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Abstract. An ordered tree with height h is b-balanced if all its
leaves have a level ¢ with h — b < £ < h, where at least one leaf
has a level equal to h — b. For large n, we shall compute asymptotic
equivalents to the number of all b-balanced ordered trees with n nodes
and of all such trees with height A. Furthermore, assuming that all
b-balanced ordered trees with n nodes are equally likely, we shall
determine the exact asymptotic behaviour of the average height of
such a tree together with the variance.

1 Introduction

The concept of balanced trees such as AVIL-trees, B-trees, or 2-3-
trees is used in many types of data structures appearing in sorting
and searching algorithms. Although the algorithmic importance of
such trees is out of the question, only few results are known on the
enumeration of such trees or on the exact average behaviour of impor-
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Figure 1: All b-balanced ordered trees with less than six nodes.

tant parameters defined on these trees. A conspicuous general result
in the relevant sense has been presented in [12] for balanced 2-3-trees
with a specified number of leaves. This enumeration result also in-
cludes the counting of a variety of balanced trees such as B-trees with
a specified order.

In this article we shall continue with the study of the class of
0-balanced ordered trees introduced in [5] by extending the notion
‘0-balanced’: Given an ordered tree T with the set of leaves L, such
a tree is called b-balanced, b € INg, if

max{lev(x)|z € L} — min{lev(z)|x € L} = b;

here, the level fev(x) of a node x is equal to the number of nodes
appearing on the simple path from the root to the node z includ-
ing the root and node z. Thus, an ordered tree with height h :=
max{lev(z)|x € L} is b-balanced if all its leaves have a level ¢ with
h —b < ¢ < h, where at least one leaf has the level equal to h — b.
All b-balanced ordered trees with less than six nodes are drawn in
Figure 1. Clearly, b+ 2 < h < n + d9, n > 2, where ¢, ; denotes
KRONECKER’s delta. Note that all leaves appearing in a 0-balanced
ordered tree have the same level. The parameter b € INy appearing
in the definition of a b-balanced ordered tree with n > 3 nodes obvi-
ously describes the transition from all totally balanced n-node trees
characterized by b = 0 to all (unbalanced) ordered trees with n nodes
characterized by b <n — 3.

The 0-balanced ordered trees are a fundamental constructive de-
vice in combinatorial considerations on enumerating specified nodes
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appearing in block code trees [6] or in other classes of trees [8, Re-
mark 1]. The enumeration of various types of 0-balanced ordered
trees together with an average case analysis of important parame-
ters defined on these trees (e.g. the height; the path length; the
root-degree) have been presented in [5]; aspects with respect to the
generation of such trees have been discussed in [7, Section 3.8]. In
the former paper, the author has been successful in proving that the
number of all 0-balanced n-node ordered trees of height h is given by
FXSD, 2 < h < n, where Fép) is the pth order FIBONACCI number
defined by Fép) = dpp—1 for 0 < n < p, and by F,sp) =Y 1<k<p Fffi)k
for n > p ([9, p. 77]). This result essentially reflects a one-to-one
correspondence between (-balanced n-node ordered trees of height h
and the ordered partitions of the integer n — h ([7, Section 3]; [9, p.
287]). Assuming that all 0-balanced n-node ordered trees are equally
likely, further detailed considerations (cf. [5]) imply that

— the number to(n) of all 0-balanced ordered trees with n nodes
is asymptotically given by tg(n) ~ 2"~ 1n=1 [1 4+ f(n)], n — oc;

— the average height hy(n) of a 0-balanced ordered tree with n
nodes has the asymptotic behaviour hy(n) ~ logy(n) + ﬁ +
x(n) with the variance o3(n) ~ W + ¢(n), n — oc.
Here, v = .577215...1is EULER’s constant and h(n), h € {f, x, ¢}, are
bounded oscillating functions with a very small amplitude satisfying
the equality h(n) = h(2n).

In this paper we shall generalize these results to b-balanced n-
node ordered trees with b > 1. For large n, we shall first derive an
asymptotic equivalent to the number of all b-balanced ordered trees
of height h with n nodes (Theorem 4.1(a)). Then, assuming that all
b-balanced ordered trees with n nodes are equally likely, we shall find
for fixed b that

— the number ¢;(n) of all b-balanced ordered trees with n nodes is

1— o
1n(1;lf22) oot [L 4 nop(n)],

asymptotically given by ty(n) ~ —
n — 00 (Theorem 4.1(b));

— the average height hy(n) of a b-balanced ordered tree with n
nodes has the asymptotic behaviour
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hy(n) ~ — ) {m(n) tn (e'y(lrb+2)(47;zrg21))] ()

1
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with the variance o (n) ~ W+Lpb(n), n — oo (Theorem
4.2).
-1
Here, r, = [4 cos? (wiw)} and hy(n), hy € {nop, Xxp,Pp}, are
bounded oscillating functions with hy(n) = hy(rpi2n) possessing a
small amplitude not exceeding .04.

The general structure of this paper is as follows: In Section 2
we shall present basic enumeration results with respect to b-balanced
ordered trees of height h with n nodes. It turns out that we have to
focus our further considerations on a specific rational function which
is discussed in Section 3. The determination of the dominant poles of
this function (Subsection 3.2) requires subtle analytical investigations
using some technical lemmata presented in Subsection 3.1. Exploit-
ing all this information, we are able to compute the exact asymptotic
behaviour of the TAYLOR coefficients of the rational function in dis-
cussion by standard methods (Subsection 3.3). Finally in Section 4,
we shall use this result in order to prove the asymptotical relations
for ¢,(n) and hy(n) pointed out above.

2 Basic Enumeration Results

We begin our study by reviewing some known results. Let ap(n, m)
be the number of all 0-balanced ordered trees with n nodes, m leaves
and height A, and let

An(z,y) =) > an(n,m)2"y™

n>0m>0

be the corresponding generating function. It is well known ([5]) that
Ap(z,y) is explicitly given by
yz"(1 - 2)

= > 1.
Ah(z7y) 1—Z(y+1)—|—yzh’ h_ 1 (1)

Now, let t;(n) be the number of all n-node ordered trees of height
less than or equal to h with leaves appearing at a level greater than
or equal to h — b. We obtain such a tree
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— by taking a 0O-balanced ordered tree 7y of height h — b with ng
nodes and mg leaves £;, 1 <1i < myg, and

— by replacing the leaves ¢; by ordered trees 7; with n; nodes and
height less than or equal to b+1 such that no+3>21<;<,,, 7 = n.

Hence, the generating function of the numbers ¢j, ,(n) is given by
Th7b(z) = Z tth(n)Zn = Ah_b(z, Z_lFb+1(Z)), 0<b<h, (2)
n>0

where Fj(z) is the generating function of the number ¢y(n) of all
ordered trees with n nodes and height less than or equal to k. The
classical paper [1] tells us that

L n)z" = pk(z)
Filz) = n%;)(bk( ) Pri1(2)’ )
where
P = gl e@) = (-2, ()

€(z) = V1—-4z, k>0,
is the kth FiBoNAcCcCI polynomial satisfying the linear recurrence

po(z) =0, p1(z) =1, pr(2) = pr-1(2) — zpe—2(2), k=2.  (5)
Now, inserting (1) and (3) into (2) and applying (5) to the denom-
inator of the resulting expression, we obtain T} 4(2) = Ghry1p41(2),
where
h—b

z 1-=2 z

ot = 20l
Po+3(2) + 2" py(2)
Note that Gj(z) = 0 and we set G (2) := 0 for b < 0. Introduc-
ing the number dj ;(n) of all n-node ordered trees of height h with

,1<b<h. (6)

leaves appearing at a level greater than or equal to h — b, a similar
construction as presented above for the generating function T}, ;(2)
immediately yields

Dpp(z) = Z dpp(n)z"
n>0
= Anp(z,27 Fyya(2) — Apop(z, 27 Fy(2))
Thp(2) = Th-15-1(2)
= Ghy1p41(2) = Grp(2), 0<b < h. (7)
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b=0 b=1
n\h|f1 2 3 4 5 6 7 8 9 103 4 5 6 7 8 9
1 1
2 1
3 1 1
4 1 1 1 2
5 1 2 1 1 5 2
6 1 3 2 1 1 12 7 2
7 1 5 4 2 1 1 26 20 7 2
8 1 8 7 4 2 1 1 55 55 22 7 2
9 1 13 13 8 4 2 1 1 114 143 63 22 7 2
10 1 21 24 15 8 4 2 1 1 |234 363 175 65 22 7 2
b=2 b=3 b=4 b=5|b=6
n\h|| 4 5 6 7 8|5 6 7 8|6 7 8|7 8 8
5 2
6 9 2 2
7 33 11 2 13 2 2
8 107 45 11 2 61 15 2 17 2 2
9 326 166 47 11 2 |247 77 15 2 (97 19 2 |21 2 2

Table 1: The number ¢, ;(n) of all b-balanced ordered trees with
n < 9 nodes and height h.

Obviously, the quantity ¢j,p(n) := dpp(n) — dpp—1(n), 0 < b < h,
is the number of all n-node ordered trees of height h with leaves
appearing at a level greater than or equal to h — b such that at least
one leaf has the level h — b. Hence, £j,(n) is the number of all b-
balanced ordered trees of height h with n nodes and the corresponding
generating function is given by

Lup(2) = D lhp(n)2" = Dpy(2) — Dppy-1(2)
n>0

= [Gh16+1(2) = Gri16(2)] = [Grp(2) — Grp-1(2)], (8)

where G}, 5(2) is explicitly given by (6). The first few values of £}, ,(n)
are summarized in Table 1. Clearly, since po(z) = 0, p1(z) = 1
and ps(z) = 1 — (s —2)z, 2 < s < 4, we rediscover the known
result Lpo(2) = Gry1,1(2) = Ap(z,1) (see [5]). Using (5), another
straightforward computation yields the equalities Gpp—2(2) + z =

Ghph-1(z) = 2 172);7(12(;) = Fj_1(2). These relations together with (8)
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immediately imply the evident equality Ly, ,—1(2) = 0 because a leaf
cannot appear at level one of the root. Furthermore, we find

8
Z Lh,b(z) (Z) Gh—f—l,h—l(Z)*Gh,h_g(z)

0<b<h—2
_ o) ()
Pht1(2) p(z)

(:) Fh(z)—Fh_l(Z’), (9)

because all b-balanced ordered trees with 0 < b < h — 2, are all
ordered trees of height h.

In summary, an inspection of (7) and (8) shows that we first
have to consider the enumerator G, ,(2), 0 < b < h, defined in (6)
more detailed in order to derive explicit asymptotical enumeration
and distribution results.

3 The Enumerator Gy (2)

3.1 Technical Lemmata

In this subsection we shall present some basic results on the Fi-
BONACCI polynomials pg(z) introduced in (5) and on the polynomial
Pi(2) = pres(2) + 2" % pp(2) appearing in the denominator of the
enumerator G, (2) given in (6).

Lemma 3.1. Let a,(j) := 4cos? (%) and Ty = [api2(1)]7
(w,j) € IN2. The FIBONACCI polynomials py(z) fulfill the following
properties:
(a) The polynomial py(z) has the [$(k — 1) simple roots ry_o =
()] 7'< [an()] " < law(G+D)]7 2 <5 < [3(k=1)], k > 0.
(b) The polynomial pi(z) has the representation

()= [ (—a(i)2), k>o0.

1<5< [ 5(k—1)]
(c) The derivatives p,(:)([él cos?(v)]71), 0 < s <3, k>0, are given
by

_ 9 (v)
2k=1 gin25T1(v) cosk—25—1(v)’

P ([4cos?(v)] 1)
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where

ﬁLo] (v) = sin(kv),

o) = —k sin((k —2)v) + (k — 2) sin(kv),

I2(0) = k(k— 1) sin((k—4)v) — 2k (k — 4) sin((k — 2) )
4 (k—3) (k — 4) sin(kv),

Iw) = —k(k—1)(k—2) sin((k — 6)v)

+ 3k (k — 1) (k — 6) sin((k — 4) v)
— 3k (k —5) (k — 6)sin((k — 2) v)
+ (k —4) (k — 5) (k — 6) sin(k v).

(d) The polynomial pi(z) and its derivatives take the following spe-
cial values:

1(k-2)

pe(rh—a) = =172, . pr(re) =71¢ ,
1 1
Lk—1) L(k=3)
pr(rr—s) = =123 pr(ree)= A —rep) rgyy
Lk—1)
pk‘(rk—l) = 7";,1 ’
1 1
,  (k-2) 3(k-2) _ 2(k=1)rp_1—k 5(k=3)
Pe(re—a) = =1 Tema o Pe(re—1) = = 55— et
1 1
/ —2(k=1) (k-1 _ (Bk=2)rp—k 3(k—4)
PR(re=3) = 51 Thes > PR(e) =" T
1 2
, " 1k-2) _ —2(k=1)r2, 42 (2k—1)rpy1—k
Pl (rk—2) = Trp_o—1"k-2 Pi(rke1) = Trpi—1
1
o 1 (k—5)
Th+1
1
I . 2(2k—5)rp_o—k+1 5(k—4)
Pi(rh—2) = =k Urpa-12  Th—2
" _ A(k=3)(k-1) rp  —(18K% =37 k+12) 17 +k (Tk—=13) 7)1 —k (k—1)
pk(rk-i-l) = (Argr1i—1)2
(k-7
12 (k2 =Tk+11) 72 _,—(k—1) (Tk—26) rp_o+(k—1) (k—2) L(k—6)
/1 _ k—2 2
Py (rk—2) = —k (Arp_2—1)3 Tk—2 -

(e) The polynomial py(z), k > 3, is strictly monotonically decreas-
ing in the interval [0,7,_s| and the inequality pr(z) > 0 holds
for all z in that interval.
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(f) The polynomial pi.(z), k > 5, is strictly monotonically increas-
ing in the interval [ri41,7x) and the inequality p)(z) < 0 holds
for all z in that interval.

(g9) The inequality pj(z) > 0 holds for all z € [ri41,7i], kK > 5.

Proof: (a), (b): These relations are well known (see [1]). They
reflect corresponding relationships fulfilled by the CHEBYSHEV poly-
nomials Uj(z) of the second kind because the identity

1
pr(z) = 22D, (

WeL

N

holds.

(c): The explicit expression for py([4 cos?(v)]~!) can be found in [1],
too. It follows from (4) by setting z := [4 cos?(v)]~! and by using Eu-

LER’s formula e** = cos(z) + i sin(z), i2 := —1. The expressions for
the higher derivatives are obtained by taking successively the deriva-

tives on both sides of the equation for py([4 cos?(v)]™1).

(d): Choosing z € {rs|k —4 < s < k+ 1} in part (c) and applying

elementary trigonometric relations as well as the identity cos(kLH) =
1

! 7“,; 2, the explicit expressions for the special values can be derived

2
by a straightforward lengthy computation.
(e): Taking the derivative on both sides of the equality presented in

(b), we find

pe(z)=— Y. al)) I  a-aa).
1<5< 3 (k-1)) 1AL (k1))
A#j

For z € [0,75_2], we have 1 — ag(\) z > 1 — 3’28‘3 > 0 (resp. = 0) if

A > 2 (resp. A =1). Hence, pj(z) < 0 for 0 < z < rp_o, and pg(z)
is strictly monotonically decreasing in [0, 75_o[. Therefore, we have
1 > pp(0) > pr(2) > pr(re—2) = 0.

(f), (g): First, we shall show that pj(z), k& > 5, is positive for
z € [rg41,7%). Instead of considering the function pj(z) for z €

[Tk+1,7k], we change the variable and consider the function fi(v) :=
Pl ([4cos?(v)] ™) for v € Ty, := (753> 7y2)- Using part (c) with s = 2,

we obtain fi(v) = ﬁf] (v) [2F71 sin®(v) cos* =5 (v)] 7!, Since sin(v)
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(resp. cos(v)) is positive and monotonically increasing (resp. de-
creasing) in Zj, k > 5, the denominator 2*~! sin®(v) cos*?(v) is
positive. Using elementary trigonometric formulae, the nominator
195} (v) can be transformed into

P w) = —dk(k - 1) sin®(v) sin((k — 2)v)
—12k sin(v) cos((k — 1) v) 4+ 12 sin(k v).

Now, a moment’s reflection shows that the functions sin(k v), sin((k—
2)v) and cos((k — 1) v) are monotonically decreasing in Zy, k > 7,
and that sin(k v) and sin((k — 2) v) (resp. cos((k—1)wv)) are positive
(resp. negative) in that interval. Therefore,

ﬁgf} (v) > —4k(k—1)sin (k+2) Sln(ﬁJrg )

1)
12k sm(%) cos(k+3 )+ 12 sm(kJr2 )
= —4k( ) sin (k+2) Sln(k+3)+12k81n(k+3)

(

— 24k sin(75) sin (k+3) +12 sm(k+2)
Using the inequality sin(z) < o — $2® + 1352°, @ > 0, for the factor

k+3) and the inequalities = — %x?’ < sin(z) < @, x > 0, for the
other factors, we further obtain by a lengthy computation

2 T i
I W) > s (c+ (k—12) > ¢ k),
0<5<7

sin(

where c and ¢;, 0 < j <7, are positive constants given by

co = —2 (4812575 — 8662 500 m* + 652 327 128 72 — 5893 959 168),
c1 = —81257% + 1444 500 7* — 108 716 040 72 + 982291 536,

ey = —625 75 4+ 120500 7% — 9051216 72 + 81 811 296,

c3 =4(2375 1 — 186 543 72 + 1695 546),

cy =4 (1257 — 14472 7% + 137016),

cs = —12(299 7% — 3360),

cg = —24 (5712 — 96),

C7 = 72,

c = —600(19257% — 346 500 74 4 26 093 124 w2 — 235 758 600).

Hence, 1951 (v) > 0 for k > 12. For 5 < k < 11, we find directly the
explicit expressions

W) = 32sin’(v),
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Vg (v) = 192 cos(v) sin®(v),

19[72] (v) = 96[4 cos(2v) + 3] sin®(v),

1982] (v) = 1285 cos(3v) + 9cos(v)] sin®(v),

195[,2] (v) = 192[5 cos(4v) + 10 cos(2v) + 6] sin’(v),

19[12(} (v) = 1927 cos(5v) + 15 cos(3v) + 20 cos(v)] sin’(v),

19[2 (v) = 64[28 cos(6v) + 63 cos(4v) + 90 cos(2v) 4 50] sin®(v).

Evidently, the function ﬁf] (v), 5 < k < 11, takes no negative value
in the interval Z; because the arguments appearing in the sin- and

cos-functions are less than 7. It is easily verified that 195] (v) >

2
I (g) > 0,5 <k < 11.
In summary, we have shown that p}(z) > 0 for all z € [ry41, 7],
k > 5. Hence, pj(z) is strictly monotonically increasing in that in-
terval and we have pj.(z) < p}.(rr). The value of pj (ry) given in part
(d) is clearly negative for k > 3. O

Lemma 3.2. Let o, (j) := 4 cos? (W), Tw = [wra(1)] 7L, (w,j) €
IN?, py(2) be the FIBONACCI polynomial defined in (4) and Py (2) :=
Pre+3(2) + 2" Fpi(2).

(a) The polynomial Pp;(z), h > k+ 1, k > 2, is strictly mono-
tonically decreasing in [rg+1,7x] and the inequality Py ,(z) <

1
_ 1k . .
_7(2,3:5? rg <0 holds for all z in that interval.

(b) The inequality Py (z) > 0 holds for all z € [rgy1,7%], B >
k14050, k> 1.

Proof: (a): Since the relations pj(z) = —(k — 2), 2 < k < 4, (resp.
pi(2) < 0 for z € [rg41,7%], B > 5) hold by the definition of py(z)
(resp. by Lemma 3.1(f)), we have P ;(2) < 7 (2) := pj,3(2) + (h—
k) 2" F=1pp(2) for rpy1 < 2 < g Instead of considering the function
Mhi(2) for z € [ry41,7%], we change the variable and deal with the
function 7y, (v) 1= Gk ([4 cos®(v)] 1) for v € Ty, == (73 el k> 2
Using Lemma 3.1(c) with s € {0, 1}, we find

(V) = 2k+2 sfrﬁlg(]z)()v)cosk(v)’ (10)
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where

onk(v) = —(k+3)sin((k+1)v)+ (k+1) sin((k + 3)v)
+ 4 (h — k) [4cos?(v)]~PFY sin(kv) sin(2 v) sin(v).

Obviously, the denominator appearing in (10) is positive for v € Zy,
k > 2, because 0 < v < 7 < 5. By the monotonicity of the functions
sin(v) and cos(v) in Zy, we obtain

ok+2 sin®(v) cosk(v) > k2 gind(.I) COS]‘C(LZ)
3
2

3
= S@rpp—DIr e 2. (1)

Next, let us turn to the nominator ¢y ,(v) appearing in (10). It is
easily verified that the functions sin((k + 1) v) and sin((k + 3) v),
k > 2, and sin(kv), k > 3, are monotonically decreasing in Zj; the
functions sin(v), sin(2v) and cos~2(v) are monotonically increasing
in Z;,. Hence, we obtain

Pha(v) < =5 Sin(?jf) 4 (h— )[4cos N (h—3) sinz(g) sin(7%)
= ﬁ(_5+2h 5)3—%<—sin(%), (12)

and for k£ > 3
Ghi(v) < —(k +3) sin(jE5 )
+ 4(h—k) [Acos®(25)] "D sin(FEo 7) sin(25) sin(:25)

= sin(z) {_ (k +3) + 4 (h — k) sin(2F5) sin(Z5) rp ™" 1}
<1 <1

< = (k- 1) sin() < — (k- 1) sin(;%5), (13)

because (h — k) Z F < ry for h > k+ 1. Now, combining (10),
(11), (12) and (13), we find the inequality stated in part (a) of the
lemma implying that P ;(z) is strictly monotonically decreasing in
the interval [rgy1,7x].

(b) Using additionally Lemma 3.1(g), the stated inequality can be
proved in a similar way. The details are left to the reader. O

Lemma 3.3. Let ay,(j) := 4 cos? ( j), Tw = [wra(1)] 7L, (w,j) €
2 and x(z,0) =1+ 2% — 2 cos(p), 0 < p < 2r. We have:
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(a) x(z,0) =0iff (p,z) € {(0,1), (m,—1)}, and x(x,p) > 0, other-
wise. Furthermore, x(z, ), x > 0, has a minimum (resp. max-
imum) at ¢ = 0 (resp. ¢ = 7) and the inequalities (1 — z)? <
x(@, ) < (1 + )% hold.

(b) x(rw aw+3( ), )
0,27, and all 1

> 0, and x(ryaw(j),e) > 0, for all ¢ €
<j<|zlw+2)).

(c) Let qu(j, ) := W. The inequality

fo@)= I  aw(.e)>%r

1<5<| 5 (w+2))

r

=

holds for all w > 3 and ¢ € [0, 2x].

Proof: (a): An elementary discussion of the function x(z, ) yields
the established statements.

(b): Since j € IN, it is easily verified that 0 < 7y, aui3(j) # 1
and 0 < 7y a(j) # 1 for 1 < j < [3(w+ 2)]. Hence, the stated
inequalities follow from part (a).

(c): We have
i . . 271y [aw(j) — aw+3(j)] [T?u Oéw(j) aw+3(j) — 1] sin
57 U0 = T 2 (0w () P — 2reau() cos@E (@)

Thus, the function ¢, (j, ¢) has relative extreme values at ¢ € {0, 7}.
We find

ia ' 27 [0 (§) — w3 (4)] [re 0w () o 1
557 wliho)| = [ (9) ﬁfgimﬁﬁ +3(5) — 1]
and

il ' 27y [ () — awt3(9)] [r2 aw(j) cw 1
gan w0, — et e

Hence, ¢u(j, ), 1 < j < [3(w + 2)] has a minimum at
— o =0iff aw(j) Zaws() A 7 aw(i) awrs() ST,

— =7 iff au()) Zowrs(i) A 12 ow(f) awss(l) 2 1.
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Now, elementary computations show, for w >3 and 1 < j < |

2)J,

N[ =
B
+

>0, ifw=0mod2 A j=[5(w+2)];

aw(f) — awrs(d) § =0, if (w,j) = (3,2); (14)
< 0, otherwise,

and 73, 0 (f) aw+3(7) < 1. Thus, qu(j,9), 1 < j < |3(w+2)], w > 3,
has a minimum at ¢ = 7 iff w = 0 mod2 A j = [J(w+2)], and
at ¢ = 0 otherwise with the exception of (w,j) = (3,2). Note that
q3(2,¢) = 1. Therefore, we obtain, for w > 3,

fw(@) :qw(lé(w_{—Z)J’@) H Qw(ja@)

1<5< ]2 w)

> Qw(lé(w+2”77r50,wmod2) H ¢w (3, 0)

1<i< dw)

_ 1+5wrwaw+3<L;w+2>J>>2 L=y ()
) <1+§wrwaw<g<w+zm lgjgéwj(l—rwawu)) ()

where &, 1= (—1)*™°42, Now, using Lemma 3.1(b), we find

H 1 —ryaupys (]) . 1 Pw+3 (Tw)

1 — 7y (J) 1—ry O‘w+3(L%(w+2)J) Pu(Tw) .

1<<] 2 w)

The quotient %X;)“) can be explicitly computed by the correspond-

ing formulae presented in Lemma 3.1(d). We immediately find Pu+3(ry)
Pw (Tw)

= —r2. Hence, the lower bound for f,(p) presented in (15) can be
simplified to f,,(¢) > p2 r}, where

w " w?

e = 1 1+§wrwaw+3(\_%(w+2”)
o 1+§wTwO‘w(L%(w+2)J) 1_7"waw+3(L%(w+2)J)

The latter factor appearing on the right-hand side is clearly equal to
one for odd w, and greater than one for even w because 7y, cu43(| 5 (w+
2)]) > 0. Since 0 < ryau([3(w +2)]) < 2, we further obtain
fw > [+ &urw aw([3(w+2)])]7" > 2 > L This completes the
proof. a

Lemma 3.4. Let ay,(j) := 4 cos? (”j>, Tw = [wra(1)] 7L, (w,j) €

w

IN? and pi(2) be the FIBONACCI polynomial defined in (4). For |z| =



b-Balanced Ordered Trees 189

Tw, the function Ay (z) =13 — Iﬁ;;?z()j)" w > 2, satisfies the inequality

2 . _3 ~
Ay(z) < =Tr; <0, where T := 55 1~ .060660...> 0.

Proof: By Lemma 3.1(a), the positive root of minimum modulus
of the polynomial p,(z) is at z = ry_2 > 1. Hence, Ay (z) is well
defined on the circle |z| = r,. Now, using Lemma 3.1(b) and the
definition of the function y introduced in Lemma 3.3, we obtain for
zi=ryet? i =—-1,0< p < 2m,

Ay (2) 3 _ (pw+3EZ) w+3)(z));

Since ry, ouy (|5 (w—1)] +1) = 0, for even w > 2, we have x(ry auw(|3

(w—1)|+1),¢) = 1 by Lemma 3.3(a), and therefore for z := r,, €'¥,
i?=—1,0 < ¢ < 2m,

Now, we shall successively consider the four cases w € {2,3,4} and
w > 5.

— Since w = 2, we immediately obtain for z := 9 €'?, 0 < ¢ < 2,

I

Ng(z) = 75— [x(r2a5(1),9)]2 [x(r205(2), 9)]

1
= r§ —[H(1 = cos()) (11 = 4 cos(p) + )]
~—

— Since w = 3, we find for z :=rze'¥, 0 < ¢ < 2m,

(r3 a6(1), ) x(r3 ag(2), @)\ 5
As(z) = r%—(" 5 GX(T:&(Z;(Cl)ip)G <P)
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<

[

8 [ (L= cos(0) + (i — 1)

=0 —37r3-1>0

r§—3T3+1 = —1+2\/gr§ < —Tr%.

— Since w = 4, we obtain for z :=rye'?, 0 < ¢ < 27,

A4(Z)

— Finally,

<

3 (X(mow(l),w)x(r4a7(2),<p)x(r4a7(3),<p))%
x(raas(1), o)

Y I 1
X (26 + 3 (1 = cos(p)) (47 — G cos() )|
>0
%_%:_%7& < -Tri

let w > 5. Using the inequalities established in part
(a) and (c) of Lemma 3.3, we find for z :=r, e'?, 0 < ¢ < 27,

= = Dxlrw aw(L3 (0 +2))),9)]2 [fu(e)]:
>1—ry o (|3 (w+2))) >1rh
< 12 (re— 21— ryaw([ 3w +2))).
=A(w)

It is not hard to show that A(2w + 1) (resp. A(2w)) is mono-
tonically decreasing for growing w > 2 (resp. w > 3). Since
AB)=—7(8—[7—+v5] cos™(Z)) ~ —.133202... < =T and
A(6) = =7, we have A(w) < A(6) for w > 5.

This completes the proof. a

3.2 The Dominant Poles of G}, (%)

In this subsection we shall determine the root of minimum modulus

of the polynomial Py, (2) = pri+3(2) + 2" % pr(2) appearing in the

denominator of the enumerator G}, (2) introduced in (6).

Theorem 3.1. Let a,(j) := 4cos? <%) and 1y = [onao(1)]71,

(w,j) € N2, We have:
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(a) The enumerator Gpp(z) has a dominant singularity zpp, for
1<b<h, h >3, which is a simple pole.

(b) The dominant singularities zpp, 1 < b < h, h > 3, satisfy the
following chain of inequalities

1=r > Zh1 > T2 > Zp2 > T3 > ... > Tp > Zpb > Thyl > -0 >
1
Th—3 > Zh,h—3 > Th—2 = Zh,h—2 = Zh,h—1 > §-

(¢c) The dominant singularities zpp satisfy the following chain of

inequalities
rh = Z3.1 Zf b =1
’ ; > 2p43b > oo > Zhb >
{ Th—1 = Zp+1,b > Tb = Zpt2,b i b>2 +

Zh41b > oo > Thyl-

(d) The dominant singularity zpisp, b > 1, satisfies the inequality

2p+3b < ?b = [4 COSQ(Q%Z_E’)]_I < Tp.

Proof: (a), (b): Clearly, the inequalities 1 < r;_; <r; <r =1
hold for 7 > 2 by definition.
As pointed out at the end of Section 2, the enumerator Gy, p(2),

b € {h—1,h—2}, has the representation Gy (z) = z pz;(lz()z) —Oh—2 2,

where pg(z) denotes a FIBONACCI polynomial. Hence, G}, p—1(2)

(resp. Ghn—2(2)) has a simple pole at zj, 1 = 7,—2 (resp. zpp—2 =
Th—2), h >3, by Lemma 3.1(b). Therefore, it is sufficient to restrict
our further considerations to 1 < b< h—3, h > 4.

Since G, p(2) is an enumerator, the dominant singularity zj is
the positive root of minimum modulus of the polynomial P, 4(2) :=
ppi3(2) + 2" py(2) appearing in the denominator of (6) such that

h=bpy(2) is unequal to zero for

the nominator Np(z) == (1 — 2)z
z = zpp. Note that the polynomial P p(2), b > 1, has the degree
max{|1b] + 1,h —1— |1b]}.

For b =1, ie. h >4, we obtain P, (2) =1—-22z+ 2"=1. This

polynomial has already been discussed in [5]. It has exactly one

simple positive root zj,; inside the circle |z|] = 1 = r;. Since 0 <
z}flL—ll = 2zp1 — 1, the inequality 2,1 > 3 = 7 holds. Obviously,

Npi(zn1) = (1= zn1) 211 p1(2n1) # 0. Hence, Ghi(z), b > 4,
has a simple pole at zj 1 with 1o < 2,1 < r1. Note that the exact
expression

an =Y gy (U 270 (16)
720



192 Kemp

has been computed in [5].

Now, let b > 2, i.e. h > 5. Setting pp(2) = 2" py(2) and
Yp(z) = pp+3(z) and using the definition of the function x (resp.
A,) introduced in Lemma 3.3(a) (resp. Lemma 3.4), we can make
the following computations for z = r, e'%, 0 < ¢ < 2,

| p(2) | = (Ipos3(2)] [por3(Z)] )%

Lem.3.1(b N N —4 1
2O L 10 = reanis() €9) (1= rpanys() e9) 13
1<j<[5(6+2)] =x(rb cr43(4),0)
Lem.3.3(b)
S,
and

| } Lem.3.4

(ena(2)] — ()| = Ipo(2)| [ 21 — 2l

(=) 0.

3
<ry

Thus, the relations 1y (2) # 0 and |¢pp(2)| < [¢s(2)| hold for |z| = ry,
b > 2. Hence, ROUCHE’s theorem applies and the polynomials ,(2)
and Yy(2) + ¢np(2) = Pnp(z) have the same number of zeros inside
the circle |z| = rp. By Lemma 3.1(a), the roots of ¢5(z) = pp+3(2)
are at z; = [apy3(s) ] 71, 1 < 4 < |3(b+2)]. Clearly, we have z; <,
and z; >y, for 2 < j < |$(b+ 2)]|. Therefore, Py (z) has exactly
one root zpp with 2, <1, 2 <b < h — 3.

Now, assume that Zj; is not a simple root of Py ;(z), i.e. the
equations Py, ,(Z) = 0 and P;L,b(ghab> = 0 hold. The former equation

. . oh—b _ Pot3(Zhp) : Po43(2) -
implies ;7" = s) By Lemma 3.1(e), the quotient ) 1S

positive for z € [0,7rp41[, b > 3. Since pa(z) = 1, this fact holds
for b = 2, too. Hence, the inequality Zj;, > rpiq is valid because
Po(1p+1) # 0 by Lemma 3.1(d). The assumption 2, = rp41 yields the
contradiction réﬂ:lb = _%:ﬂ)l) = 0 by Lemma 3.1(a). Therefore,
we have rp41 < Zhp < 75, 2 < b < h — 3, and Lemma 3.2(a) yields
the contradiction P, ;(2x5) < 0. Thus, the polynomial P ;(z) has
exactly one positive simple root zj; with 7,41 < Zj, < 1. Since
Tb—2 > Tp, we have pp(Zpp) > 0, b > 3, by Lemma 3.1(e). For
b = 2, this inequality is clearly valid. Therefore, Ny (Zhp) = (1 —
Zh.b) E,Z;bpb(,?h,b) # 0 because 0 < Zp, < 1, < r2 < 1, Hence, the
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enumerator Gp(2), h > b+ 3 > 5, has a simple pole at 253 := Zip
with rpq < Zhy < Tp.

(c) The equalities 231 = 71 and zp41 = rp—1, b > 2, have already
been verified at the beginning of the proof of the parts (a) and (b) of
this lemma.

Now, assume that there is a tuple (h,b), h > b+ 1, b > 2, with
Zhb < Zh+1,p. By part (b) of this lemma, we know that both, 2,5, and
1,3 [. Since pa(2) =1 > 0 and
po(2np) > 0, b > 3, by Lemma 3.1(e), the assumption 2 j == zpp =

Zh+1,p, lie in the interval | rpyq1, 75 [C]

zh+17b immediately yields 0= Ph+1,b(gh,b) — Ph,b(gh,b) = g}ﬁb_b (’Z’thb -
1) pp(Znp), i.e. we have the contradiction Zz;, € {0,1}. Assuming
that zpp < 2p+41,, Lemma 3.2(a) yields

0 = Pur1p(zar1p) < Phato(zns) = poralznp) +2ny" " po(an)
0,

< poas(znb) + 215 Do(znp) = Php(znp) =

which is another contradiction.

We are left with the case b=1. Since (h—1)j+1<hj+1 and
hj—XA+2<2[(h—1)j—A+2],1 <)\ <j, weimmediately obtain
Zp+1,1 < zp1, h > 3, by the explicit expression for 2, 1 established in
(16).

. 2 ~
(d) Since HL:S < 2b15 < b+L2 < 5,b>1, we have rp 1 <73 <7y

First, for b = 1, we find Py1(2) = 1—-22+2% = (2 — 1) (2 +
¢) (z + ¢ 1), where ¢ := (14 /5) is the ‘golden ratio’. Hence,
z41 = ¢t = .618033... < [4cos?(E) ]| =71 ~ .643104. ..

Next, let b > 2. An inspection of Lemma 3.2(a) shows that
Prp(2), b > 2, is strictly monotonically decreasing in [r441,7]. Since

Zpy3p is the unique root of Poygp(2) in [rpy1,73), it is sufficient to
prove that Py, 3,(7p) < 0. For this purpose we change the variable
and consider the function

vp(v) = Pb+37b([4cos2(v)]_1)
= pors([4cos’(v)] 1) + [4cos®(v)] 2 py([4 cos®(v)] 1)

in the interval [ Setting v := 2?}% and using Lemma

543 bra)
3.1(e), elementary trigonometric transformations yield Py434(7) =
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Vb(%), where

1

2 2 s 2
vp(s=s) = — 4cos”(57=) — 3
b(2b+5) 2b+6 COS(QbZ_5) Cosb+5(212):5) [ (2b+5) )]

>0 >0

>0

x [4cos®(575) — 1].

>0

Evidently, the latter expression is negative. This completes the proof.
O

Remark 3.1. (a) The preceding lemma presents a detailed survey of
the dominant singularities zp, ; of the enumerators G, ,(2), 1 < b < h,
h > 3. Arranging the values of 2, in an array, this array has the
following structure:

& o~ —
< TEA A EF— R
S < ’
Il A
i T - o
| PR NEE N A - 8]
< ST
0
[ A A
0
N [ A | 8 —
| A AN T A AL— ]
< ol by =
N
AA A
A A A
<
< — — —
< A S A FA AT — %
N § =~ =~
A A A
1 A A A
el
M N m M el —
i A g A ANg N A A
N
I A A A A
NF
TEAZEAE A ASEATA A S o P
R R TIANINT 2 & b = <
N
[ A A A A A
35N FAFA /\Né/\:frA A Q- o
= —
~len < 0 © < + — R
< <
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In each row (resp. column), the entries are strictly monotonically
decreasing from left to right (resp. top to bottom).

(b) We are left with the concrete problem of computing an approx-
imation of the dominant singularity z; for 1 < b < h — 3, i.e. we
have to find an approximation of the simple positive root of mini-
mum modulus of the polynomial Py ;(2) = ppi3(2) + 2" py(2). This
problem can essentially be solved by NEWTON’s method, i.e. we have
to consider the recurrence

Po+3(zi—1) + 2071 po(2e-1)

Zt = Zt—1 — ; h—b_1 ; ) t Z 17
Pyys(ze—1) + 27 [(h = b)po(ze—1)+2i-1D)(26-1) |
starting with a well chosen initial value zy. We choose zg := rp11
because py+3(rp+1) = 0 by Lemma 3.1(a), and Tél;fpb(rb_trl) =(1-
h—2%(b
rb+1)rb+f( ) by Lemma 3.1(d), becomes very small for large h,

where b = o(h).

Before we present an exact asymptotical evaluation of zp;, we
briefly discuss some aspects concerning the convergence of the se-
quence z¢, t > 0. According to the proof of Theorem 3.1(a), (b),
the polynomial Pj;(2) has exactly one simple root zj; in the in-
terval [rp41,75). Hence, the equalities Py p(7p11)Php(rp) < 0 and
Py (2) # 0 hold in that interval. Indeed, we have Ppp(rp1) =

h—1(b+3 1pa1 o
(1= )y > 0, and Pyglry) = —rg (1= rf707%) < 0

by Lemma 3.1(d) and P, ,(2) < 0 by Lemma 3.2(a). Since addition-
ally Py ;(2) is convex in the interval [ryiq, 7] by Lemma 3.2(b), the
NEWTON-sequence zg = 7p41, 21, 22, - - - is strictly monotonically in-
creasing and it converges quadratically to the root zpp in [rpi1,rp),
ie. lim supt_)w% =a>0.

Now, let us turn to the asymptotical evaluation of zj;. We com-
pute successively zp := 141, 21,22,... . In each step we evaluate
the approximant z; around rll;:lb and simplify the resulting expres-
sion by means of the explicit expressions presented in Lemma 3.1(d).
Choosing this procedure, we obtain by a very lengthy computation,
for b = o(h) and large h:

(1) hebz | (2) 2(h-b)—5  (3) 3(h-b)-8
Zrp = Torl t G Ty TG Thp T Chp Tpr1

+O((h — by rp 0y, (18)
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where!
1
) = —ﬁ o1 o = g (1= roq1) (Arppg — 1);
2
ngz)) = m Thr1 Py (h—b) + m Th1 Db [ 205 Dhrg — Do Phys]
1 0
= st (=)@ — D[V (h—b) + 67,
with &% = (211 + b — 2)(3rpy — 1),
and &Y :=2(1 — 1) (A rpgs — 1);
3
ngz» = _2[p5+3]3 Th1 Py (h —b)°

+m o1 Db (pb Phts — 67641 P Phis + 37041 Db pg+3> (h —b)
o T 2o (P Phapis — 3pum (s ) = 300 (94 )
+9 P Ph Phs Phys — 6912 [Phys?)
= sorgp (L= me1) (@741 — 1)
2 1 0
[ (h = 0)” + 15" (o = b) + 5],
with 7" := 1207, , — 2(b° — 57b + 155) r}, ,
+9(26* — 215+ 30) 151 — 3(b—6)(4b — 5) rp41
+2(b—1)(b—5),
and 1y == 3(1 — rp41)(d1p41 — 1)
X [2275, 1 + (9b—29) o1 — 3b+ 7],
and ny” == 9(1 — rp41)2 (47341 — 1)%
In principle, the expansion for zj; could be carried out as far as we
like but the higher terms become more and more complicated. With-
out going into detail, another approach to the computation of the
asymptotic approximation given in (18) is the bootstrapping tech-
nique starting with zp := rp41, and computing better estimates z,
t=1,2,3,... . In this way, we find the same approximation. Notice
that ro = %, and therefore (cgl),cézi,cf’i) = (8. a5 (h=1), 1055 (h—
1)(3h —4)). Thus,

1 = 3+ 27" 4 (h—1)27C"D 4 (h—1)(3h —4) 276D

!The abbreviations ps, pj, py, and pj’ stand for Po(ros1)s Ph(ros1), DY (Tos1)
and p}’(rp41), respectively.
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Table 2: The dominant singularities 2, for 3

The upper (resp. lower) number appearing in an entry corresponds
to the exact (resp. approximative) value of zj ;. The values are not

rounded to the sixth decimal place. The exact and the approximate

value coincide up to the sixth decimal place regarding the entries not

marked with |.
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This approximation coincides with the terms up to j = 3 in the
explicit expression for zp, ; established in (16). The exact and approx-
imate values for zj,, 1 <b < h, 3 < h < 12, are presented in Table 2.
Even for small h, the derived approximation yields very good values
for the dominant singularity zj . &

3.3 An asymptotic Equivalent to the TAYLOR Coeffi-
cients of G}, ;(2)

In this subsection we shall determine the exact asymptotic behaviour
of the coefficient at 2™ in the expansion of the enumerator G, (%)
around z = 0.

w—+2
the FIBONACCI polynomial defined in (4). Furthermore, let Ky 1 =

Khh 2 —ftan( ) h>3 and

Theorem 3.2. Let 1, = [4cos® (L>]_1, w € IN, and pi(z) be

K 1—znyp
b = {pz,ﬁ(zh,b) 5y }
b1 porszne) — pu(zhb)

- (h_b)a

for 1 < b < h—3, where zy is the dominant pole of the enumerator
Ghp(2). An asymptotic equivalent to the coefficient (2"; Gpp(2))? is
given by

(2" Gnp(2)) = Knp 2, + O®*r,™), n — oc.

Proof: First, let us consider the simple cases b € {h — 1,h — 2}.
It has been shown in the classical paper [1] that the n-th coefficient

on(n) = (z"; Fy(2)) of the enumerator Fj(z) = zpp"(()z) introduced

in (3) has the explicit representation

2/ 7j 2/ mj
op(n) = h%—l z tan®(;75) [4 cos™(55)]", n > 2.
1<5<| 3]
Splitting up the sum appearing on the right-hand side and using the
inequalities cos (W) < cos (h2—|7—r1) and tan? (h+1) < tan? (i 14]) =

;22(54—3(— )P {%JQ—I—O( ),2<j< bj, we further obtain for h > 4

op(n) = h%rltaHQ(hLH)T;fl + O(h? [4 cos? (h+1)]"), n>2.(19)

2The abbreviation (z™; f(z)) denotes the coefficient of 2™ in the expansion of

f(z) at z=0.
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Clearly, this estimate holds for h € {2,3}, too. Now, as it was ob-
served at the end of Section 2, we have Gp, p—2(2) + 2 = Gpp—1(2) =
F},_1(2) and therefore

(2" Ghn2(2)) = (2" Grp-1(2)) = (2" Fh1(2)) = dn-1(n)

for n > 3. Combining this relation and the expression for ¢p(n)
given in (19), we immediately find the asymptotic equivalent stated
in the theorem because 2y ,—2 = 2 h—1 = rp—2 by Lemma 3.1(b) and
40082(27”) < r,:_IQ < r,:_ll, h > 2.

Next, let us consider the cases 1 < b < h — 3. For b =1, we have
Ghi(z) = %, h > 2. This function is identical with the func-
tion Dy,_1(z) already introduced in [5, formula (6)]. In Theorem 3(b)

of that paper it has been proved that (2"; Dy(z)) = Crq," + O(1),

_ (A-qn)(2gn—-1)
T h=2(h-1)gn

Ch-12,1 + O(1). Since (p1(2),pa(z)) = (1,1 — 2z2), the expression
for Kj, 1 given in the theorem is identical with C}_; and our result is
valid for b = 1.

Now, let 2 < b < h — 3. By Theorem 3.1(a), the enumerator
G p(#) has a dominant simple pole at zj ;. Hence, the partial fraction

where (Y, and g, = zp41,1- Hence, (2";Gp1(2))

expansion of G}, p(z) has the form

Gh,b(z) = ff\h,b (1 — L)il + Rhl,(z),

Zh,b

where

— . 1—2) 2"t py(z
Kth = lim (1 — zjib ( ) =0 ( )
Z2h0b 07 pors(z) + 2P py(2)

and Ry p(z) is a regular rational function for |z| < zp3. Applying

) ) . : h—b _ _ Po+3(zn,p)
D’HospiTAL’s rule and using the relation Zhp = AR

find Eh,b = Kjp, where K}, 3 is the quantity defined in the theorem.
Thus, (2";Gprp(2)) = Knp 2y, + (2" Rup(2)), where the coefficient
(2", Rpp(2)) involves all the zeros of Py p(2) = pprg(z) + 2" 0 py(2),

we

b > 2, with the exception of z,;. Unfortunately, we have only in-
sufficient information about these zeros at hand. It seems to be true
that all roots of the polynomial P} ;(z) are simple but the author is
unable to prove this conjecture. However, there is a general theorem
established in [13, Theorem 9.2] which can be successively applied in
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order to determine the asymptotic growth of (2"; Ry, ,(2)). For this
= 27%Gpp(z) =
Pl where Niyy(2) i= (1—2) 2702 py (2), and Phy(2) = pras(2) +
2"=b py(2). Note that (2" éh,b(z» = ("2, Gpp(2)), that the degree
of the polynomial ]\Afh,b(z) is less than the degree of P}, (%) and that
P p(0) = ppy3(0) # 0. Translating the result established in [13,
Theorem 9.2] into our case (set k :=1 and p; := zp;), we obtain

purpose we consider the rational function Gy, bz ) :

b(2n

_,_/
n—2
7Khbzhb

<Zn;éhb(2)>+ B (Zhb —n ! <WR ™+ L p~ "M,
> Py

=(2"T24 Ry, p(2))
where the following conditions have to hold:

) Pnp(2) has only one simple root in |z| < R;
) R —zpp > 0 for some 6 > 0;

(ili) max =g |Grp(2)] < W;
)

.~
¢

Nip(2n,0)
Py (znp) |

M =

Now, let R := ry and 0 := 1, — 7, with 7 := [4 cos(2b+5)]_1. The
condition (i) is clearly satisfied by Theorem 3.1(a), (b). By Theorem
3.1(c) and (d), we have R — zpp =15 — 2pp > Tt — 2b43p > Th — Tp =
d > 0, and the condition (ii) holds, too. Moreover, it is easily verified
that 6‘1 is monotonically increasing with growing b > 2, and that
671 < % cos?(2)(2 cos?(ZF) — 1)71 b3 = O(b3), for b > 2.

Next, the following computation shows that the upper bound W
introduced in condition (iii) can be chosen as a constant, i.e. W =
O(1). Indeed, we have for |z| =m, 2 < b < h—3,

_ EPTI —2lim(2)] A+ 2]) I (2)]
IPora(2) + 2 pu(2)] T |ppys(2)] — |21 lpe(2)]

(17)

Ghp(2)]

B ? b= 2(11L p) Lem.3.4 Tl])l b= 2(1+rb) < 1+
b

r
et ‘pb+3(2)| . h— — Trg ~ Trb = 0(1)
[po(2)] NP H/(:)/

3
<ry
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Note that the sequence (u(b))y>2 is positive and monotonically in-
creasing with the limit 10 (4 4+ 3v/2) ~ 82.426 406 . . .

Finally, let us turn to the quantity M appearing in condition
(iv). Since rp41 < zpp < 1 by Theorem 3.1(b), p2(z) = 1, and

Po(2np) < Po(rog1) = (1 — rppq) Tb+(1 3) , b> 3, by Lemma 3.1(d) and

(e), we obtain, for 2 < b < h — 3,

|Nnb(znp)| = (2np)]

<14-|zp,p]
1(b-3 1(b-3
< A=) < (L)l
Hence, by Lemma 3.2(a)

3(6=3)
Ml (L4 rp)(d7p41 — 1)7“b+1 < T (1+7)(47p01 — 1)

b 5
(b—=1)rpy1my (b—1)ryy
=v(b)

= o),

because rp11 < 7. Note that the sequence (v(b))p>2 is positive
and monotonically decreasing with v(b) < v(2) = 2(5 4 3V5) =
4.390576 . ..

Thus, we have verified the relation |(2"*2; Ry, ;(2))| = O(b® 1, ™),
2 < b < h — 3. This completes the proof because rg € b>2.
O

[16’4[

Remark 3.2. (a) Using Lemma 3.1(d), (e) and Lemma 3.2(a), it is
not hard to verify that the quantity K} ; introduced in the preceding
theorem is bounded, i.e. Kpp =0O(1),1<b<h, h>3.

(b) Evaluating the explicit expression for K} j stated in the previous
theorem by means of (18) and using the explicit expressions presented
in Lemma 3.1(d), we find the following approximation, for b = o(h)
and large h, by a lengthy computation:

h—b— 2) 2(h—b)—6 3) 3(h—b
Kpp = ké) Thi1 3""@(113 b—(f—l - +k22 b-(i-l )=

+O((h = b)>rp 0, (20)

kY = gy (1= )2 (A — 1);
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k;(fi = ﬁ (1= rp1)2(Arppy — D) [l (= b) + €0,
with e = 67f,1 +3(b—4) 1411 — b+ 3,
and e} 1= 2(1 = rp41) (4751 — 1);
ki(wglz = g (L= r41)*(4rp — 1)
[f(2)< b + £ (h = b) +1;"),
with £ = 24(0% + b+ 28) 1y — 205 — b7 — 2895+ 1003)
+3(6b° + 7b* — 361b + 636) iy,
—3(40% + 70% — 164D + 216) 7314

+20% 4+ 4b% —65b+ 74,

and f = 3(1 — rog1) (4 rpgs — 1)
x [22(b+5) 17 g + (9% + 165 — 169) 1y
—3b% — 8D+ 41],

and fy? := 9(b+5) (1 — rp41)*(drpgs — 1)

The exact and approximate values for Kj;, 1 < b < h, 3 < h <12,
are presented in Table 3. Even for small h, the derived approximation
yields very good values for the quantity Kj, . &

4 Enumeration and Distribution Results

In this section we shall compute asymptotic equivalents to the number
of all b-balanced ordered trees with n nodes and of all such trees
with height h. Furthermore, assuming that all b-balanced ordered
trees with n nodes are equally likely, we shall determine the exact
asymptotic behaviour of the average height of such a tree together
with the variance.

Theorem 4.1. Let r,, := [4 cos? (wLH)]_l, w € IN.

(a) The number Ly, ,(n) of all b-balanced ordered trees of height h
with n nodes is given by {1 9(n) = 0p1, by lao(n) =1—46,1, by
lhp—1(n) =0, h>2, and for 0 <b<h—2,h>3by

lhp(n) = Knt1,p+1 21 5y + OO+ 1), 1),
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3 < h <11. The val-

Table 3: The quantity Kjp for 3 < b < h,

ues of Kj 5o and Kjpp—1, h > 3, are explicitly given by % tan2(%).
The upper (resp. lower) number appearing in the remaining entries
corresponds to the exact (resp. approximative) value of K. The
values are not rounded to the sixth decimal place. The exact and the

approximate value coincide up to the sixth decimal place regarding

the entries not marked with |.
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where zpp (resp. Kpp) is the dominant singularity of the enu-
merator G, ,(2) (resp. the quantity) introduced in Theorem 3.1
(resp. in Theorem 3.2) with the asymptotic expansion estab-
lished in (18) (resp. (20)).

(b) The number ty(n) of all b-balanced ordered trees with n nodes
is for fired b € INg and all § > 0 given by

1— -1,.— 1 —
ty(n) = —ln(:ﬁn L Tyl [T+ mop(n)] + 0(% Thia);

where nsp(n), s > 0, is the oscillating function

o In (L(l—rb+2)(4rb+2—l))
i 2mik b4 —
nep(n) =23 gg(F(s)(l _ 1n%r,ff2)) e (7 42)
E>1
with Nsp(n) = Nsp(rpr2n) and [nop(n)| < 8.646828... x 1073,
Here, i2 = —1 and T'®) denotes the s-th derivative of the com-

plete gamma function.

Proof: (a) Inserting the explicit expression for Gy, ;(2) presented in
(6) into (8), we obtain Ly o(2) = 2, Lyo(z) = 2= and Ly s_1(z) = 0,

1—z
h > 2. This proves the result for £, ,(n) = (2"; Lpp(2)), (h,b) €
{(1,0),(2,0),(h,h — 1)}, h > 2.
With respect to the general case {p(n), 0 < b < h—2, h > 3,

formula (8) and Theorem 3.2 tell us
lho(n) = Knt11 2511, +O(r1 "), h >3,
and additionally for b > 1 by means of Theorem 3.1(b) and Remark
3.2(a)
Chp(n) = [Kn+1p41 211 pp1 T OO0+ 1))

— [Knt1p2p30 + oW’ r, ™)

— [Knpzpp +O0° ;™)

+ [Knp-12,51 +O((b— 12, ")]

= Knipr1 21000 +O((0+1)° 04, 1<b<h—2, h>3
(b) We obtain by the first three alternatives for ¢, ;(n) given in part
(a)

to(n) = D lhp(n) =00+ > Chp(n), (21)

b<h<n max{3,b+2}<h<n
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and further by the fourth alternative and by (K31,231) = (1,1) (cf.
Theorem 3.2 and Remark 3.1(a))

rhiate(n) = Sp(n) + O(n (b+1)° r [ rifs), b >0, (22)
where
Sp(n) = Z Khi1,p+1 (7”1;12 Zhg1 1)
b+2<h<n

In order to compute an asymptotic equivalent to the sum appearing
on the right-hand side, we first approximate the quantity
(7"(;:2 Dh 1)

Using the asymptotic expansion established in (18) and the expan-
sions of In(1 + z) and e”, the standard “exp/log”-technique ([11, pp.
174-175 and p. 190]) yields, for all fixed ¢ > 0,

(rps 2ht1pe) "
(1) h—b—3
{ Ch,b(n) e Cbt1 ™ ht2 , ifh>b+3+ Ne,b(n);

. (23)
O(e™™), if h <b+4+ 34 Nep(n),

where

n(c nl—e
Nep(n) == ") _ (1 ) log,(n) — Blogy(b) + O(1), n — oo,

1n(rb+2)
and
1) 2(h—b—3 2) 3(h—b—3 3) 4(h—b—3
Chp(n) = 1+ Ezl)) b-(&-2 "+ §LI))rb-(F2 '+ 511)7 b-(i-Q )
+o( Iy,
with
2 (0 0
sy = (A2 =20 440) = — e (G0 (k=) + ¢V,
1 1
”gz); = %([Cl(ﬂr)l] —301(9421C§L+)1b+1+3cg+)1b+1)

- 48?%[ [Cb ] (h b) +18Cb Cb (h_b)+4<l£2)]7

)2 =L (s ]2

[y

1
”h,l): = g([cl(>+)1] _201(1421,1;4-1
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Here, cl()l), ng,l); and cs'l)) are the quantities defined in Remark 3.1(b)
and
O = 91— Aryy—1
G = 21 —rpg)(drpe — 1),
¢ = 1072, + (3b— 10) rype — b+ 2,
¢ = 224rt, — 202 — T3b 4 214)r, 5 + 6 (302 — 35b + 45) r2,,
— (120* — 87D+ 65) 140 + (20— 1) (b — 5).
Now, taking the approximation (23) with ¢ p(n) =1+ (’)(121@), we

find by means of the asymptotic expansion for K} stated in (20)
that

Sp(n) = SiH(n) + Sy (n) — S (n),

where
1 _ _
Sf(zlz (n) = > Knip41 (s 2h1pp1) "
b+2<h<b+3+Nj . (n)
—ne 1 h—b— 2(h—b
= 0(™™) > (RSO 23 o((h — b) r2)]
b+2<h<b-+3+Ny (n)
=0(1) since Tb+2§7'2:%
= 0(e™™),
and
2 _ _
h>b+3+Np (n)
1 1 h—b— 2(h—b
= o] Y AT o -0 )]
h>b+3+N,, (n)
% efc(b:_)lnr;:;73
_cW) g, ph=b=3
= {/{IS}’_)I Z 7“{):2}’736 Cot1 ™42 } _|_(9(71Lf21(_2)€)
h2b+3+bee(n)
e
h>1
(1) h—b—3
- X gt [+ oGE)

1<h<b+3+Np (n) =O(e—n°)
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h—b-3 —c{V b3 In(n)
b+1 > This 1 +O(5z=20);

h>1
and
5,533 = > Knprps1 (1 zne1p01) "
h>n
n(n h—b
= [1+ 0B Sk iy + o((h - )y )]

h>n

(1) h—b—3
X e o1 Thi2

<1
= O(Tb_fZ)'
Thus, introducing the series

Us,gy(n) := Z h® y" e_”th, s>0,¢>0, y<l1, s,q,y fixed (24)
h>1

we have shown

Sp(n) = kg P U ) s () + 9

0:Chi1 Thp2 Tb+2

where Q := O(e™) + (’)( )+ O(ryy) = (’)(712(,"2)6) Therefore by
(22)

G
T£+2tbol) a kh+1rb+2 ljvgglrma 7m+2(n)

+ OB ) £ O(n (b+1)% [ry )y rpra]™). (25)
————

<a<l1

O(35)

It remains to derive an asymptotic equivalent to the series Ug 4, (1)
established in (24). This can be done by the MELLIN-transform tech-
nique (cf. e.g. [3]) yielding a complex integral which can be computed
by an application of the residue theorem. In this way, an asymptotic
equivalent to a function very similar to U4, (n) has already been
computed in [5, Lemma 2]. Almost the same computation carried
out there yields in the present case

Usgy(n) = — LgtsBln™ [T(1) + 60,44(n)]
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—In(nq)]s~1 —
- % n”HI(1) + 01,4,4(n) ]

]s—2

— (3) il n T [T(1) + 02, () ]
+ o2y (26)

where 0, 4, is the oscillating function

In(n q)

9m7q’y(n) =2 Z %(F(m)(l — %) 627Tik In(y) ), m Z 0’
k>1

with Op, qy(n) = O gy(yn). Note that 0 o) _,3 is identical
4y ' S’Cb+1 Tb+2 b2
with the function 7, defined in the theorem. Now, inserting the

asymptotic expansion given in (26) with

1 —b—
(m7 q, y) = (07 C[(H_)l rb+2 3) Tb+2)

into (25), we obtain the asymptotic result stated in part (b) of our
theorem by means of the explicit expressions for c,(Jl) and k:l()l) pre-
sented in (18) and Remark 3.2(b), respectively.

Finally, since the identity |[(1 +¢)]> = gt is valid, we find

the upper bound

ool < 2 01— )

= ﬁO,b ::22 [ 2 hen? ):|

=1 In(rp42) sinh(ln(rb+2)

VI

*)
< o1 =8.646828... x 1073,

The estimate () is valid because 749 > % and Sz 18 @ strictly
monotonically increasing function for x < 0. a

Remark 4.1. (a) The first few numerical values of the upper bound
7o for [nop(n)| introduced at the end of the proof of the preceding
theorem are summarized in Table 4.

(b) By the previous theorem we have, for fixed b and large n,

to(n) ~ ap &' [T+ m00), [m0s(R)] < Togs M0s(n) = nop(resan),

. 1—r m2(3-21n(2)) ; — —
with ao = 51,5 13(2) 20 = " llry) = 8 11?(2)+ 1(6 [1n(2)](2)) bT2+O(7),

b—oo,and §=2<&=r}, =4—472b"2+O(b73), b — co. In
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(o] o | 1 | 2 3 4 5 ]
o || 9-884450 [ 4.506 932 | 1.504 155 | 2.656 699 | 3.665929 [ 4.489 543
x 107 x 1074 x 1073 x 1073 x 1073 x 1073

(b [ 10 20 30 40 50 100 oo

To., || 6718478 | 7.956 383 | 8.298 338 | 8.437674 | 8.507 612 | 8.609 158 | 8.646 828
x 1073 x 1073 x 1073 x 1073 x 1073 x 1073 x 1073

Table 4: The numerical values of the upper bound 7, ;. The values
are not rounded to the sixth decimal place.

particular, we find for b € {0,1,2,3,4} and for large n:

to(n) ~ maym 2" [L+m00()], [moo(n)] <o, m0,0(7) = moo(3n);

t(n) ~ gigm ¢ L+ n0a(m)]; [n01(n)] < Tgs m0,1(n)
=n01(¢"2n); where ¢ is the ‘golden ratio’;

ta(n) ~ 3" L+ m02(n)], Ino2(n)] < 7o 2, m0.2(1) = mo2(5 n);

ta(n) ~ pign " [+ moa®)], lmos(m)| <oz, mos(n)

= 770,3(671 n) with c:=4 cosQ(g);

c—1

ty(n) ~ In(c)n A1+ no,4(n)]; [M0.4(n)| < 0.4 10.4(n)
= 770,4(0—1 n); with ¢ :=2+ \fQ

Note that the result with respect to ¢g(n) has already been proved in
[5]. The first few exact and asymptotic values for ¢,(n) are summa-
rized in Table 5.

(c) The oscillating functions 7, (n) introduced in the previous the-
orem are bounded for fixed s > 1, too. We obtain [n,,(n)| < 7, :=
2> k1 IT() (1 — =27k _)| The first few numerical values of the upper

In(rp2)
bound 7, ;, s € {1,2}, are presented in Table 6. &

Assuming that all b-balanced ordered trees with n nodes are equally
likely, the quotient wpp(n) := ZZ;IE%L) is the probability that such a
tree has the height h. The s-th moment about the origin IE[H}(n)]

of the random variable Hy(n) taking the value h with the probability
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b 0 1 2 10
n ex. as. ex. as. ex. as. ex. as. exr. as.
1 1 1.4427
2 1 1.4427
3 2 1.9235
4 3 2.8854 2 7.5389
1.5798 2.946 9
5 5 4.6165 7 2
x 101 x 101
3.4477 7.3783 1.1454
6 8 7.694 3 21 11 2
x 101 x 101 x 102
1.3190 7.7354 1.8987 3.1940
7 14 55 46 15
x 10t x 101 x 102 x102
2.308 3 1.7713 4.9829 9.0904
8 24 141 165 78
x 10t x 102 x 102 x 102
4.103 6 4.1211 1.3277 2.6258
9 43 351 552 341
x 10t x 102 x 103 x103
7.386 5 9.709 6 3.5817 7.6728
10 7 868 1763 1359
x 10t x 102 x 103 x103
20 3.8674 3.7819 | 7.4027 7.3473 | 9.3276 1.0593 3.0013 4.976 4 8.5851 1.096 7
x 104 x10% x 106 x 106 x107 x 108 x 108 x 108 x 106 x 1010
40 2.0058 1.9828 | 8.5032 8.4098 | 1.8449 1.8418 3.8911 4.2299 6.8237 2.1930
x1010  x1010 | x1014 x1014 | x1017 x1017 x 1018 x1018 x 1019 x1021
100 9.1857 9.1441 | 4.0509 4.0303 | 3.1317 3.1237 8.3146 8.2828 1.4647 5.4876
x1027  x1027 | x1039 x1039 | x1045 x1045 x 1048 x 1048 x 1055 x 1055
200 5.8089 5.7958 | 1.2660 1.2634 | 8.0924 8.0710 5.8055 5.794 4 1.7533 2.7839
x10%7  x1057 | x1081 x1081 | x1092 x1092 x 1099 x 1099 x10113  x10113
4.6619 4.6567 | 2.4884 2.4864 | 1.0704 1.0693 5.7499 5.7449 1.2809 1.376 8
400 x10117 % 10117 x10164 x 10164 x10188 % 10188 x 10201 x 10201 x 10229 x 10229
4.7267 4.7225 1.2487 1.2478 | 4.4223 4.4170 6.4450 6.442 6 1.0735 1.1078
500 x10147 % 10147 X 10206 % 10206 x10235 % 10235 x 10252 x 10252 x 10287 x 10287
7.7328 7.7293 | 6.0674 6.0653 | 8.0122 8.0106 1.778 4 1.7772 5.5851 5.5886
1000 x 10297 % 10297 x 10414 % 10414 x 10473 % 10473 x 10508 x 10508 x 10576 X 10576
4.1419 4.1410 | 2.8673 2.8666 | 5.3104 5.3091 2.6675 2.6673 2.8228 2.8223
2000 «10598 % 10598 | 10832 x10832 | x10950 %10950 | x101019 101019 | x101156 x10l156

Table 5: The exact [ex.] and asymptotical [as.] values of the number
tp(n) of b-balanced ordered trees with n nodes. The values are not

rounded to the fourth decimal place.
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(e [ o [ 1 [ 2 [ 3 [ 4 [ 5 |
T p || 2645078 [ 1.081682 [ 3.446 692 | 5.938005 | 8.070653 | 9.785936
x 105 x 1073 x 1073 x 10~3 x 103 x 1073
Tiap || 6.978935 | 2.530362 | 7.643819 | 1.278774 | 1.706 847 | 2.044 857
x 10~5 x 103 x 103 x 10—2 x 1072 x 10—2

[ [ 10 20 [ 30 [ 40 50 [ 100 [ oo
Ty || 1434160 | 1.682802 [ 1.751019 | 1.778 761 | 1.792674 | 1.812861 | 1.820346
x 1072 x 10~2 x 102 x 102 x 102 x 1072 x 102
Tap || 2921189 | 3.388670 | 3.515772 | 3.567326 | 3.593152 | 3.630591 | 3.644462
x 1072 x 10~2 x 1072 x 1072 x 102 x 10~2 x 102

Table 6: The numerical values of the upper bound 7, s € {1,2}.
The values are not rounded to the sixth decimal place.

whp(n) is given by

Zhwhb )

b<h<n

> W lpy(n), s>1. (27)
b<h<n

The following lemma gives us information on the s-th moment IE[H}/(n)].

Lemma 4.1. Let ry, := [40052 (ﬁ)]*l, w € IN, and Bp(n) =
(557 (1= 7p42)(47p42 — 1) rb+2 3). We have for fized b and large n
EH0] = mols (A
(-1)* s—1 T'(D)+m p(n)
T ST RO T

S —1)° S— (1 + n S—
+ () gy [Bo(n) "2 RN 4 O([In(n) *79).
Here, nsp(n) is the oscillating function introduced in Theorem 4.1(b).

Proof: Using the definition of U q4(n) given in (24), the result
presented in Theorem 4.1(a) and the approximation stated in (23)
together with the asymptotic expansion for K} presented in (20),
we find by a similar lengthy computation as in the proof of Theorem

4.1(b)

o D B lp(n) = 1512[0h0 (91 +2°[1 = 6ua])

b<h<n

+ Z hs Ehl,(n)}

max{3,b+2}<h<n
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1 _
= Y B EKnppn (il znpier) ™"
b+2<h<n

+0n* (b+1)° Tpi1 Thy2)

n(n)]st1!
= klglrzﬂrngs ) (n) + O(IRGT

Coi1 b+2 * b

Hence, by (27)

1 (1) —n-b-3 [In(n) ]**!
EH; ()] = g ket iy U, b3 (n) + O(w)
Using Theorem 4.1(b) and the asymptotic expression for Usq,(n)
given in (26), a straightforward computation yields the stated result.
O

Following the classical paper [1], the average height of an ordered
1

2
provided that all n-node ordered trees are equally likely; the variance

tree with n nodes is asymptotically given by ~ /7mn — 5, n — oo,
is asymptotically given by ~ %7‘(‘ (m—3)n+ % (m+1), n — oo (see
).

The following theorem presents analogous asymptotic equivalents
to the average height hy(n) := IE[Hp(n)] of a b-balanced ordered tree
with n nodes and to the variance o,(n)? := IE[HZ(n)] — (E[Hy(n)])%.

Theorem 4.2. Assume that all b-balanced ordered trees with n nodes
are equally likely. The average height hy(n) of such a tree is asymp-
totically given by

(1) ~ — gy 10(n) + By + xp(n), b fized, n — .

1 (’I”b+2

In(e? (1=7pi2)(4rp42—1) ),

_ 1
In(rpy2) (b+4)ryt5

where 7 is EULER’s constant, and xpp(n) is a bounded oscillating
Junction with xp(n) = xp(rp+2mn) and |xp(n)| < C; :=3.375453 ... x
1072,

The variance is asymptotically given by o2(n) ~ m +
wp(n), where pp(n) is a bounded oscillating function with pp(n) =

op(rpran) and |pp(n)] < Cy = 1.595432... x 1071

Here, By denotes the quantity B == —

Proof: Since I'(1) = —~, the preceding lemma, with s = 1, tells us
that

(n)
bb(n) N T n(raa) Tb+2 513( ) + In( Tb+2) Z;,Z(”)+¥'
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Rearranging the terms appearing on the right-hand side, we find the
asymptotic equivalent to hy(n) stated in the theorem, where

L mp(n) +vm0p(n)
n(rp42) 1+ nop(n)

xp(n) == 7

Since n15p(n) = Nsp(rp42 1), we also have xp(n) = xp(rp+2n). More-
over, we find by Remark 4.1(a), (c)

Ixo(n)] <Xp = M(ror2)] é*h}o,b(n)‘) (Ine(m)| + v |n0p(n)])

1 _ _
Ta(ro12) [ (1=70.5) (T1p +770,)

m (ﬁl,oo + ’Yﬁo,oo) =C;.

A

A

With respect to the variance, the preceding Lemma 4.1 with s € {1, 2}

yields
o2(n) ~ 1 [F//(l) + 1o p(n) B (F/(l) + 7717(,(71))2}
[In(rp2) ]2 L 14+nop(n) 1+ no,p(n)
LA
e — n),
6 [(rp2) 2 "
where SOb(n) — [772,b(”)—§ n0,6(n) ] [ 140,65 (n) [4+v2 0,6 (n) 401, (n) [27—n1 5(n) ] _

[In(rpi2)]2 [1+770,b£n)]2
Here, we have used the equality I'"'(1) = 7?4 7. Again, the relation
wp(n) = p(rp42n) is fulfilled and we obtain by Remark 4.1(a), (c)

_ 1
o <Py = WM Pt

% [([12,6(n)] + T 10,5 (0)]) (L + |mop(n)])
2 0,5 ()] + [1,6(n)] (27 + |1 p(n)])]

_ 2 _ _
< WP [11_ﬁ70m]2 (2,00 + % T0,00) (1 + 70,00)
+9° .00 + 71,00 (27 + 7T1,00)] = Ca-

This completes the proof. O

Remark 4.2. (a) The first few numerical values of the quantity
appearing in the preceding theorem are summarized in Table 7. It is

easily verified that f = b— g In(b)+ 'YH;;I%”Q) iy b o),

b — oo.
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(o o [ 1 [ 2 [ 3 [ 4 [ 5 |
| By H .832 746 [ 1.763614 [ 2.525 404 [ 3.284408 [ 4.058874 [ 4.850579 |

[ [ 10 ] 20 [ 30 [ 40 [ 50 [ 100 |
[ By J] 9015213 ] 17.924081 [ 27.195403 | 36.649051 | 56.212250 [ 94.804514 |

Table 7: The numerical values for 3,. The values are not rounded to
the sixth decimal place.

(¢l o [ 1 [ 2 [ 3 [ 4 [ 5 |
Xp || 4639211 [ 1.394848 | 3.933521 | 6.360903 [ 8.326226 | 9.852 836
x 10~3 x 103 x 1073 x 10~3 x 10~3 x 103
Dy || 2.495175 | 5.049852 | 1.215409 | 1.810486 | 2.257 247 | 2.588 387
x 1074 x 1073 x 102 x 10—2 x 10~2 x 1072

[ 10 [ 20 [ 3 [ 40 [ 50 [ 100 [ oo |
Xp || 1.373470 [ 1.577109 [ 1.632140 | 1.654424 [ 1.665579 | 1.681741 | 1.687 726
x 1072 x 102 x 10—2 x 1072 x 1072 x 102 x 10—2
D, || 3.383205 | 3.778771 | 3.883567 | 3.925765 | 3.946839 | 3.977313 | 3.988 581
x 102 x 102 x 10~2 x 102 x 102 x 102 x 1072

Table 8: The numerical values of the amplitudes %}, and @,. The
values are not rounded to the sixth decimal place.

(b) The first few numerical values for the upper bound ¥, (resp. @)
of the amplitude |x,(n)| (resp. |pp(n)|) of the oscillating functions
appearing in the proof of the previous theorem are given in Table 8.
(c) The first few exact and asymptotic values of the average height
hy(n) and of the variance oZ(n) are summarized in Table 9.

5 Concluding Remarks

In this paper we have presented a detailed average case analysis of
b-balanced ordered n-node trees for fixed b > 0 and large n. However,
the computations and results presented raise some questions:

e What is the average behaviour of b-balanced trees when b is not
assumed to be fixed?

e For the expected height of b-balanced ordered trees with n >
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b 0 1 2 3 10
n ex. as. ex. as. exr. as. ex. as. exr. as.
1 1.0000 0.8327
0.0000 3.423 8
2 2.000 0 1.832 7
0.0000 3.4328
3 2.5000 2.4177
0.2500 3.4235
4 3.0000 2.8327 [3.0000 3.2053
0.666 6 3.4238 [0.0000 1.773}4
5 3.4000 3.1547 |[3.2857 3.4361 |[4.0000 3.9937
1.0400 3.4236 |0.2040 1.7729 [0.0000 1.3546
6 3.7500 3.4177 [3.5238 3.6242 |4.1818 4.1565 |5.0000 4.8117
1.4375 3.4235 |10.4399 1.7767 |0.1487 1.3565 |0.0000 1.1755
7 4.0000 3.6400 |3.7272 3.784 2 [4.3260 4.2938 |[5.1333 4.9399
1.714 2 3.4237 |0.6710 1.7793 [0.3067 1.3633 |0.1155 1.1735
8 4.208 3 3.8327 [3.9078 3.9238 |4.4424 4.4144 |(5.2435 5.0491
1.998 2 3.4238 |0.8638 1.7790 |0.4527 1.3691 |0.2355 1.178 2
9 4.372 0 4.0026 [4.0626 4.0472 |4.5452 4.5224 |5.3313 5.1458
2.1871 3.4238 [1.0217 1.7767 |0.5812 1.3714 (0.344 7 1.1855
10 4.506 4 4.1547 [4.2016 4.1573 |4.6364 4.6202 |5.4054 5.223 6
2.8588 8.4286 |1.1448 1.7748 |0.6908 1.87083 |0.4412 1.19238
20 5.3886 5.1547 |5.0005 4.8755 [5.2863 5.2502 |5.8670 5.8338 [12.2497 11.2541
2.857T5 83.4236 |1.5048 1.7794 (1.1746 1.3609 |0.9316 1.1746 | 0.2800 0.9438 3
40 6.3005 6.1547 [5.6692 5.5955 |5.9363 5.8868 |6.4388 6.4127 [12.5067 11.7800
3.0561 3.4236 |1.6429 1.7761 (1.2578 1.3580 |1.1323 1.1985 | 0.6045 0.902 4
100 7.5519 7.4766 |6.5852 6.5479 |6.748 9 6.718 4 |7.2026 7.1893 [12.7446 12.474 1
3.2281 3.4235 |1.7029 1.7750 (1.3161 1.3666 |1.1697 1.1890 | 0.8147 0.9195
200 8.521 1 8.476 6 | 7.2941 7.2700 |7.3589 7.344 7 |7.8005 7.7892 |13.0293 12.971 0
3.83059 3.4235 |1.7236 1.7725 (1.3421 1.3660 |1.1571 1.1767 | 0.9457 0.927 4
400 9.5023 9.4766 [8.0032 7.9891 |7.9926 7.9825 |8.3728 8.3666 [13.4790 13.5136
3.8354 5 3.4235 |1.7508 1.7779 (1.3361 1.3548 |1.1895 1.1982 | 0.9786 0.914 1
500 9.8199 9.798 4 [8.2340 8.2222 |8.1890 8.1817 |8.5686 8.5624 [13.643 5 13.678 7
3.366 2 3.4238 |1.7492 1.7731 |1.834838 1.3575 (1.1836 1.1929 | 0.9660 0.8995
1000 |[10.810 6 10.798 4 [ 8.9473 8.9408 |8.821 2 8.8161 (9.1481 9.1455 [14.1634 14.178 5
3.3909 3.4238 [1.7662 1.7787 |1.83527 1.83615 (1.1810 1.1855 | 0.965 1 0.944 9
2000 [|11.8052 11.798 4[9.6634 9.6600 [9.4436 9.4403 |9.7463 9.744 1 [14.704 4 14.714 5
3.40583 3.4238 |1.7707 1.7775 |1.8468 1.83699 (1.1758 1.1795 | 0.917 1 0.899 3
l 14 ? 14 Q
3.423 71 1.775 88 1.362 88 1.185 93 0.922 26
+eo(n) +e1(n) +p2(n) +@3(n) +®10(n)

Table 9: The exact [ex.] and asymptotical [as.] values of the aver-
age height hy(n) and of the variance oZ(n). In each entry the upper
number and lower number (in italics) indicate hy(n) and o7 (n), re-
spectively. The upper bounds @, of the amplitudes |¢p(n)| are given
in Table 8. The values are not rounded to the fourth decimal place.

<




216

Kemp

3 nodes the parameter b € INg controls the transition from
all totally balanced n-node trees (b = 0) to all ordered trees
with n nodes (b < n — 3). In the course of this transition, the
expected height changes from ©(ld(n)) (see [5]) to ©(y/n) (see
[1]). How could we characterize this transition with respect to
b as a function in n?

Another interesting problem is the computation of the aver-
age value b(n) such that an ordered tree with n nodes is b(n)-
balanced assuming a uniform distribution of all ordered n-node
trees. [It is easy to show that for uniformly distributed ordered
trees with n nodes and fixed height A a random tree is asymp-
totically bp-balanced with by ~ h — 2, n — o0; the variance is
asymptotically o(1), n — oo.]

The distribution of the heights in ordered trees obeys a limiting
theta distribution (see [2], [4]). What is the limit law for the
height of b-balanced ordered trees?

It remains an open problem whether the polynomials P, 1 (2)
introduced in Lemma 3.2 only have simple roots. There is nu-
merical evidence that this is indeed the case but so far the
author was not able to prove this conjecture.

The considerations presented in this paper can be extended
to other classes of ordered trees, at least in a formal sense.
Following [10], the generating function Y'(2) := 37,51 t(n) 2"
of the number t(n) of all trees with n nodes appearing in a
sitmply generated family of trees satisfies the functional equation
Y(2) == 2¢(Y(2)), where ¢(y) = Y 5pca y* with ¢ = 1,
cx € INg for A € IN, and ¢, € IN for some A € IN\{1}. This
definition includes all families of unlabelled trees defined by
restrictions on the set of the allowed node degrees such as t-
ary trees (¢p(y) := 1+ y', t € IN\{1}), extended binary trees
(d(y) == 1+ y?), binary trees (p(y) := (1 +y)?), unary-binary
trees (¢(y) == 1+ y + y?), unbalanced 2-3-trees (¢(y) := 1 +
y? +13) or ordered trees (¢(y) := (1 —y)~') considered in this

paper.
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It is not hard to see that the generating function Ay (z,y) of the
number of all 0-balanced simply generated trees with n nodes,
m leaves and height h (cf. formula (1)) is recursively given
by Apti1(z,9) = 2 (¢(An(z,y)) — 1) with the initial condition
Aq(z,y) = zy. Since the generating function Fj(z) of the num-
ber of all simply generated trees with n nodes and height less
than or equal to k (cf. formula (3)) satisfies the recurrence (see
[2]) Fi41(2) = 2z ¢(Fk(2)) with the initial condition Fy(z) = 0,
the generating functions T}, (%), Gp(2) and therefore Ly, (%)
introduced in the formulae (2), (6) and (8) are defined in a
recursive way for b-balanced simply generated trees.

For ordered trees, the recurrences for Ay(z,y) and Fi(z) have
the explicit solutions presented in (1) and (3), respectively;
for t-ary trees, the recurrence for Ap(z,y) has the solution

Ap(z,y) = = y"', but there does not exist an explicit ex-
pression for Fj(z). Generally, explicit solutions for A, (z,y) and
Fi(z) are not available and we only have recursive formulae.
Thus, in order to obtain enumeration and distribution results
in the case of b-balanced simply generated trees, more powerful
and refined methods must be developed.
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