤ b1

2(w + 2)c. Hence, the stated
inequalities follow from part (a).

(c): We have

∂

∂ ϕ
qw(j, ϕ) =

2 rw [αw(j)− αw+3(j)] [r2w αw(j)αw+3(j)− 1]
[1 + r2w [αw(j) ]2 − 2 rw αw(j) cos(ϕ)]2

sin(ϕ).

Thus, the function qw(j, ϕ) has relative extreme values at ϕ ∈ {0, π}.
We find

∂2

∂ ϕ2
qw(j, ϕ)

∣∣∣
ϕ=0

=
2 rw [αw(j)− αw+3(j)] [r2w αw(j)αw+3(j)− 1]

[1− rw αw(j)]4

and

∂2

∂ ϕ2
qw(j, ϕ)

∣∣∣
ϕ=π

= −2 rw [αw(j)− αw+3(j)] [r2w αw(j)αw+3(j)− 1]
[1 + rw αw(j)]4

.

Hence, qw(j, ϕ), 1 ≤ j ≤ b1
2(w + 2)c has a minimum at

– ϕ = 0 iff αw(j)>
<αw+3(j) ∧ r2w αw(j)αw+3(j)<

>1,

– ϕ = π iff αw(j)>
<αw+3(j) ∧ r2w αw(j)αw+3(j)>

<1.
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Now, elementary computations show, for w ≥ 3 and 1 ≤ j ≤ b1
2(w +

2)c,

αw(j)− αw+3(j)


> 0, if w ≡ 0 mod 2 ∧ j = b1

2(w + 2)c;
= 0, if (w, j) = (3, 2);
< 0, otherwise,

(14)

and r2w αw(j)αw+3(j) < 1. Thus, qw(j, ϕ), 1 ≤ j ≤ b1
2(w+2)c, w ≥ 3,

has a minimum at ϕ = π iff w ≡ 0 mod 2 ∧ j = b1
2(w + 2)c, and

at ϕ = 0 otherwise with the exception of (w, j) = (3, 2). Note that
q3(2, ϕ) ≡ 1. Therefore, we obtain, for w ≥ 3,

fw(ϕ) = qw(b1
2(w + 2)c, ϕ)

∏
1≤j≤b 1

2
wc

qw(j, ϕ)

≥ qw(b1
2(w + 2)c, π δ0,w mod 2)

∏
1≤j≤b 1

2
wc

qw(j, 0)

=

(
1 + ξw rw αw+3(b1

2(w + 2)c)
1 + ξw rw αw(b1

2(w + 2)c)

)2 ∏
1≤j≤b 1

2
wc

(
1− rw αw+3(j)
1− rw αw(j)

)2

, (15)

where ξw := (−1)w mod 2. Now, using Lemma 3.1(b), we find

∏
1≤j≤b 1

2
wc

1− rw αw+3(j)
1− rw αw(j)

=
1

1− rw αw+3(b1
2(w + 2)c)

pw+3(rw)
pw(rw)

.

The quotient pw+3(rw)
pw(rw) can be explicitly computed by the correspond-

ing formulae presented in Lemma 3.1(d). We immediately find pw+3(rw)
pw(rw)

= −r2w. Hence, the lower bound for fw(ϕ) presented in (15) can be
simplified to fw(ϕ) ≥ µ2

w r
4
w, where

µw :=
1

1 + ξw rw αw(b1
2(w + 2)c)

1 + ξw rw αw+3(b1
2(w + 2)c)

1− rw αw+3(b1
2(w + 2)c)

.

The latter factor appearing on the right-hand side is clearly equal to
one for odd w, and greater than one for even w because rw αw+3(b1

2(w+
2)c) > 0. Since 0 < rw αw(b1

2(w + 2)c) ≤ 2
3 , we further obtain

µw ≥ [1 + ξw rw αw(b1
2(w + 2)c)]−1 ≥ 3

5 > 1
2 . This completes the

proof. 2

Lemma 3.4. Let αw(j) := 4 cos2
(

πj
w

)
, rw := [αw+2(1)]−1, (w, j) ∈

IN2 and pk(z) be the Fibonacci polynomial defined in (4). For |z| =
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rw, the function ∆w(z) := r3w−
|pw+3(z)|
|pw(z)| , w ≥ 2, satisfies the inequality

∆w(z) ≤ −Υ r2w < 0, where Υ := 3
2
√

2
− 1 ≈ .060 660 . . . > 0.

Proof: By Lemma 3.1(a), the positive root of minimum modulus
of the polynomial pw(z) is at z = rw−2 > rw. Hence, ∆w(z) is well
defined on the circle |z| = rw. Now, using Lemma 3.1(b) and the
definition of the function χ introduced in Lemma 3.3, we obtain for
z := rw e

i ϕ, i2 = −1, 0 ≤ ϕ < 2π,

∆w(z) = r3w −
(pw+3(z) pw+3(z)

pw(z) pw(z)

) 1
2

= r3w −
∏

1≤j≤b 1
2
(w+2)c

[χ(rw αw+3(j), ϕ)]
1
2

×
∏

1≤j≤b 1
2
(w−1)c

[χ(rw αw(j), ϕ)]−
1
2 .

Since rw αw(b1
2(w−1)c+1) = 0, for even w ≥ 2, we have χ(rw αw(b1

2

(w− 1)c+1), ϕ) = 1 by Lemma 3.3(a), and therefore for z := rw e
i ϕ,

i2 = −1, 0 ≤ ϕ < 2π,

∆w(z) = r3w − [χ(rw αw(b1
2(w + 2)c), ϕ)]

1
2

×
∏

1≤j≤b 1
2
(w+2)c

(χ(rw αw+3(j), ϕ)
χ(rw αw(j), ϕ)

) 1
2 .

Now, we shall successively consider the four cases w ∈ {2, 3, 4} and
w ≥ 5.

– Since w = 2, we immediately obtain for z := r2 e
i ϕ, 0 ≤ ϕ < 2π,

∆2(z) = r32 − [χ(r2 α5(1), ϕ)]
1
2 [χ(r2 α5(2), ϕ)]

1
2

= r32︸︷︷︸
= 1

8

−
[

1
4( 1− cos(ϕ)︸ ︷︷ ︸

≥0

) ( 11− 4 cos(ϕ)︸ ︷︷ ︸
>0

+ 1
16)
] 1

2

≤ 1
8 −

1
4 = −1

2 r
2
2 < −Υ r22.

– Since w = 3, we find for z := r3 e
i ϕ, 0 ≤ ϕ < 2π,

∆3(z) = r33 −
(χ(r3 α6(1), ϕ)χ(r3 α6(2), ϕ)

χ(r3 α3(1), ϕ)

) 1
2
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= r33 −
[

24
(1+

√
5)2

( 1− cos(ϕ)︸ ︷︷ ︸
≥0

) +
(

12
(1+

√
5)2

− 1︸ ︷︷ ︸
=3 r3−1>0

)2 ] 1
2

≤ r33 − 3 r3 + 1 = − 2
1+

√
5
r23 < −Υ r23.

– Since w = 4, we obtain for z := r4 e
i ϕ, 0 ≤ ϕ < 2π,

∆4(z) = r34 −
(χ(r4 α7(1), ϕ)χ(r4 α7(2), ϕ)χ(r4 α7(3), ϕ)

χ(r4 α4(1), ϕ)

) 1
2

= r34︸︷︷︸
= 1

27

−
[

1
81 + 4 (1−cos(ϕ))

27 (13−12 cos(ϕ))︸ ︷︷ ︸
≥0

× ( 26 + 3 (1− cos(ϕ)) (47− 6 cos(ϕ)︸ ︷︷ ︸
>0

)
] 1

2

≤ 1
27 −

1
9 = −2

3 r
2
4 < −Υ r24.

– Finally, let w ≥ 5. Using the inequalities established in part
(a) and (c) of Lemma 3.3, we find for z := rw e

i ϕ, 0 ≤ ϕ < 2π,

∆w(z) = r3w − [χ(rw αw(b1
2(w + 2)c), ϕ)]

1
2︸ ︷︷ ︸

≥1−rw αw(b 1
2
(w+2)c)

[ fw(ϕ)︸ ︷︷ ︸
> 1

4
r4
w

]
1
2

< r2w ( rw − 1
2 [1− rw αw(b1

2(w + 2)c)]︸ ︷︷ ︸
:=λ(w)

).

It is not hard to show that λ(2w + 1) (resp. λ(2w)) is mono-
tonically decreasing for growing w ≥ 2 (resp. w ≥ 3). Since
λ(5) = − 1

16 (8− [ 7−
√

5 ] cos−2(π
7 )) ≈ −.133 202 . . . < −Υ and

λ(6) = −Υ, we have λ(w) ≤ λ(6) for w ≥ 5.

This completes the proof. 2

3.2 The Dominant Poles of Gh,b(z)

In this subsection we shall determine the root of minimum modulus
of the polynomial Ph,k(z) = pk+3(z) + zh−k pk(z) appearing in the
denominator of the enumerator Gh,k(z) introduced in (6).

Theorem 3.1. Let αw(j) := 4 cos2
(

πj
w

)
and rw := [αw+2(1)]−1,

(w, j) ∈ IN2. We have:
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(a) The enumerator Gh,b(z) has a dominant singularity zh,b, for
1 ≤ b < h, h ≥ 3, which is a simple pole.

(b) The dominant singularities zh,b, 1 ≤ b < h, h ≥ 3, satisfy the
following chain of inequalities
1 = r1 > zh,1 > r2 > zh,2 > r3 > . . . > rb > zh,b > rb+1 > . . . >
rh−3 > zh,h−3 > rh−2 = zh,h−2 = zh,h−1 >

1
4 .

(c) The dominant singularities zh,b satisfy the following chain of
inequalities{
r1 = z3,1 if b = 1
rb−1 = zb+1,b > rb = zb+2,b if b ≥ 2

}
> zb+3,b > . . . > zh,b >

zh+1,b > . . . > rb+1.

(d) The dominant singularity zb+3,b, b ≥ 1, satisfies the inequality
zb+3,b < r̂b := [4 cos2( 2π

2 b+5)]−1 < rb.

Proof: (a), (b): Clearly, the inequalities 1
4 < rj−1 < rj < r1 = 1

hold for j ≥ 2 by definition.
As pointed out at the end of Section 2, the enumerator Gh,b(z),

b ∈ {h−1, h−2}, has the representation Gh,b(z) = z
ph−1(z)
ph(z) −δh−2,b z,

where pk(z) denotes a Fibonacci polynomial. Hence, Gh,h−1(z)
(resp. Gh,h−2(z)) has a simple pole at zh,h−1 = rh−2 (resp. zh,h−2 =
rh−2), h ≥ 3, by Lemma 3.1(b). Therefore, it is sufficient to restrict
our further considerations to 1 ≤ b ≤ h− 3, h ≥ 4.

Since Gh,b(z) is an enumerator, the dominant singularity zh,b is
the positive root of minimum modulus of the polynomial Ph,b(z) :=
pb+3(z) + zh−b pb(z) appearing in the denominator of (6) such that
the nominator Nh,b(z) := (1 − z) zh−b pb(z) is unequal to zero for
z = zh,b. Note that the polynomial Ph,b(z), b ≥ 1, has the degree
max{b1

2bc+ 1, h− 1− b1
2bc}.

For b = 1, i.e. h ≥ 4, we obtain Ph,1(z) = 1 − 2 z + zh−1. This
polynomial has already been discussed in [5]. It has exactly one
simple positive root zh,1 inside the circle |z| = 1 = r1. Since 0 <

zh−1
h,1 = 2 zh,1 − 1, the inequality zh,1 > 1

2 = r2 holds. Obviously,
Nh,1(zh,1) = (1 − zh,1) zh−1

h,1 p1(zh,1) 6= 0. Hence, Gh,1(z), h ≥ 4,
has a simple pole at zh,1 with r2 < zh,1 < r1. Note that the exact
expression

zh,1 =
∑
j≥0

1
(h−1) j+1

((h−1) j+1
j

)
2−(h−1) j−1 (16)
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has been computed in [5].
Now, let b ≥ 2, i.e. h ≥ 5. Setting ϕh,b(z) := zh−b pb(z) and

ψb(z) := pb+3(z) and using the definition of the function χ (resp.
∆w) introduced in Lemma 3.3(a) (resp. Lemma 3.4), we can make
the following computations for z = rb e

i ϕ, 0 ≤ ϕ < 2π,

|ψb(z) | = ( |pb+3(z)| |pb+3(z)| )
1
2

Lem.3.1(b)
=

∏
1≤j≤b 1

2
(b+2)c

[ (1− rb αb+3(j) ei ϕ) (1− rb αb+3(j) e−i ϕ)︸ ︷︷ ︸
=χ(rb αb+3(j),ϕ)

]
1
2

Lem.3.3(b)
> 0,

and

|ϕh,b(z)| − |ψb(z)| = |pb(z)|
[
|z|h−b︸ ︷︷ ︸
≤r3

b

− |pb+3(z)|
|pb(z)|

] Lem.3.4
< 0. (17)

Thus, the relations ψb(z) 6= 0 and |ϕh,b(z)| < |ψb(z)| hold for |z| = rb,
b ≥ 2. Hence, Rouché’s theorem applies and the polynomials ψb(z)
and ψb(z) + ϕh,b(z) = Ph,b(z) have the same number of zeros inside
the circle |z| = rb. By Lemma 3.1(a), the roots of ψb(z) = pb+3(z)
are at zj = [αb+3(j) ]−1, 1 ≤ j ≤ b1

2(b+2)c. Clearly, we have z1 < rb
and zj > rb for 2 ≤ j ≤ b1

2(b + 2)c. Therefore, Ph,b(z) has exactly
one root ẑh,b with ẑh,b < rb, 2 ≤ b ≤ h− 3.

Now, assume that ẑh,b is not a simple root of Ph,b(z), i.e. the
equations Ph,b(ẑh,b) = 0 and P ′

h,b(ẑh,b) = 0 hold. The former equation

implies ẑ h−b
h,b = −pb+3(ẑh,b)

pb(ẑh,b)
. By Lemma 3.1(e), the quotient pb+3(z)

pb(z) is

positive for z ∈ [0, rb+1[, b ≥ 3. Since p2(z) = 1, this fact holds
for b = 2, too. Hence, the inequality ẑh,b ≥ rb+1 is valid because
pb(rb+1) 6= 0 by Lemma 3.1(d). The assumption ẑh,b = rb+1 yields the
contradiction rh−b

b+1 = −pb+3(rb+1)
pb(rb+1) = 0 by Lemma 3.1(a). Therefore,

we have rb+1 < ẑh,b < rb, 2 ≤ b ≤ h − 3, and Lemma 3.2(a) yields
the contradiction P ′

h,b(ẑh,b) < 0. Thus, the polynomial Ph,b(z) has
exactly one positive simple root ẑh,b with rb+1 < ẑh,b < rb. Since
rb−2 > rb, we have pb(ẑh,b) > 0, b ≥ 3, by Lemma 3.1(e). For
b = 2, this inequality is clearly valid. Therefore, Nh,b(ẑh,b) = (1 −
ẑh,b) ẑ h−b

h,b pb(ẑh,b) 6= 0 because 0 < ẑh,b < rb ≤ r2 < 1, Hence, the
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enumerator Gh,b(z), h ≥ b + 3 ≥ 5, has a simple pole at zh,b := ẑh,b

with rb+1 < zh,b < rb.

(c) The equalities z3,1 = r1 and zb+1,b = rb−1, b ≥ 2, have already
been verified at the beginning of the proof of the parts (a) and (b) of
this lemma.

Now, assume that there is a tuple (h, b), h ≥ b + 1, b ≥ 2, with
zh,b ≤ zh+1,b. By part (b) of this lemma, we know that both, zh,b and
zh+1,b, lie in the interval ] rb+1, rb [⊆ ] 1

4 ,
1
2 [. Since p2(z) = 1 > 0 and

pb(zh,b) > 0, b ≥ 3, by Lemma 3.1(e), the assumption z̃h,b := zh,b =
zh+1,b immediately yields 0 = Ph+1,b(z̃h,b)− Ph,b(z̃h,b) = z̃ h−b

h,b (z̃h,b −
1) pb(z̃h,b), i.e. we have the contradiction z̃h,b ∈ {0, 1}. Assuming
that zh,b < zh+1,b, Lemma 3.2(a) yields

0 = Ph+1,b(zh+1,b) < Ph+1,b(zh,b) = pb+3(zh,b) + zh−b+1
h,b pb(zh,b)

< pb+3(zh,b) + zh−b
h,b pb(zh,b) = Ph,b(zh,b) = 0,

which is another contradiction.
We are left with the case b = 1. Since (h− 1) j + 1 < h j + 1 and

hj − λ+ 2 < 2 [(h− 1) j − λ+ 2], 1 ≤ λ ≤ j, we immediately obtain
zh+1,1 < zh,1, h ≥ 3, by the explicit expression for zh,1 established in
(16).

(d) Since π
b+3 <

2π
2 b+5 <

π
b+2 <

π
2 , b ≥ 1, we have rb+1 < r̂b < rb.

First, for b = 1, we find P4,1(z) = 1 − 2 z + z3 = (z − 1) (z +
φ) (z + φ−1), where φ := 1

2(1 +
√

5 ) is the ‘golden ratio’. Hence,
z4,1 = φ−1 = .618 033 . . . < [ 4 cos2(2π

7 ) ]−1 = r̂1 ≈ .643 104 . . . .
Next, let b ≥ 2. An inspection of Lemma 3.2(a) shows that

Ph,b(z), b ≥ 2, is strictly monotonically decreasing in [rb+1, rb]. Since
zb+3,b is the unique root of Pb+3,b(z) in [rb+1, rb], it is sufficient to
prove that Pb+3,b(r̂b) < 0. For this purpose we change the variable
and consider the function

νb(υ) := Pb+3,b([4 cos2(υ)]−1)

= pb+3([4 cos2(υ)]−1) + [4 cos2(υ)]−3 pb([4 cos2(υ)]−1)

in the interval [ π
b+3 ,

π
b+2 ]. Setting υ := 2π

2 b+5 and using Lemma
3.1(e), elementary trigonometric transformations yield Pb+3,b(r̂b) =
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νb( 2π
2 b+5), where

νb( 2π
2 b+5) = − 1

2b+6 cos( π
2 b+5)︸ ︷︷ ︸

>0

cosb+5( 2π
2 b+5)︸ ︷︷ ︸

>0

[4 cos2( π
2 b+5)− 3)]2︸ ︷︷ ︸
>0

× [4 cos2( π
2 b+5)− 1]︸ ︷︷ ︸
>0

.

Evidently, the latter expression is negative. This completes the proof.
2

Remark 3.1. (a) The preceding lemma presents a detailed survey of
the dominant singularities zh,b of the enumerators Gh,b(z), 1 ≤ b < h,
h ≥ 3. Arranging the values of zh,b in an array, this array has the
following structure:

h
\

b
1

2
3

..
.

b
..

.
h
−

2
h
−

1
h

3
z
3

,1
=

r
1

=
z
3

,2
=

r
1

>
>

4
z 4

,1
>

z
4

,2
=

r
2

=
z
4

,3
=

r
2

>
>

>

5
z 5

,1
>

z 5
,2

>
z
5

,3
=

r
3

=
>

>
>

6
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

>
>

>
..

.
>

..
.

>
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In each row (resp. column), the entries are strictly monotonically
decreasing from left to right (resp. top to bottom).

(b) We are left with the concrete problem of computing an approx-
imation of the dominant singularity zh,b for 1 ≤ b ≤ h − 3, i.e. we
have to find an approximation of the simple positive root of mini-
mum modulus of the polynomial Ph,b(z) = pb+3(z) + zh−bpb(z). This
problem can essentially be solved by Newton’s method, i.e. we have
to consider the recurrence

zt = zt−1 −
pb+3(zt−1) + zh−b

t−1 pb(zt−1)

p′b+3(zt−1) + zh−b−1
t−1 [ (h− b) pb(zt−1)+zt−1 p′b(zt−1) ]

, t ≥ 1,

starting with a well chosen initial value z0. We choose z0 := rb+1

because pb+3(rb+1) = 0 by Lemma 3.1(a), and rh−b
b+1 pb(rb+1) = (1 −

rb+1) r
h− 1

2
(b+3)

b+1 by Lemma 3.1(d), becomes very small for large h,
where b = ◦(h).

Before we present an exact asymptotical evaluation of zh,b, we
briefly discuss some aspects concerning the convergence of the se-
quence zt, t ≥ 0. According to the proof of Theorem 3.1(a), (b),
the polynomial Ph,b(z) has exactly one simple root zh,b in the in-
terval [rb+1, rb]. Hence, the equalities Ph,b(rb+1)Ph,b(rb) < 0 and
P ′

h,b(z) 6= 0 hold in that interval. Indeed, we have Ph,b(rb+1) =

(1 − rb+1) r
h− 1

2
(b+3)

b+1 > 0, and Ph,b(rb) = −r
1
2
b+1

b (1 − rh−b−2
b ) < 0

by Lemma 3.1(d) and P ′
h,b(z) < 0 by Lemma 3.2(a). Since addition-

ally Ph,b(z) is convex in the interval [rb+1, rb] by Lemma 3.2(b), the
Newton-sequence z0 = rb+1, z1, z2, . . . is strictly monotonically in-
creasing and it converges quadratically to the root zh,b in [rb+1, rb],
i.e. lim supt→∞

|zt+1−zh,b|
|zt−zh,b|2 = α > 0.

Now, let us turn to the asymptotical evaluation of zh,b. We com-
pute successively z0 := rb+1, z1, z2, . . . . In each step we evaluate
the approximant zt around rh−b

b+1 and simplify the resulting expres-
sion by means of the explicit expressions presented in Lemma 3.1(d).
Choosing this procedure, we obtain by a very lengthy computation,
for b = ◦(h) and large h:

zh,b = rb+1 + c
(1)
b rh−b−2

b+1 + c
(2)
h,b r

2(h−b)−5
b+1 + c

(3)
h,b r

3(h−b)−8
b+1

+O((h− b)3 r4(h−b)
b+1 ), (18)
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where1

c
(1)
b = − 1

p′
b+3

r2b+1 pb = 1
b+3 (1− rb+1)(4 rb+1 − 1);

c
(2)
h,b = 1

[ p′
b+3

]2
r4b+1 p

2
b (h− b) + 1

2 [ p′
b+3

]3
r5b+1 pb [ 2 p′b p

′
b+3 − pb p

′′
b+3 ]

= 1
2 (b+3)2

(1− rb+1)(4 rb+1 − 1) [ ξ(1)b (h− b) + ξ
(0)
b ],

with ξ(0)
b := (2 rb+1 + b− 2)(3 rb+1 − 1),

and ξ
(1)
b := 2(1− rb+1)(4 rb+1 − 1);

c
(3)
h,b = − 3

2 [ p′
b+3

]3
r6b+1 p

3
b(h− b)2

+ 1
2 [ p′

b+3
]4
r6b+1 p

2
b

(
pb p

′
b+3 − 6 rb+1 p

′
b p

′
b+3 + 3 rb+1 pb p

′′
b+3

)
(h− b)

+ 1
6 [ p′

b+3
]5
r8b+1 pb

(
p2

b p
′
b+3 p

′′′
b+3 − 3 pb p

′′
b [ p′b+3 ]2 − 3 p2

b [ p′′b+3 ]2

+9 pb p
′
b p

′
b+3 p

′′
b+3 − 6 [ p′b ]2 [ p′b+3 ]2

)
= 1

6 (b+3)3
(1− rb+1)(4 rb+1 − 1)

[ η(2)
b (h− b)2 + η

(1)
b (h− b) + η

(0)
b ],

with η(0)
b := 120 r4b+1 − 2(b2 − 57 b+ 155) r3b+1

+9(2 b2 − 21 b+ 30) r2b+1 − 3(b− 6)(4 b− 5) rb+1

+2(b− 1)(b− 5),

and η
(1)
b := 3(1− rb+1)(4 rb+1 − 1)

× [ 22 r2b+1 + (9 b− 29) rb+1 − 3 b+ 7],

and η
(2)
b := 9(1− rb+1)2(4 rb+1 − 1)2.

In principle, the expansion for zh,b could be carried out as far as we
like but the higher terms become more and more complicated. With-
out going into detail, another approach to the computation of the
asymptotic approximation given in (18) is the bootstrapping tech-
nique starting with z0 := rb+1, and computing better estimates zt,
t = 1, 2, 3, . . . . In this way, we find the same approximation. Notice
that r2 = 1

2 , and therefore (c(1)1 , c
(2)
h,1, c

(3)
h,1) = ( 1

8 ,
1
64 (h − 1), 1

1024 (h −
1)(3h− 4) ). Thus,

zh,1 = 1
2 + 2−h + (h− 1) 2−(2h−1) + (h− 1)(3h− 4) 2−(3h−1)

1The abbreviations pb, p′b, p′′b , and p′′′b stand for pb(rb+1), p′b(rb+1), p′′b (rb+1)
and p′′′b (rb+1), respectively.
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+O(h3 2−4 h).

Table 2: The dominant singularities zh,b for 3 ≤ b ≤ h, 3 ≤ h ≤ 11.
The upper (resp. lower) number appearing in an entry corresponds
to the exact (resp. approximative) value of zh,b. The values are not
rounded to the sixth decimal place. The exact and the approximate
value coincide up to the sixth decimal place regarding the entries not
marked with |.

h
\

b
1

2
3

4
5

6
7

8
9

10

3
r 1

=
1

r 1
=

1

4
|.6

1
8

0
3
3

.5
9
7

6
5
6

r 2
r 2

5
|.5

4
3

6
8
9

.5
4
1

7
4
8
|.4

1
4

2
1
3

.4
1
3

4
8
7

r 3
r 3

6
|.5

1
8

7
9
0

.5
1
8

6
0
0
|.3

9
2

6
4
6

.3
9
2

6
1
7
|.3

4
7

2
9
6

.3
4
7

2
5
3

r 4
r 4

7
|.5

0
8

6
6
0

.5
0
8

6
4
2
|.3

8
5

7
9
4

.3
8
5

7
9
3
|.3

3
7

6
6
6

.3
3
7

6
6
5
|.3

1
5

4
4
8

.3
1
5

4
4
7

r 5
r 5

8
|.5

0
4

1
3
8

.5
0
4

1
3
6

.3
8
3

3
8
7

.3
8
3

3
8
7

.3
3
4

7
3
4

.3
3
4

7
3
4

.3
1
0

2
0
6

.3
1
0

2
0
6
|.2

9
7

4
1
1

.2
9
7

4
1
2

r 6
r 6

9
|.5

0
2

0
1
7

.5
0
2

0
1
6

.3
8
2

5
0
1

.3
8
2

5
0
1

.3
3
3

7
9
4

.3
3
3

7
9
4

.3
0
8

6
5
4

.3
0
8

6
5
4

.2
9
4

2
0
6

.2
9
4

2
0
6

.2
8
6

0
8
1

.2
8
6

0
8
1

r 7
r 7

10
.5

0
0

9
9
4

.5
0
0

9
9
4

.3
8
2

1
6
9

.3
8
2

1
6
9

.3
3
3

4
8
6

.3
3
3

4
8
6

.3
0
8

1
8
5

.3
0
8

1
8
5

.2
9
3

2
7
5

.2
9
3

2
7
5

.2
8
3

9
6
5

.2
8
3

9
6
5

.2
7
8

4
5
0

.2
7
8

4
5
0

r 8
r 8

11
.5

0
0

4
9
3

.5
0
0

4
9
3

.3
8
2

0
4
3

.3
8
2

0
4
3

.3
3
3

3
8
4

.3
3
3

3
8
4

.3
0
8

0
4
2

.3
0
8

0
4
2

.2
9
3

0
0
5

.2
9
3

0
0
5

.2
8
3

3
5
8

.2
8
3

3
5
8

.2
7
6

9
7
3

.2
7
6

9
7
3

.2
7
3

0
4
5

.2
7
3

0
4
5

r 9
r 9

↓
↓

↓
↓

↓
↓

↓
↓

↓
↓

↓

∞
r 2

r 3
r 4

r 5
r 6

r 7
r 8

r 9
r 1

0
r 1

1

‖
‖

‖
‖

‖
‖

‖
‖

‖
‖

.5
.3

8
1
9
6
6

.3
3
3
3
3
3

.3
0
7
9
7
8

.2
9
2
8
9
3

.2
8
3
1
1
8

.2
7
6
3
9
3

.2
7
1
5
5
4

.2
6
7
9
4
9

.2
6
5
1
8
7
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This approximation coincides with the terms up to j = 3 in the
explicit expression for zh,1 established in (16). The exact and approx-
imate values for zh,b, 1 ≤ b ≤ h, 3 ≤ h ≤ 12, are presented in Table 2.
Even for small h, the derived approximation yields very good values
for the dominant singularity zh,b. 3

3.3 An asymptotic Equivalent to the Taylor Coeffi-
cients of Gh,b(z)

In this subsection we shall determine the exact asymptotic behaviour
of the coefficient at zn in the expansion of the enumerator Gh,b(z)
around z = 0.

Theorem 3.2. Let rw := [4 cos2
(

π
w+2

)
]−1, w ∈ IN, and pk(z) be

the Fibonacci polynomial defined in (4). Furthermore, let Kh,h−1 =
Kh,h−2 := 1

h tan2(π
h ), h ≥ 3, and

Kh,b :=
1− zh,b

zh,b

[
p′

b+3
(zh,b)

pb+3(zh,b)
− p′

b
(zh,b)

pb(zh,b)

] − (h− b),

for 1 ≤ b ≤ h− 3, where zh,b is the dominant pole of the enumerator
Gh,b(z). An asymptotic equivalent to the coefficient 〈zn;Gh,b(z)〉2 is
given by

〈zn;Gh,b(z)〉 = Kh,b z
−n
h,b +O(b3 r−n

b ), n→∞.

Proof: First, let us consider the simple cases b ∈ {h − 1, h − 2}.
It has been shown in the classical paper [1] that the n-th coefficient
φh(n) = 〈zn;Fh(z)〉 of the enumerator Fh(z) = z ph(z)

ph+1(z) introduced
in (3) has the explicit representation

φh(n) = 1
h+1

∑
1≤j≤b 1

2
hc

tan2( πj
h+1) [ 4 cos2( πj

h+1)]n, n ≥ 2.

Splitting up the sum appearing on the right-hand side and using the
inequalities cos2( πj

h+1) ≤ cos2( 2π
h+1) and tan2( πj

h+1) ≤ tan2( π
h+1 b

h
2 c) =

2
π2 (5+3(−1)h) bh

2 c
2 +O(h), 2 ≤ j ≤ bh

2 c, we further obtain for h ≥ 4

φh(n) = 1
h+1 tan2( π

h+1) r−n
h−1 +O(h2 [ 4 cos2( 2π

h+1)]n), n ≥ 2. (19)

2The abbreviation 〈zn; f(z)〉 denotes the coefficient of zn in the expansion of
f(z) at z = 0.
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Clearly, this estimate holds for h ∈ {2, 3}, too. Now, as it was ob-
served at the end of Section 2, we have Gh,h−2(z) + z = Gh,h−1(z) =
Fh−1(z) and therefore

〈zn;Gh,h−2(z)〉 = 〈zn;Gh,h−1(z)〉 = 〈zn;Fh−1(z)〉 = φh−1(n)

for n ≥ 3. Combining this relation and the expression for φh(n)
given in (19), we immediately find the asymptotic equivalent stated
in the theorem because zh,h−2 = zh,h−1 = rh−2 by Lemma 3.1(b) and
4 cos2(2π

h ) ≤ r−1
h−2 < r−1

h−1, h ≥ 2.
Next, let us consider the cases 1 ≤ b ≤ h− 3. For b = 1, we have

Gh,1(z) = (1−z) zh−1

1−2 z+zh−1 , h ≥ 2. This function is identical with the func-
tion Dh−1(z) already introduced in [5, formula (6)]. In Theorem 3(b)
of that paper it has been proved that 〈zn;Dh(z)〉 = Ch q

−n
h + O(1),

where Ch = (1−qh) (2 qh−1)
h−2(h−1)qh

and qh = zh+1,1. Hence, 〈zn;Gh,1(z)〉 =
Ch−1 z

−n
h,1 + O(1). Since (p1(z), p4(z)) = (1, 1 − 2z), the expression

for Kh,1 given in the theorem is identical with Ch−1 and our result is
valid for b = 1.

Now, let 2 ≤ b ≤ h − 3. By Theorem 3.1(a), the enumerator
Gh,b(z) has a dominant simple pole at zh,b. Hence, the partial fraction
expansion of Gh,b(z) has the form

Gh,b(z) = K̂h,b (1− z
zh,b

)−1 +Rh,b(z),

where

K̂h,b := lim
z→zh,b

(1− z
zh,b

)
(1− z) zh−b pb(z)
pb+3(z) + zh−b pb(z)

and Rh,b(z) is a regular rational function for |z| ≤ zh,b. Applying
D’Hospital’s rule and using the relation zh−b

h,b = −pb+3(zh,b)
pb(zh,b)

, we

find K̂h,b ≡ Kh,b, where Kh,b is the quantity defined in the theorem.
Thus, 〈zn;Gh,b(z)〉 = Kh,b z

−n
h,b + 〈zn;Rh,b(z)〉, where the coefficient

〈zn;Rh,b(z)〉 involves all the zeros of Ph,b(z) = pb+3(z) + zh−b pb(z),
b ≥ 2, with the exception of zh,b. Unfortunately, we have only in-
sufficient information about these zeros at hand. It seems to be true
that all roots of the polynomial Ph,b(z) are simple but the author is
unable to prove this conjecture. However, there is a general theorem
established in [13, Theorem 9.2] which can be successively applied in
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order to determine the asymptotic growth of 〈zn;Rh,b(z)〉. For this
purpose we consider the rational function Ĝh,b(z) := z−2Gh,b(z) =
N̂h,b(z)
Ph,b(z) , where N̂h,b(z) := (1−z) zh−b−2 pb(z), and Ph,b(z) = pb+3(z)+

zh−b pb(z). Note that 〈zn; Ĝh,b(z)〉 = 〈zn+2;Gh,b(z)〉, that the degree
of the polynomial N̂h,b(z) is less than the degree of Ph,b(z) and that
Ph,b(0) = pb+3(0) 6= 0. Translating the result established in [13,
Theorem 9.2] into our case (set k := 1 and ρ1 := zh,b), we obtain

∣∣∣〈zn; Ĝh,b(z)〉+ N̂h,b(zh,b)
P ′

h,b
(zh,b)

z−n−1
h,b︸ ︷︷ ︸

=−Kh,b z−n−2
h,b︸ ︷︷ ︸

=〈zn+2;Rh,b(z)〉

∣∣∣ ≤W R−n + δ−1R−nM,

where the following conditions have to hold:

(i) Ph,b(z) has only one simple root in |z| < R;
(ii) R− zh,b > δ for some δ > 0;
(iii) max|z|=R |Ĝh,b(z)| ≤W ;

(iv) M =
∣∣∣ N̂h,b(zh,b)
P ′

h,b
(zh,b)

∣∣∣.
Now, let R := rb and δ := rb − r̂b, with r̂b := [4 cos( 2π

2b+5)]−1. The
condition (i) is clearly satisfied by Theorem 3.1(a), (b). By Theorem
3.1(c) and (d), we have R− zh,b = rb − zh,b > rb − zb+3,b > rb − r̂b =
δ > 0, and the condition (ii) holds, too. Moreover, it is easily verified
that δ−1 is monotonically increasing with growing b ≥ 2, and that
δ−1 ≤ 1

2 cos2(2π
9 )(2 cos2(2π

9 )− 1)−1 b3 = O(b3), for b ≥ 2.
Next, the following computation shows that the upper bound W

introduced in condition (iii) can be chosen as a constant, i.e. W =
O(1). Indeed, we have for |z| = rb, 2 ≤ b ≤ h− 3,

|Ĝh,b(z)| =
|z|h−b−2| |1− z| |pb(z)|
|pb+3(z) + zh−b pb(z)|

≤ |z|h−b−2(1 + |z|) |pb(z)|
|pb+3(z)| − |z|h−b|pb(z)|︸ ︷︷ ︸

(17)
> 0

=
rh−b−2
b (1 + rb)
|pb+3(z)|
|pb(z)| − rh−b

b︸ ︷︷ ︸
≤r3

b

Lem.3.4
≤

rh−b−2
b (1 + rb)

Υ r2b
≤ 1 + rb

Υ rb︸ ︷︷ ︸
:=u(b)

= O(1).
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Note that the sequence (u(b))b≥2 is positive and monotonically in-
creasing with the limit 10 (4 + 3

√
2 ) ≈ 82.426 406 . . . .

Finally, let us turn to the quantity M appearing in condition
(iv). Since rb+1 < zh,b < rb by Theorem 3.1(b), p2(z) = 1, and

pb(zh,b) < pb(rb+1) = (1− rb+1) r
1
2
(b−3)

b+1 , b ≥ 3, by Lemma 3.1(d) and
(e), we obtain, for 2 ≤ b ≤ h− 3,

|N̂h,b(zh,b)| = |zh,b|h−b−2 |1− zh,b︸ ︷︷ ︸
≤1+|zh,b|

| |pb(zh,b)|

≤ rh−b−2
b (1 + rb)(1− rb+1) r

1
2
(b−3)

b+1 ≤ rb ( 1 + rb) r
1
2
(b−3)

b+1 .

Hence, by Lemma 3.2(a)

M ≤
rb (1 + rb)(4 rb+1 − 1) r

1
2
(b−3)

b+1

(b− 1) rb+1 r
1
2
b

b

≤ rb (1 + rb)(4 rb+1 − 1)

(b− 1) r
5
2
b+1︸ ︷︷ ︸

:=v(b)

= O(1),

because rb+1 < rb. Note that the sequence (v(b))b≥2 is positive
and monotonically decreasing with v(b) ≤ v(2) = 3

8(5 + 3
√

5) =
4.390 576 . . . .

Thus, we have verified the relation |〈zn+2;Rh,b(z)〉| = O(b3 r−n
b ),

2 ≤ b ≤ h − 3. This completes the proof because r2b ∈ [ 1
16 ,

1
4 [, b ≥ 2.

2

Remark 3.2. (a) Using Lemma 3.1(d), (e) and Lemma 3.2(a), it is
not hard to verify that the quantity Kh,b introduced in the preceding
theorem is bounded, i.e. Kh,b = O(1), 1 ≤ b < h, h ≥ 3.

(b) Evaluating the explicit expression for Kh,b stated in the previous
theorem by means of (18) and using the explicit expressions presented
in Lemma 3.1(d), we find the following approximation, for b = ◦(h)
and large h, by a lengthy computation:

Kh,b = k
(1)
b rh−b−3

b+1 + k
(2)
h,b r

2(h−b)−6
b+1 + k

(3)
h,b r

3(h−b)−9
b+1

+O((h− b)3 r4(h−b)
b+1 ), (20)

where

k
(1)
b = 1

b+3 (1− rb+1)2(4 rb+1 − 1);
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k
(2)
h,b = 1

(b+3)2
(1− rb+1)2(4 rb+1 − 1) [ e(1)b (h− b) + e

(0)
b ],

with e(0)
b := 6 r2b+1 + 3(b− 4) rb+1 − b+ 3,

and e
(1)
b := 2(1− rb+1)(4 rb+1 − 1);

k
(3)
h,b = 1

6 (b+3)3
(1− rb+1)2(4 rb+1 − 1)

[ f (2)
b (h− b)2 + f

(1)
b (h− b) +f (0)

b ],

with f (0)
b := 24(b2 + b+ 28) r4b+1 − 2(b3 − b2 − 289 b+ 1 003) r3b+1

+3(6 b3 + 7 b2 − 361 b+ 636) r2b+1

−3(4 b3 + 7 b2 − 164 b+ 216) rb+1

+2 b3 + 4 b2 − 65 b+ 74,

and f
(1)
b := 3(1− rb+1)(4 rb+1 − 1)

× [ 22(b+ 5) r2b+1 + (9 b2 + 16 b− 169) rb+1

−3 b2 − 8 b+ 41],

and f
(2)
b := 9(b+ 5) (1− rb+1)2(4 rb+1 − 1)2.

The exact and approximate values for Kh,b, 1 ≤ b < h, 3 ≤ h ≤ 12,
are presented in Table 3. Even for small h, the derived approximation
yields very good values for the quantity Kh,b. 3

4 Enumeration and Distribution Results

In this section we shall compute asymptotic equivalents to the number
of all b-balanced ordered trees with n nodes and of all such trees
with height h. Furthermore, assuming that all b-balanced ordered
trees with n nodes are equally likely, we shall determine the exact
asymptotic behaviour of the average height of such a tree together
with the variance.

Theorem 4.1. Let rw := [4 cos2
(

π
w+2

)
]−1, w ∈ IN.

(a) The number `h,b(n) of all b-balanced ordered trees of height h
with n nodes is given by `1,0(n) = δn,1, by `2,0(n) = 1− δn,1, by
`h,h−1(n) = 0, h ≥ 2, and for 0 ≤ b ≤ h− 2, h ≥ 3 by

`h,b(n) = Kh+1,b+1 z
−n
h+1,b+1 +O((b+ 1)3r−n

b+1),
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Table 3: The quantity Kh,b for 3 ≤ b < h, 3 ≤ h ≤ 11. The val-
ues of Kh,h−2 and Kh,h−1, h ≥ 3, are explicitly given by 1

h tan2( 1
h).

The upper (resp. lower) number appearing in the remaining entries
corresponds to the exact (resp. approximative) value of Kh,b. The
values are not rounded to the sixth decimal place. The exact and the
approximate value coincide up to the sixth decimal place regarding
the entries not marked with |.

h
\

b
1

2
3

4
5

6
7

8
9

10

3
K

3
,1

K
3
,2

4
|.1

7
0

8
2
0

.1
4
8

4
3
7

K
4
,2

K
4
,3

5
|.0

5
4

0
3
6

.0
5
6

3
9
6
|.0

6
0

6
6
0

.0
6
6

7
2
7

K
5
,3

K
5
,4

6
|.0

2
1

2
8
3

.0
2
2

3
0
8
|.0

1
8

6
3
8

.0
1
9

4
2
0
|.0

2
9

8
4
1

.0
3
1

6
5
1

K
6
,4

K
6
,5

7
|.0

0
9

3
1
7

.0
0
9

5
5
2
|.0

0
6

4
2
5

.0
0
6

4
9
4
|.0

0
8

9
5
9

.0
0
9

0
9
1
|.0

1
7

1
5
3

.0
1
7

4
5
8

K
7
,5

K
7
,6

8
|.0

0
4

3
1
8

.0
0
4

3
6
3
|.0

0
2

3
3
9

.0
0
2

3
4
5
|.0

0
2

8
4
3

.0
0
2

8
5
1
|.0

0
5

0
7
7

.0
0
5

0
9
7
|.0

1
0

8
4
5

.0
1
0

7
8
7

K
8
,6

K
8
,7

9
|.0

0
2

0
6
7

.0
0
2

0
7
5
|.0

0
0

8
7
3

.0
0
0

8
7
4
|.0

0
0

9
2
7

.0
0
0

9
2
8
|.0

0
1

5
2
9

.0
0
1

5
3
0

.0
0
3

1
8
2

.0
0
3

1
8
2

|.0
0
7

3
2
0

.0
0
7

2
2
3

K
9
,7

K
9
,8

10
|.0

0
1

0
0
8

.0
0
1

0
0
9

.0
0
0

3
3
0

.0
0
0

3
3
0

.0
0
0

3
0
6

.0
0
0

3
0
6

.0
0
0

4
6
6

.0
0
0

4
6
6

|.0
0
0

9
2
5

.0
0
0

9
2
6
|.0

0
2

1
3
6

.0
0
2

1
3
4
|.0

0
5

1
8
4

.0
0
5

1
2
6

K
1
0
,8

K
1
0
,9

11
.0

0
0

4
9
7

.0
0
0

4
9
7

.0
0
0

1
2
5

.0
0
0

1
2
5

.0
0
0

1
0
1

.0
0
0

1
0
1

.0
0
0

1
4
3

.0
0
0

1
4
3

.0
0
0

2
7
0

.0
0
0

2
7
0

|.0
0
0

6
0
7

.0
0
0

6
0
6
|.0

0
1

5
0
8

.0
0
1

5
0
6
|.0

0
3

8
1
1

.0
0
3

8
0
0

K
1
1
,9

K
1
1
,1

0
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where zh,b (resp. Kh,b) is the dominant singularity of the enu-
merator Gh,b(z) (resp. the quantity) introduced in Theorem 3.1
(resp. in Theorem 3.2) with the asymptotic expansion estab-
lished in (18) (resp. (20)).

(b) The number tb(n) of all b-balanced ordered trees with n nodes
is for fixed b ∈ IN0 and all δ > 0 given by

tb(n) = − 1−rb+2

ln(rb+2) n
−1 r−n

b+2 [ 1 + η0,b(n) ] +O( ln(n)
n2−δ r

−n
b+2),

where ηs,b(n), s ≥ 0, is the oscillating function

ηs,b(n) = 2
∑
k≥1

<
(
Γ(s)(1− 2πik

ln(rb+2)) e
2πik

ln( n
b+4

(1−rb+2)(4rb+2−1))
ln(rb+2)

)
with ηs,b(n) = ηs,b(rb+2 n) and |η0,b(n)| < 8.646 828 . . . × 10−3.
Here, i2 = −1 and Γ(s) denotes the s-th derivative of the com-
plete gamma function.

Proof: (a) Inserting the explicit expression for Gh,b(z) presented in
(6) into (8), we obtain L1,0(z) = z, L2,0(z) = z2

1−z and Lh,h−1(z) = 0,
h ≥ 2. This proves the result for `h,b(n) = 〈zn;Lh,b(z)〉, (h, b) ∈
{(1, 0), (2, 0), (h, h− 1)}, h ≥ 2.

With respect to the general case `h,b(n), 0 ≤ b ≤ h − 2, h ≥ 3,
formula (8) and Theorem 3.2 tell us

`h,0(n) = Kh+1,1 z
−n
h+1,1 +O(r−n

1 ), h ≥ 3,

and additionally for b ≥ 1 by means of Theorem 3.1(b) and Remark
3.2(a)

`h,b(n) = [Kh+1,b+1 z
−n
h+1,b+1 +O((b+ 1)3 r−n

b+1)]

− [Kh+1,b z
−n
h+1,b +O(b3 r−n

b )]

− [Kh,b z
−n
h,b +O(b3 r−n

b )]

+ [Kh,b−1 z
−n
h,b−1 +O((b− 1)3 r−n

b−1)]

= Kh+1,b+1 z
−n
h+1,b+1 +O((b+ 1)3 r−n

b+1), 1 ≤ b ≤ h− 2, h ≥ 3.

(b) We obtain by the first three alternatives for `h,b(n) given in part
(a)

tb(n) =
∑

b<h≤n

`h,b(n) = δb,0 +
∑

max{3,b+2}≤h≤n

`h,b(n), (21)
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and further by the fourth alternative and by (K3,1, z3,1) = (1, 1) (cf.
Theorem 3.2 and Remark 3.1(a))

rn
b+2 tb(n) = Sb(n) +O(n (b+ 1)3 r−n

b+1 r
n
b+2), b ≥ 0, (22)

where

Sb(n) :=
∑

b+2≤h≤n

Kh+1,b+1 (r−1
b+2 zh+1,b+1)−n.

In order to compute an asymptotic equivalent to the sum appearing
on the right-hand side, we first approximate the quantity

(r−1
b+2 zh+1,b+1)−n.

Using the asymptotic expansion established in (18) and the expan-
sions of ln(1 + x) and ex, the standard “exp/log”-technique ([11, pp.
174-175 and p. 190]) yields, for all fixed ε > 0,

(r−1
b+2 zh+1,b+1)−n

=

 ζh,b(n) e−c
(1)
b+1

n rh−b−3
b+2 , if h ≥ b+ 3 + Nε,b(n);

O(e−nε
), if h < b+ 3 + Nε,b(n),

(23)

where

Nε,b(n) :=
ln(c

(1)
b+1

n1−ε)

ln(r−1
b+2

)
= (1− ε) log4(n)− 3 log4(b) +O(1), n→∞,

and

ζh,b(n) = 1 + κ
(1)
h,b r

2(h−b−3)
b+2 n+ κ

(2)
h,b r

3(h−b−3)
b+2 n+ κ

(3)
h,b r

4(h−b−3)
b+2 n2

+O( [ln(n)]3

n3−ε ),

with

κ
(1)
h,b := 1

2 ( [ c(1)
b+1 ]2 − 2 c(2)h+1,b+1) = − ζ

(0)
b

4 (b+4)2
[ ζ(0)

b (h− b) + ζ
(1)
b ],

κ
(2)
h,b := −1

3 ( [ c(1)
b+1 ]3 − 3 c(1)

b+1 c
(2)
h+1,b+1 + 3 c(3)h+1,b+1)

= − ζ
(0)
b

48 (b+4)3
[ 9 [ ζ(0)

b ]2 (h− b)2 + 18 ζ(0)
b ζ

(1)
b (h− b) + 4 ζ(2)

b ],

κ
(3)
h,b := 1

8 ( [c(1)
b+1 ]2 − 2 c(2)

h+1,b+1)
2 = 1

2 [κ(1)
h,b ]2.
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Here, c(1)
b , c(2)

h,b and c
(3)
h,b are the quantities defined in Remark 3.1(b)

and

ζ
(0)
b := 2(1− rb+2)(4 rb+2 − 1),

ζ
(1)
b := 10 r2b+2 + (3 b− 10) rb+2 − b+ 2,

ζ
(2)
b := 224 r4b+2 − 2 (b2 − 73 b+ 214)r3b+2 + 6 (3 b2 − 35 b+ 45) r2b+2

− (12 b2 − 87 b+ 65) rb+2 + (2 b− 1)(b− 5).

Now, taking the approximation (23) with ζh,b(n) = 1 +O( ln(n)
n1−ε ), we

find by means of the asymptotic expansion for Kh,b stated in (20)
that

Sb(n) = S
(1)
h,b(n) + S

(2)
h,b(n)− S

(3)
h,b(n),

where

S
(1)
h,b(n) =

∑
b+2≤h<b+3+Nb,ε(n)

Kh+1,b+1 (r−1
b+2 zh+1,b+1)−n

= O(e−nε
)

∑
b+2≤h<b+3+Nb,ε(n)

[ k(1)
b+1 r

h−b−3
b+2 +O((h− b) r2(h−b)

b+2 ) ]

︸ ︷︷ ︸
=O(1) since rb+2≤r2= 1

2

= O(e−nε
),

and

S
(2)
h,b(n) =

∑
h≥b+3+Nb,ε(n)

Kh+1,b+1 (r−1
b+2 zh+1,b+1)−n

= [ 1 +O( ln(n)
n1−ε ) ]

∑
h≥b+3+Nb,ε(n)

[ k(1)
b+1 r

h−b−3
b+2 +O((h− b) r2(h−b)

b+2 ) ]

× e−c
(1)
b+1

n rh−b−3
b+2

=
[
k

(1)
b+1

∑
h≥b+3+Nb,ε(n)

rh−b−3
b+2 e−c

(1)
b+1

n rh−b−3
b+2

]
+O( ln(n)

n2−2 ε )

= k
(1)
b+1

[ ∑
h≥1

rh−b−3
b+2 e−c

(1)
b+1

n rh−b−3
b+2

−
∑

1≤h<b+3+Nb,ε(n)

rh−b−3
b+2 e−c

(1)
b+1

n rh−b−3
b+2︸ ︷︷ ︸

=O(e−nε )

]
+O( ln(n)

n2−2 ε )
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= k
(1)
b+1

∑
h≥1

rh−b−3
b+2 e−c

(1)
b+1

n rh−b−3
b+2 +O( ln(n)

n2−2 ε ),

and

S
(3)
h,b(n) =

∑
h>n

Kh+1,b+1 (r−1
b+2 zh+1,b+1)−n

= [ 1 +O( ln(n)
n1−ε ) ]

∑
h>n

[ k(1)
b+1 r

h−b−3
b+2 +O((h− b) r2(h−b)

b+2 ) ]

× e−c
(1)
b+1

n rh−b−3
b+2︸ ︷︷ ︸

≤1

= O(r−n
b+2).

Thus, introducing the series

Us,q,y(n) :=
∑
h≥1

hs yh e−n q yh
, s ≥ 0, q > 0, y < 1, s, q, y fixed (24)

we have shown

Sb(n) = k
(1)
b+1 r

−b−3
b+2 U

0,c
(1)
b+1

r−b−3
b+2

,rb+2
(n) + Ω,

where Ω := O(e−nε
) +O( ln(n)

n2−2 ε ) +O(r−n
b+2) = O( ln(n)

n2−2 ε ). Therefore by
(22)

rn
b+2 tb(n) = k

(1)
b+1 r

−b−3
b+2 U

0,c
(1)
b+1

r−b−3
b+2

,rb+2
(n)

+ O( ln(n)
n2−2 ε ) +O(n (b+ 1)3 [ r−1

b+1 rb+2︸ ︷︷ ︸
≤α<1

]n)

︸ ︷︷ ︸
O(

ln(n)

n2−2 ε )

. (25)

It remains to derive an asymptotic equivalent to the series Us,q,y(n)
established in (24). This can be done by the Mellin-transform tech-
nique (cf. e.g. [3]) yielding a complex integral which can be computed
by an application of the residue theorem. In this way, an asymptotic
equivalent to a function very similar to Us,q,y(n) has already been
computed in [5, Lemma 2]. Almost the same computation carried
out there yields in the present case

Us,q,y(n) = − [− ln(n q) ]s

q [ ln(y) ]s+1 n
−1 [ Γ(1) + θ0,q,y(n) ]
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− s [− ln(n q) ]s−1

q [ ln(y) ]s+1 n−1 [ Γ′(1) + θ1,q,y(n) ]

−
(s
2

) [− ln(n q) ]s−2

q [ ln(y) ]s+1 n−1 [ Γ′′(1) + θ2,q,y(n) ]

+ O( [ ln(n)s−3 ]
n ), (26)

where θm,q,y is the oscillating function

θm,q,y(n) := 2
∑
k≥1

<
(
Γ(m)(1− 2πik

ln(y)) e
2πik

ln(n q)
ln(y)

)
, m ≥ 0,

with θm,q,y(n) = θm,q,y(y n). Note that θ
s,c

(1)
b+1

r−b−3
b+2

,rb+2
is identical

with the function ηs,b defined in the theorem. Now, inserting the
asymptotic expansion given in (26) with

(m, q, y) := (0, c(1)
b+1 r

−b−3
b+2 , rb+2)

into (25), we obtain the asymptotic result stated in part (b) of our
theorem by means of the explicit expressions for c(1)

b and k
(1)
b pre-

sented in (18) and Remark 3.2(b), respectively.
Finally, since the identity |Γ(1 + i t)|2 = πt

sinh(πt) is valid, we find
the upper bound

|η0,b(n)| ≤ 2
∑
k≥1

|Γ(1− 2πik
ln(rb+2))|

= η0,b := 2
∑
k≥1

[
2kπ2

ln(rb+2) sinh( 2kπ2

ln(rb+2)
)

] 1
2

(?)

≤ η0, 1
4

= 8.646 828 . . .× 10−3.

The estimate (?) is valid because rb+2 >
1
4 and x

sinh(x) is a strictly
monotonically increasing function for x < 0. 2

Remark 4.1. (a) The first few numerical values of the upper bound
η0,b for |η0,b(n)| introduced at the end of the proof of the preceding
theorem are summarized in Table 4.

(b) By the previous theorem we have, for fixed b and large n,

tb(n) ∼ αb ξ
n
b n

−1 [ 1 + η0,b], |η0,b(n)| < η0,b, η0,b(n) = η0,b(rb+2 n),

with α0 = 1
2 ln(2) ≥ αb = − 1−rb+2

ln(rb+2) = 3
8 ln(2)+

π2(3−2 ln(2))
16 [ln(2)]2

b−2+O(b−3),

b → ∞, and ξ0 = 2 ≤ ξb = r−1
b+2 = 4− 4π2 b−2 +O(b−3), b → ∞. In
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b 0 1 2 3 4 5

η0,b 9.884 450 4.506 932 1.504 155 2.656 699 3.665 929 4.489 543

× 10−6 × 10−4 × 10−3 × 10−3 × 10−3 × 10−3

b 10 20 30 40 50 100 ∞
η0,b 6.718 478 7.956 383 8.298 338 8.437 674 8.507 612 8.609 158 8.646 828

× 10−3 × 10−3 × 10−3 × 10−3 × 10−3 × 10−3 × 10−3

Table 4: The numerical values of the upper bound η0,b. The values
are not rounded to the sixth decimal place.

particular, we find for b ∈ {0, 1, 2, 3, 4} and for large n:

t0(n) ∼ 1
ln(2) n 2n−1 [ 1 + η0,0(n)], |η0,0(n)| < η0,0, η0,0(n) = η0,0(1

2 n);

t1(n) ∼ 1
2 ln(φ) n φ

2n−1 [ 1 + η0,1(n)], |η0,1(n)| < η0,1, η0,1(n)

= η0,1(φ−2 n); where φ is the ‘golden ratio’;

t2(n) ∼ 2
ln(3) n 3n−1 [ 1 + η0,2(n)], |η0,2(n)| < η0,2, η0,2(n) = η0,2(1

3 n);

t3(n) ∼ c−1
ln(c) n c

n−1 [ 1 + η0,3(n)], |η0,3(n)| < η0,3, η0,3(n)

= η0,3(c−1 n) with c := 4 cos2(π
7 );

t4(n) ∼ c−1
ln(c) n c

n−1 [ 1 + η0,4(n)], |η0,4(n)| < η0,4, η0,4(n)

= η0,4(c−1 n); with c := 2 +
√

2.

Note that the result with respect to t0(n) has already been proved in
[5]. The first few exact and asymptotic values for tb(n) are summa-
rized in Table 5.

(c) The oscillating functions ηs,b(n) introduced in the previous the-
orem are bounded for fixed s ≥ 1, too. We obtain |ηs,b(n)| < ηs,b :=
2
∑

k≥1 |Γ(s)(1− 2πik
ln(rb+2))|. The first few numerical values of the upper

bound ηs,b, s ∈ {1, 2}, are presented in Table 6. 3

Assuming that all b-balanced ordered trees with n nodes are equally
likely, the quotient ωh,b(n) := `h,b(n)

tb(n) is the probability that such a
tree has the height h. The s-th moment about the origin IE[Hs

b (n)]
of the random variable Hb(n) taking the value h with the probability
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b 0 1 2 3 10

n ex. as. ex. as. ex. as. ex. as. ex. as.

1 1 1.442 7

2 1 1.442 7

3 2 1.923 5

4 3 2.885 4 2 7.538 9

5 5 4.616 5 7
1.579 8

×101
2

2.946 9

×101

6 8 7.694 3 21
3.447 7

×101
11

7.378 3

×101
2

1.145 4

×102

7 14
1.319 0

×101
55

7.735 4

×101
46

1.898 7

×102
15

3.194 0

×102

8 24
2.308 3

×101
141

1.771 3

×102
165

4.982 9

×102
78

9.090 4

×102

9 43
4.103 6

×101
351

4.121 1

×102
552

1.327 7

×103
341

2.625 8

×103

10 77
7.386 5

×101
868

9.709 6

×102
1 763

3.581 7

×103
1 359

7.672 8

×103

20
3.867 4

×104

3.781 9

×104

7.402 7

×106

7.347 3

×106

9.327 6

×107

1.059 3

×108

3.001 3

×108

4.976 4

×108

8.585 1

×106

1.096 7

×1010

40
2.005 8

×1010

1.982 8

×1010

8.503 2

×1014

8.409 8

×1014

1.844 9

×1017

1.841 8

×1017

3.891 1

×1018

4.229 9

×1018

6.823 7

×1019

2.193 0

×1021

100
9.185 7

×1027

9.144 1

×1027

4.050 9

×1039

4.030 3

×1039

3.131 7

×1045

3.123 7

×1045

8.314 6

×1048

8.282 8

×1048

1.464 7

×1055

5.487 6

×1055

200
5.808 9

×1057

5.795 8

×1057

1.266 0

×1081

1.263 4

×1081

8.092 4

×1092

8.071 0

×1092

5.805 5

×1099

5.794 4

×1099

1.753 3

×10113

2.783 9

×10113

400
4.661 9

×10117

4.656 7

×10117

2.488 4

×10164

2.486 4

×10164

1.070 4

×10188

1.069 3

×10188

5.749 9

×10201

5.744 9

×10201

1.280 9

×10229

1.376 8

×10229

500
4.726 7

×10147

4.722 5

×10147

1.248 7

×10206

1.247 8

×10206

4.422 3

×10235

4.417 0

×10235

6.445 0

×10252

6.442 6

×10252

1.073 5

×10287

1.107 8

×10287

1000
7.732 8

×10297

7.729 3

×10297

6.067 4

×10414

6.065 3

×10414

8.012 2

×10473

8.010 6

×10473

1.778 4

×10508

1.777 2

×10508

5.585 1

×10576

5.588 6

×10576

2000
4.141 9

×10598

4.141 0

×10598

2.867 3

×10832

2.866 6

×10832

5.310 4

×10950

5.309 1

×10950

2.667 5

×101019

2.667 3

×101019

2.822 8

×101156

2.822 3

×101156

Table 5: The exact [ex.] and asymptotical [as.] values of the number
tb(n) of b-balanced ordered trees with n nodes. The values are not
rounded to the fourth decimal place.
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b 0 1 2 3 4 5

η1,b 2.645 078 1.081 682 3.446 692 5.938 005 8.070 653 9.785 936

× 10−5 × 10−3 × 10−3 × 10−3 × 10−3 × 10−3

η2,b 6.978 935 2.530 362 7.643 819 1.278 774 1.706 847 2.044 857

× 10−5 × 10−3 × 10−3 × 10−2 × 10−2 × 10−2

b 10 20 30 40 50 100 ∞
η1,b 1.434 160 1.682 802 1.751 019 1.778 761 1.792 674 1.812 861 1.820 346

× 10−2 × 10−2 × 10−2 × 10−2 × 10−2 × 10−2 × 10−2

η2,b 2.921 189 3.388 670 3.515 772 3.567 326 3.593 152 3.630 591 3.644 462

× 10−2 × 10−2 × 10−2 × 10−2 × 10−2 × 10−2 × 10−2

Table 6: The numerical values of the upper bound ηs,b, s ∈ {1, 2}.
The values are not rounded to the sixth decimal place.

ωh,b(n) is given by

IE[Hs
b (n)] :=

∑
b<h≤n

hs ωh,b(n) =
1

tb(n)

∑
b<h≤n

hs `h,b(n), s ≥ 1. (27)

The following lemma gives us information on the s-th moment IE[Hs
b (n)].

Lemma 4.1. Let rw := [4 cos2
(

π
w+2

)
]−1, w ∈ IN, and βb(n) :=

ln( n
b+4 (1− rb+2)(4 rb+2 − 1) r−b−3

b+2 ). We have for fixed b and large n

IE[Hs
b (n)] = (−1)s

[ ln(rb+2) ]s [βb(n) ]s

− s (−1)s

[ ln(rb+2) ]s [βb(n) ]s−1 Γ′(1)+η1,b(n)
1+η0,b(n)

+
(s
2

) (−1)s

[ln(rb+2)]s [βb(n) ]s−2 Γ′′(1)+η2,b(n)
1+η0,b(n) + O([ ln(n) ]s−3).

Here, ηs,b(n) is the oscillating function introduced in Theorem 4.1(b).

Proof: Using the definition of Us,q,y(n) given in (24), the result
presented in Theorem 4.1(a) and the approximation stated in (23)
together with the asymptotic expansion for Kh,b presented in (20),
we find by a similar lengthy computation as in the proof of Theorem
4.1(b)

rn
b+2

∑
b<h≤n

hs `h,b(n) = rn
b+2

[
δb,0 (δn,1 + 2s[ 1− δn,1] )

+
∑

max{3,b+2}≤h≤n

hs `h,b(n)
]
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=
∑

b+2≤h≤n

hsKh+1,b+1 (r−1
b+2 zh+1,b+1)−n

+O(ns+1 (b+ 1)3 r−n
b+1 r

n
b+2)

= k
(1)
b+1 r

−b−3
b+2 U

s,c
(1)
b+1

r−b−3
b+2

,rb+2
(n) +O( [ ln(n) ]s+1

n2−2ε ).

Hence, by (27)

IE[Hs
b (n)] = 1

tb(n) k
(1)
b+1 r

−n−b−3
b+2 U

s,c
(1)
b+1

r−b−3
b+2

,rb+2
(n) +O( [ ln(n) ]s+1

rn
b+2

tb(n) n2−2ε ).

Using Theorem 4.1(b) and the asymptotic expression for Us,q,y(n)
given in (26), a straightforward computation yields the stated result.
2

Following the classical paper [1], the average height of an ordered
tree with n nodes is asymptotically given by ∼

√
π n − 1

2 , n → ∞,
provided that all n-node ordered trees are equally likely; the variance
is asymptotically given by ∼ 1

3 π (π − 3)n+ 1
12 (π + 1), n → ∞ (see

[4]).
The following theorem presents analogous asymptotic equivalents

to the average height hb(n) := IE[Hb(n)] of a b-balanced ordered tree
with n nodes and to the variance σb(n)2 := IE[H2

b (n)]− (IE[Hb(n)])2.

Theorem 4.2. Assume that all b-balanced ordered trees with n nodes
are equally likely. The average height hb(n) of such a tree is asymp-
totically given by

hb(n) ∼ − 1
ln(rb+2) ln(n) + βb + χb(n), b fixed , n→∞.

Here, βb denotes the quantity βb := − 1
ln(rb+2) ln(eγ (1−rb+2)(4rb+2−1)

(b+4) rb+3
b+2

),

where γ is Euler’s constant, and χh,b(n) is a bounded oscillating
function with χb(n) = χb(rb+2 n) and |χb(n)| < C1 := 3.375 453 . . .×
10−2.

The variance is asymptotically given by σ2
b (n) ∼ π2

6 [ ln(rb+2) ]2
+

ϕb(n), where ϕb(n) is a bounded oscillating function with ϕb(n) =
ϕb(rb+2 n) and |ϕb(n)| < C2 := 1.595 432 . . .× 10−1.

Proof: Since Γ′(1) = −γ, the preceding lemma, with s = 1, tells us
that

hb(n) ∼ − 1
ln(rb+2) βb(n) + 1

ln(rb+2)
η1,b(n)−γ
η0,b(n)+1 .
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Rearranging the terms appearing on the right-hand side, we find the
asymptotic equivalent to hb(n) stated in the theorem, where

χb(n) :=
1

ln(rb+2)
η1,b(n) + γ η0,b(n)

1 + η0,b(n)
.

Since ηs,b(n) = ηs,b(rb+2 n), we also have χb(n) = χb(rb+2 n). More-
over, we find by Remark 4.1(a), (c)

|χb(n)| ≤ χb := 1
| ln(rb+2)| (1−|η0,b(n)|) (|η1,b(n)|+ γ |η0,b(n)|)

< 1
| ln(rb+2)| (1−η0,b)

(η1,b + γ η0,b)

< 1
ln(2) (1−η0,∞) (η1,∞ + γ η0,∞) = C1.

With respect to the variance, the preceding Lemma 4.1 with s ∈ {1, 2}
yields

σ2
b (n) ∼ 1

[ ln(rb+2) ]2
[Γ′′(1) + η0,b(n)

1 + η0,b(n)
−
(Γ′(1) + η1,b(n)

1 + η0,b(n)

)2]
=

π2

6 [ ln(rb+2) ]2
+ ϕb(n),

where ϕb(n) := [ η2,b(n)−π2

6
η0,b(n) ] [ 1+η0,b(n) ]+γ2 η0,b(n)+η1,b(n) [ 2 γ−η1,b(n) ]

[ ln(rb+2) ]2 [ 1+η0,b(n)]2
.

Here, we have used the equality Γ′′(1) = γ2 + π2

6 . Again, the relation
ϕb(n) = ϕb(rb+2 n) is fulfilled and we obtain by Remark 4.1(a), (c)

|ϕb(n)| ≤ ϕb := 1
[ ln(rb+2) ]2 [ 1−|η0,b(n)|]2

× [(|η2,b(n)|+ π2

6 |η0,b(n)|)(1 + |η0,b(n)|)
+ γ2 |η0,b(n)|+ |η1,b(n)| (2 γ + |η1,b(n)|)]

< 1
[ ln(2) ]2 [ 1−η0,∞]2

[(η2,∞ + π2

6 η0,∞)(1 + η0,∞)

+ γ2 η0,∞ + η1,∞ (2γ + η1,∞)] = C2.

This completes the proof. 2

Remark 4.2. (a) The first few numerical values of the quantity βb

appearing in the preceding theorem are summarized in Table 7. It is
easily verified that βb = b− 3

ln(4) ln(b)+ γ+ln(48 π2)
ln(4) − 6

ln(2) b
−1+O( ln(b)

b2
),

b→∞.
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b 0 1 2 3 4 5

βb .832 746 1.763 614 2.525 404 3.284 408 4.058 874 4.850 579

b 10 20 30 40 50 100

βb 9.015 213 17.924 081 27.195 403 36.649 051 56.212 250 94.804 514

Table 7: The numerical values for βb. The values are not rounded to
the sixth decimal place.

b 0 1 2 3 4 5

χb 4.639 211 1.394 848 3.933 521 6.360 903 8.326 226 9.852 836

× 10−5 × 10−3 × 10−3 × 10−3 × 10−3 × 10−3

ϕb 2.495 175 5.049 852 1.215 409 1.810 486 2.257 247 2.588 387

× 10−4 × 10−3 × 10−2 × 10−2 × 10−2 × 10−2

b 10 20 30 40 50 100 ∞
χb 1.373 470 1.577 109 1.632 140 1.654 424 1.665 579 1.681 741 1.687 726

× 10−2 × 10−2 × 10−2 × 10−2 × 10−2 × 10−2 × 10−2

ϕb 3.383 205 3.778 771 3.883 567 3.925 765 3.946 839 3.977 313 3.988 581

× 10−2 × 10−2 × 10−2 × 10−2 × 10−2 × 10−2 × 10−2

Table 8: The numerical values of the amplitudes χb and ϕb. The
values are not rounded to the sixth decimal place.

(b) The first few numerical values for the upper bound χb (resp. ϕb)
of the amplitude |χb(n)| (resp. |ϕb(n)|) of the oscillating functions
appearing in the proof of the previous theorem are given in Table 8.
(c) The first few exact and asymptotic values of the average height
hb(n) and of the variance σ2

b (n) are summarized in Table 9.

5 Concluding Remarks

In this paper we have presented a detailed average case analysis of
b-balanced ordered n-node trees for fixed b ≥ 0 and large n. However,
the computations and results presented raise some questions:

• What is the average behaviour of b-balanced trees when b is not
assumed to be fixed?

• For the expected height of b-balanced ordered trees with n ≥
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b 0 1 2 3 10

n ex. as. ex. as. ex. as. ex. as. ex. as.

1 1.000 0 0.832 7
0 .000 0 3 .423 8

2 2.000 0 1.832 7
0 .000 0 3 .432 8

3 2.500 0 2.417 7
0 .250 0 3 .423 5

4 3.000 0 2.832 7 3.000 0 3.205 3
0 .666 6 3 .423 8 0 .000 0 1 .773 4

5 3.400 0 3.154 7 3.285 7 3.436 1 4.000 0 3.993 7
1 .040 0 3 .423 6 0 .204 0 1 .772 9 0 .000 0 1 .354 6

6 3.750 0 3.417 7 3.523 8 3.624 2 4.181 8 4.156 5 5.000 0 4.811 7
1 .437 5 3 .423 5 0 .439 9 1 .776 7 0 .148 7 1 .356 5 0 .000 0 1 .175 5

7 4.000 0 3.640 0 3.727 2 3.784 2 4.326 0 4.293 8 5.133 3 4.939 9
1 .714 2 3 .423 7 0 .671 0 1 .779 3 0 .306 7 1 .363 3 0 .115 5 1 .173 5

8 4.208 3 3.832 7 3.907 8 3.923 8 4.442 4 4.414 4 5.243 5 5.049 1
1 .998 2 3 .423 8 0 .863 8 1 .779 0 0 .452 7 1 .369 1 0 .235 5 1 .178 2

9 4.372 0 4.002 6 4.062 6 4.047 2 4.545 2 4.522 4 5.331 3 5.145 8
2 .187 1 3 .423 8 1 .021 7 1 .776 7 0 .581 2 1 .371 4 0 .344 7 1 .185 5

10 4.506 4 4.154 7 4.201 6 4.157 3 4.636 4 4.620 2 5.405 4 5.223 6
2 .353 8 3 .423 6 1 .144 8 1 .774 3 0 .690 8 1 .370 3 0 .441 2 1 .192 3

20 5.388 6 5.154 7 5.000 5 4.875 5 5.286 3 5.250 2 5.867 0 5.833 8 12.249 7 11.254 1
2 .857 5 3 .423 6 1 .504 8 1 .779 4 1 .174 6 1 .360 9 0 .931 6 1 .174 6 0 .280 0 0 .943 3

40 6.300 5 6.154 7 5.669 2 5.595 5 5.936 3 5.886 8 6.438 8 6.412 7 12.506 7 11.780 0
3 .056 1 3 .423 6 1 .642 9 1 .776 1 1 .257 8 1 .358 0 1 .132 3 1 .198 5 0 .604 5 0 .902 4

100 7.551 9 7.476 6 6.585 2 6.547 9 6.748 9 6.718 4 7.202 6 7.189 3 12.744 6 12.474 1
3 .228 1 3 .423 5 1 .702 9 1 .775 0 1 .316 1 1 .366 6 1 .169 7 1 .189 0 0 .814 7 0 .919 5

200 8.521 1 8.476 6 7.294 1 7.270 0 7.358 9 7.344 7 7.800 5 7.789 2 13.029 3 12.971 0
3 .305 9 3 .423 5 1 .723 6 1 .772 5 1 .342 1 1 .366 0 1 .157 1 1 .176 7 0 .945 7 0 .927 4

400 9.502 3 9.476 6 8.003 2 7.989 1 7.992 6 7.982 5 8.372 8 8.366 6 13.479 0 13.513 6
3 .354 5 3 .423 5 1 .750 8 1 .777 9 1 .336 1 1 .354 8 1 .189 5 1 .198 2 0 .978 6 0 .914 1

500 9.819 9 9.798 4 8.234 0 8.222 2 8.189 0 8.181 7 8.568 6 8.562 4 13.643 5 13.678 7
3 .366 2 3 .423 8 1 .749 2 1 .773 1 1 .343 8 1 .357 5 1 .183 6 1 .192 9 0 .966 0 0 .899 5

1000 10.810 6 10.798 4 8.947 3 8.940 8 8.821 2 8.816 1 9.148 1 9.145 5 14.163 4 14.178 5
3 .390 9 3 .423 8 1 .766 2 1 .778 7 1 .352 7 1 .361 5 1 .181 0 1 .185 5 0 .965 1 0 .944 9

2000 11.805 2 11.798 4 9.663 4 9.660 0 9.443 6 9.440 3 9.746 3 9.744 1 14.704 4 14.714 5
3 .405 3 3 .423 8 1 .770 7 1 .777 5 1 .346 8 1 .369 9 1 .175 8 1 .179 5 0 .917 1 0 .899 3

o o o o o
3 .423 71 1 .775 88 1 .362 88 1 .185 93 0 .922 26
+ϕ0(n) +ϕ1(n) +ϕ2(n) +ϕ3(n) +ϕ10(n)

Table 9: The exact [ex.] and asymptotical [as.] values of the aver-
age height hb(n) and of the variance σ2

b (n). In each entry the upper
number and lower number (in italics) indicate hb(n) and σ2

b (n), re-
spectively. The upper bounds ϕb of the amplitudes |ϕb(n)| are given
in Table 8. The values are not rounded to the fourth decimal place.

3
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3 nodes the parameter b ∈ IN0 controls the transition from
all totally balanced n-node trees (b = 0) to all ordered trees
with n nodes (b ≤ n − 3). In the course of this transition, the
expected height changes from Θ(ld(n)) (see [5]) to Θ(

√
n ) (see

[1]). How could we characterize this transition with respect to
b as a function in n?

• Another interesting problem is the computation of the aver-
age value b(n) such that an ordered tree with n nodes is b(n)-
balanced assuming a uniform distribution of all ordered n-node
trees. [It is easy to show that for uniformly distributed ordered
trees with n nodes and fixed height h a random tree is asymp-
totically bh-balanced with bh ∼ h − 2, n → ∞; the variance is
asymptotically o(1), n→∞.]

• The distribution of the heights in ordered trees obeys a limiting
theta distribution (see [2], [4]). What is the limit law for the
height of b-balanced ordered trees?

• It remains an open problem whether the polynomials Ph,k(z)
introduced in Lemma 3.2 only have simple roots. There is nu-
merical evidence that this is indeed the case but so far the
author was not able to prove this conjecture.

• The considerations presented in this paper can be extended
to other classes of ordered trees, at least in a formal sense.
Following [10], the generating function Y (z) :=

∑
n≥1 t(n) zn

of the number t(n) of all trees with n nodes appearing in a
simply generated family of trees satisfies the functional equation
Y (z) := z φ(Y (z)), where φ(y) :=

∑
λ≥0 cλ y

λ with c0 = 1,
cλ ∈ IN0 for λ ∈ IN, and cλ ∈ IN for some λ ∈ IN\{1}. This
definition includes all families of unlabelled trees defined by
restrictions on the set of the allowed node degrees such as t-
ary trees (φ(y) := 1 + yt, t ∈ IN\{1}), extended binary trees
(φ(y) := 1 + y2), binary trees (φ(y) := (1 + y)2), unary-binary
trees (φ(y) := 1 + y + y2), unbalanced 2-3-trees (φ(y) := 1 +
y2 + y3) or ordered trees (φ(y) := (1− y)−1) considered in this
paper.
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It is not hard to see that the generating function Ah(z, y) of the
number of all 0-balanced simply generated trees with n nodes,
m leaves and height h (cf. formula (1)) is recursively given
by Ah+1(z, y) = z (φ(Ah(z, y)) − 1 ) with the initial condition
A1(z, y) = z y. Since the generating function Fk(z) of the num-
ber of all simply generated trees with n nodes and height less
than or equal to k (cf. formula (3)) satisfies the recurrence (see
[2]) Fk+1(z) = z φ(Fk(z)) with the initial condition F0(z) = 0,
the generating functions Th,b(z), Gh,b(z) and therefore Lh,b(z)
introduced in the formulae (2), (6) and (8) are defined in a
recursive way for b-balanced simply generated trees.

For ordered trees, the recurrences for Ah(z, y) and Fk(z) have
the explicit solutions presented in (1) and (3), respectively;
for t-ary trees, the recurrence for Ah(z, y) has the solution

Ah(z, y) = z
th−1
t−1 yth−1

, but there does not exist an explicit ex-
pression for Fk(z). Generally, explicit solutions for Ah(z, y) and
Fk(z) are not available and we only have recursive formulae.
Thus, in order to obtain enumeration and distribution results
in the case of b-balanced simply generated trees, more powerful
and refined methods must be developed.
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