
JIRSS (2004)

Vol. 3, No. 2, pp 271-296

QUICKSELECT Revisited

Uwe Rösler

Mathematisches Seminar, Christian-Albrecht-Universität zu Kiel, Ludewig-
Meyn-Strasse 4, 24098 Kiel, Germany. (roesler@math.uni-kiel.de)

Abstract. We give an overview of the running time analysis of the
random divide-and-conquer algorithm FIND or QUICKSELECT. The re-
sults concern moments, distribution of FIND’s running time, the lim-
iting distribution, a stochastic bound and the key: a stochastic fixed
point equation.

1 Introduction to FIND

Some forty years ago, Hoare [13], [15] introduced the sorting algo-
rithm 64: QUICKSORT, now a widely applied and well-studied sorting
method. QUICKSORT is the first divide-and-conquer algorithm with
a complete running time analysis, see Rösler [34]. This algorithm
served during the last ten years as the major divide and conquer al-
gorithm to develop and test new methods for the analysis, like the
contraction method [36], [38], generating function equations [19], and
stochastic fixed point equations [35].

Also some forty years ago Hoare [14], [27] introduced the algo-
rithms 65: FIND, sometimes also called QUICKSELECT, for finding
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272 Rösler

the l-th smallest element out of n different numbers. (QUICKSELECT

might be the more preferred term in view of the analogy to QUICKSORT.)
Over the last 10 years many papers have been written on various as-
pects of FIND. Here we present major results, together with some
of the problems inspired by it, and give an outlook of the work in
progress.

The algorithm FIND: The input of the selection algorithm FIND(S, l)
is a set S of n different real numbers and the output is the l-th small-
est element of the input. If n = 1, the algorithm returns the single
element of S. If n > 1, FIND proceeds as follows:

1. Choose a pivot element x uniformly at random from S.

2. Determine the two sets S< = {s ∈ S : s < x}, and S> = {s ∈
S : s > x}.

3. If v := |S<| + 1 = l, return the pivot element x. If v > l,
then continue with FIND(S<, l), and if v < l, continue with
FIND(S>, l − v).

Obviously this algorithm terminates and returns the unique l-th small-
est element of the data set S.

Our version of FIND is a random algorithm, the randomness is in
the algorithm itself; we call this internal randomness. The running
time of the algorithm is always a random variable.

There are deterministic versions of FIND selecting the pivot ele-
ment by a deterministic rule. For example, if the input S is given in
the form of a list, then always choose the first (or last or whatever . . .)
element from this list. The running time of FIND is determined on
the order of the input list of S. If this order bears some randomness,
then the running time is also random. If the input is a random per-
mutation (with uniform distribution) of S, then the running time of
the deterministic version is, again, a random variable with the same
distribution as our (random) FIND.

One of the advantages of our FIND is that the given results depend
only on the cardinality |S| = n of the input set and not, for example,
on the actual order (sequence in an array) in which S is stored on
the computer. For this reason we stay exclusively with the random
version as given.

Our version of FIND splits the set S into 3 sets S<, {x}, S>. (Here
x is the pivot element. One of the sets may be empty.) The 2-version
splits S into the sets S≤ = {s ∈ S : s ≤ x}, and S> (or equivalently
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Quickselect Revisited 273

S<, and S≥ = {s ∈ S : s ≥ x}). For the mathematical consequences
and different asymptotic behaviour, this is to be compared with the
discussion in the section on process convergence.

There are other good random rules to choose the pivot elements.
The 2k+1-median version of FIND, in Grübel [10], uses 2k+1 random
elements uniformly drawn from S and takes their median as the pivot
element. Instead of taking the median of the 2k + 1, it may be
better to take an adapted choice, the one with rank close to (2k+1)l

n ,
Mart́ınez, Panario, Viola [29] pursue this line. An earlier similar
approach is taken in Floyd and Rivest [7]. Shen and Chen [41] treat
the parallel computing.

2 Running time analysis

Of main interest is an analysis of the running time of FIND, the time
to select the l-th smallest in the input set S. This time depends on
the computer, the number of operations, and so on. Sedgewick [40]
considers these questions in his thesis on QUICKSORT but we will not
look at this in this paper.

Basically, it suffices to consider only the number of comparisons
performed by FIND. The average running time will be proportional to
the number of keys, with a proportionality factor depending on the
actual performing computer and the program code. For the (asymp-
totic) number of comparisons of FIND for various n = |S|, or for
contrasting the running time number of comparisons to competing
algorithms, we restrict ourselves to the random number Xn,l of com-
parisons for FIND(S, l) in order to find the l-th smallest in a set S of
n different numbers. (The distribution depends only on |S| = n, but
not on the actual order of the input.)

The running time random variables X·,· satisfy the following re-
cursion, which is basic for all the following analysis. After running
one step of FIND, the random variable Xn,l is the sum of n− 1 com-
parisons in order to obtain the sets S<, S>, plus the running time
for S< (respectively S>). If the pivot element is the U -th smallest in
the set S we add the running time of FIND(S<, l) in case U > l, or of
FIND(S>, l−U) in case U < l. Notice the independence of the realisa-
tion of these random variables from the choice of the pivot element.
Of course, their distribution depends on U , and the size of S<, S>.

Mathematically, the above description comes down to the recur-
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274 Rösler

sive equation

Xn,l
D= 1U>lXU−1,l + 11U<lXn−U,l−U + n− 1, (1)

for 1 ≤ l ≤ n. Here Xi,j , Xi,j , U, 1 ≤ j ≤ i < n, are independent
random variables on some probability space (Ω,A, P ). The distri-
bution of U is uniform on {1, . . . , n}, the distribution of Xi,j is the
same as that of Xi,j and is recursively given by the formula (1), and
the boundary condition X1,1 ≡ 1. The symbol D= denotes equality of
distribution (on IR).

For all our purposes the distribution of the random variables X.,.

is more important than the realisation as random variables. For that
reason we consider the equation (1) for distributions only. Notice
that a formulation with random variables would require some more
notation and processes on trees, the weighted branching processes,
see Rösler[35], and Rösler and Rüschendorf [38].

Now we look at the running time analysis.

Best case: The sharp lower bound of Xn,l is n− 1. This happens if
the pivot element is incidentally the l-th smallest.

Worst case: The sharp upper bound is (n−1)n
2 . This happens if, for

each recall of FIND, U 6= l.

Expectation: The recursive equation for the expectation EXn,l is

EXn,l =
1
n

∑
l<u≤n

EXu−1,l +
1
n

∑
1≤u<l

EXn−u,l−u + n− 1.

The solution is already given in Knuth [22]:

EXn,l = 2(n + 3 + (n + 1)Hn − (l + 2)Hl − (n + 3− l)Hn−l+1),

where
Hn =

∑
1≤i≤n

1
i

are the harmonic numbers.

Higher Moments: How concentrated is the random variable Xn,l

around the expectation an,l := EXn,l? Higher moments of Xn,l pro-
vide some information, e.g. via the Markov inequality. The recursion
(1) provides a recursion formula for all moments.
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The recursion formula for the variance is

VarXn,l =
1
n

∑
l<u≤n

VarXu−1,l +
1
n

∑
1≤u<l

VarXn−u,l−u

+E(n− 1− an,l + 11l<UaU−1,l + 11U<lan−U,l−U )2.

The explicit solution “requires an incredible amount of calculations,”
mostly done by the symbolic manipulation system MAPLE under
“careful human guidance,” as stated in Kirschenhofer and Prodinger
[17]:

VarXn,l = −2(n + 1)(3n + 8)H2
n

+8HnHl(n(l + 2) + 2) + 8HnHn+1−j(n(n + 3− l) + 2)

+2
−(2n2 + n− 9)l2 + (n + 1)(2n2 + n− 9)l + 8(n + 1)

l(n + 1− l)
Hn

−2l(l − 1)H2
l − 2(n + 1− l)(n− l)H2

n+1−l

+4(l2 − (n + 1)l − n2 − 5n− 8)HlHn+1−l

− 2
l(n + 1− l)

(−(2n + 3)l3 + (2n2 + 7n + 24)l2

−(n + 1)(2n + 21)l + 8(n + 1))Hl

− 2
l(n + 1− l)

((2n + 3)l3 − (4n2 + 8n− 15)l2

+(n + 1)(2n2 + 3n− 18)l + 8(n + 1))Hn+1−l

+2(n + 1)(n + 6)H(2)
n

−2(l2 + 5l + 8)H(2)
l

−2(l2 − (2n + 7)l + n2 + 7n + 14)H(2)
n+1−l

+(10l4 − 20(n + 1)l3 + (9n2 + 31n− 6)l2

+(n2 − 11n + 16)(n + 1)l + 32)/(2l(n + 1− l))

+4n
(
(n + 1− l)

l∑
k=1

Hn−k

k
+ l

n+1−l∑
k=1

Hn−k

k

)
,

where
H(2)

n =
∑

1≤k≤n

1
k2

are the harmonic numbers of the second order.
There seems to be no point in giving more explicit formulas for

even higher moments. After all, we are only interested in the asymp-
totic behaviour of the moments. Let l = ln be a function of n, and l

n
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converge to some t ∈ [0, 1], as n approaches infinity. Then

lim
n→∞

1
n

EXn,l = 2− 2t ln t− 2(1− t) ln(1− t)

lim
n→∞

VarXn,l

n2
= −2t2 ln2 t + 4(t2 − t− 1) ln t ln(1− t)

−2(1− t)2 ln2(1− t)− 4t ln t

−4(1− t) ln(1− t)− 4t dilog(t)
−4(1− t) dilog(1− t)

+
20
3

π2t(1− t) + 5t(1− t) +
1
2
,

where dilog(t) =
∫ t
1

ln u
1−u du. The asymptotic formula given above for

the variance is derived by Kirschenhofer and Prodinger [17] via com-
binatorial and generating function methods. Another explicit rep-
resentation was given by Paulsen [32] via differential equations and
probabilistic arguments.

Devroye [4] gives (more detailed) estimates for the tail of Xn,l

n =
Cn,l, 1 ≤ l ≤ n:

ECn,l ≤ 4, E(Ck
n,l) ≤ const(k)nk,

P (Cn,l ≥ u) ≤
(

3
4

)u(1+o(1))

,

for k ∈ IN. The idea is a stochastic upper bound of Cn,l. Compare
with a similar idea used by Grübel and Rösler [8] in Lemma 9 for an
upper exponential tail.

Now fix l, and let n tend to infinity. Then (as noted in [16] [24])

Xn,l

n
− 1 →n→∞ D;

the limit D is distributed like the Dickman random variable. One
way of characterizing the Dickman distribution is via the solution of
the fixed point equation

D
D= UD + U,

where U,D are independent and U is uniformly distributed on [0, 1].
(For more on the Dickman distribution see the references in [16].)
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3 Miscellaneous

Recalls: Let Rn,l be the number of recalls for FIND(n, l). This ran-
dom variable satisfies the recursive equation

Rn,l
D= 11Un>lRUn−1,l + 11Un<lRn−Un,l−Un + 1, (2)

for 1 ≤ l ≤ n ∈ IN. Here Ri,j , Ri,j , Un, 1 ≤ j ≤ i < n, are indepen-
dent random variables on some probability space. The distribution
of Un is uniform on {1, . . . , n}, the distribution of Ri,j is the same
as that of Ri,j , and is recursively given by the formula (2), and the
boundary condition R1,1 ≡ 0.

The distributional equation (2) leads to recursive equations for the
expectation ERn,l and the variance VarRn,l. The solution, derived by
combinatorial methods using Maple, is given by Kirschenhofer and
Prodinger [17]:

ERn,l = Hl + Hn−l − 1,

VarRn,l =
2(n + 1)

l(n + 1− l)
Hn + (1− 2(n + 1)

l(n + 1− l)
)(Hl + Hn+1−l)

−(H(2)
l + H

(2)
n+1−l) +

2(n + 1)
l(n + 1− l)

+ 2.

Joint distributions: Let J be a subset of {1, . . . , n}, n = |S| and
let Xn,J be the number of comparisons in order to find simultaneously
all j-th smallest elements, j ∈ J , out of S. The algorithm FIND can
be suitably adapted: split only a set if necessary. In other words,
use all the splittings done by QUICKSORT, cf. Section 4, which are
necessary for the given problem. This procedure is called MULTIPLE

QUICKSELECT. Again the joint distribution of Xn,J satisfies a recursive
equation. We skip presenting this relation to avoid the introduction
of new notation.

Define the grand average X
(p)
n , p ∈ IN, that is,

X(p)
n :=

1(
n
p

)∑
J

Xn,J ,

where the sum is over all J ⊂ {1, . . . , n} with p elements. Analogously
define the number of recalls Rn,J and R

(p)
n .

The recursive equations admit an explicit solution for the expec-
tation, given in Prodinger [33]:

EXn,J = 2n + jp − j1 + 2(n + 1)Hn − 2(j1 + 2)Hj1
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278 Rösler

−2(n + 3− jp)Hn+1−jp −
p∑

i=2

(ji + 4− ji−1)Hji+1−ji−1

+8p− 2,

ERn,J = Hj1 + Hn+1−jp + 2
p∑

j=1

Hji+1−ji − 2p + 1,

EX(p)
n = 2n + jp − j1 + 2(n + 1)Hn − 2(j1 + 2)Hj1

−2(n + 3− jp)Hn+1−jp

−
p∑

i=2

(ji + 4− ji−1)Hji+1−ji−1 + 8p− 2,

ER(p)
n = (Hn+1 −Hp)

2p(n + 1)2

(n + 2− p)(n + 1− p)
− n(2p− 1) + p

n + 2− p
,

where j1 < j2 < · · · < jp are the elements of J, |J | = p ∈ IN. Explicit
solutions for the variance are in Panholzer and Prodinger [30].

Choice of the pivot element: Blum, Floyd, Pratt, Rivest, and
Tarjan [3] consider the algorithm PICK instead of FIND. The point is
a more careful choice of the pivot element. They were able to give an
upper bound—no more than n 5.4305 . . . comparisons are necessary
to find the l-th smallest out of n. This bound was sharpened in a series
of papers: Floyd and Rivest [7], Schöenhage, Peterson and Pippenger
[39], and Yap [42].

We can improve the performance of FIND by a suitable choice of
the pivot element. The first try would be the 2k + 1-median choice.
Choose at random 2k + 1 elements of S and take the median as
pivot element. For fixed k the additional amount of comparisons is
negligible.

The expectations ERn,l, and EXn,l for the median of 3-version
are given in Panholzer and Prodinger [30], and in Kirschenhofer,
Prodinger and Mart́ınez [18]. The general 2k + 1-version was treated
by Panholzer [31]. The techniques and final results for the asymp-
totics are similar to those in FIND (as given in the sequel), cf. Grübel
[10].

An adaptive choice of the pivot out of 2k+1 would be even better.
The idea is a suitable choice of the pivot in the 2k+1 sample, basically
the one with a rank close to the relative l-th rank out of n, proposed in
Mart́ınez, Panario, Viola [29]. The advantage of an adapted choice is
a continuation of FIND with small sets, at least with high probability.
This leads to the idea of choosing two pivot elements, one larger and
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Quickselect Revisited 279

one smaller than the target (with high probability). Then recall the
algorithm for the set of elements between the two pivots, see Floyd
and Rivest [7]. For parallel selection see [41].

Choosing the pivot in a suitable way adds more comparisons to
FIND. Mart́ınez and Roura [28] studied the contribution of sampling
to the moments, e.g. the variance, in some generality.

4 Convergence as a process

Asymptotic results are often easier to obtain than the exact ones in
a discrete setting. One strategy is to first obtain (explicit) results
on Xn,l and then go to the asymptotics. We took that point of view
in the previous sections for the first and second moment. Another
strategy is to do first the asymptotics and then look for corresponding
results. This approach often works better, as the limiting object often
has preferable properties, which are not convoluted by discretisation.
We come now to the process convergence of (Xn,l)l, as n → ∞, to
the FIND process Z as proved in Grübel, Rösler [8].

Why do we expect a limiting process? The sorting algorithm
QUICKSORT splits randomly the input set S into the sets S<, { pivot },
S> in this order. Then QUICKSORT is called recursively and each set
is split until only one element or emplty sets are left. The output is
an ordered list.

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

u
u
u

u
u

u
uu u u u

l

However, for FIND(n, l) we do not have to sort the whole input
set. For finding the l-th smallest of n it suffices to split only the sets
containing the l-th smallest element. In the picture this is indicated
by l. The average running time of FIND is proportional to the length
of all sets containing l.
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280 Rösler

For the mathematical description we use the tree structure for
indexing the intervals. Compare with Rösler and Rüschendorf [38]
for a more general embedding into weighted branching processes, and
respectively random dynamical systems.

The FIND process: Let V be the index set {0, 1}∗ :=
⋃∞

n=0{0, 1}n

of all finite 0–1 sequences. We use by convention {0, 1}0 := {∅}. The
empty set is called the root of V and denotes the 0-1 sequence with
no 0’s and no 1’s. We use v = v1v2 . . . vn ∈ {0, 1}n, |v| = n and
v|m = v1v2 . . . vm ∈ {0, 1}m, for m ≤ n. The index set is a natural
tree by descendence, v0 and v1 are children of v ∈ V and so on.

Let (Ω,A, P ) be a probablitlity space and U(v) : Ω → [0, 1], v ∈
V, be independent uniformly distributed random variables. Let E
be the set of half open intervals [a, b), 0 ≤ a ≤ b ≤ 1, of the unit
interval, closed on the left and open on the right. The symbol |I|
denotes the length of the interval I. Define random maps T (v) =
(T0(v), T1(v)) : Ω → (E × E)E which split half open intervals into 2
half open intervals,

[a, b) 7→ T (v)([a, b)) = (T0(v)([a, b)), T1(v)([a, b)))
= ([a, a + (b− a)U(v)), [a + (b− a)U(v), b)).

(The formally correct writing including ω is

T (v)(ω)([a, b)) = (T0(v)(ω)([a, b)), T1(v)(ω)([a, b)))
= ([a, a + (b− a)U(v)(ω)), [a + (b− a)U(v)(ω), b)).

We drop here and in the sequel the stipulation ω ∈ Ω for simplicitiy,
as is common in probability theory.

Define recursively the map L : Ω → EV via L(∅) = [0, 1) ∈ E,
and

L(vi) = Ti(v)(L(v)),

v ∈ V, i = 0, 1. In a more elaborate form, v = v1v2 . . . vn,

L(v) = Tvn(v|n−1)(Tvn−1(v|n−2)(. . . (Tv1(∅)([0, 1))) . . .).

Define the process Zn : Ω → IR[0,1], n ∈ ZZ+ via

Zn(t) =
∑
|v|≤n

11t∈L(v)|L(v)|,

for t ∈ [0, 1), and Zn(1) = limt↑1 Zn(t). The Zn random variables
satisfy the (backward, see [38]) recursive equations

Zn(t) = 1 + 1U≥tUZ
(0)
n−1

( t

U

)
+ 1U<t(1− U)Z(1)

n−1

( t− U

1− U

)
,
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where t ∈ [0, 1], U = U(∅) and Z
(i)
n−1 denotes the Zn−1 process for the

tree with the starting state [0, 1) on the root i and of height n − 1,
compare with the picture. (More formally,

Z
(0)
n−1(

t

U
) :=

∑
|v|≤n−1

11t∈L(0v)
|L(0v)|

U
,

and
Z

(1)
n−1(

t− U

1− U
) :=

∑
|v|≤n−1

11t∈L(1v)
|L(1v)|
1− U

).

Here is a picture of Zn, the graph (t, Zn(t))t is given as the upper
line.

r r rr r r r r

6

t

The process Z : Ω → IR[0,1]

Z(t) = lim
n→∞

Zn(t) =
∑
v∈V

11t∈L(v)|L(v)|

is the FIND process [8].
The FIND process is well defined since Zn(t) is monoton increasing

in n. The FIND random variable Z takes values in D = D([0, 1]), the
set of right continuous functions f : [0, 1] → IR with finite left hand
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282 Rösler

limits. All random variables Z(t) have finite exponential moments
uniformly in t. Consequently all moments of Z(t) exist and are finite.

The FIND process satisfies the (backward [38]) recurrence relation

Z(t) = 1 + 1U>tUZ(0)
( t

U

)
+ 1U≤t(1− U)Z(1)

( t− U

1− U

)
, (3)

where t ∈ [0, 1], U = U(∅) and Z(i)(t) denotes the FIND process
for the tree with starting state [0, 1) on the root i ∈ {0, 1}. (More
formally, let Q(i)(t) =

∑
v∈V 11t∈L(iv)|L(iv)| and define Z(0)(t) :=

1
U(∅)Q

(0)(tU(∅)) and Z(1)(t) := 1
1−U(∅)Q

(1)(U(∅) + t(1− U(∅))).)

Process Convergence: Once we have identified the limiting pro-
cess, we come now to the process convergence. Grübel and Rösler [8]
take a quite probabilistic view showing Skorodhod convergence in D
of the processes itself.

The Skorodhod distance ρ(f, g) of two functions f, g in the space
D is the minimal a ∈ IR such that there is a bijective increasing
function λ : [0, 1] → [0, 1] on the unit interval to itself satisfying

|λ(s)− λ(t)|
|s− t|

≤ a, |f(t)− g(λ(t))| ≤ a,

for all s 6= t ∈ [0, 1].
On some (new) probability space (Ω,A, P ) Grübel and Rösler [8]

define a specific sequence Yn : Ω → D of D-valued processes such
that Yn( l−1

n ) has the same distribution as Xn,l

n for the 2-version of
FIND. Theorem 4 of [8] shows Skorodhod convergence

Yn →n→∞ Z

of Yn to the FIND process. (Taking the 2-version is essential, there is
no Skorodhod convergence for the 3-version. The trouble is basically
functions like 11[1/n,2/n) ∈ D which converge in n pointwise to 0, but
do not converge in Skorodhod metric.)

Skorodhod convergence does not imply weak convergence Yn(t) →
Z(t) in general. However in our case, almost every path [0, 1] 3 t 7→
Z(t)(ω) is continuous at t ∈ [0, 1] (for almost all ω ∈ Ω). Theorem 8
in [8] states the weak convergence

Xn,ln

n
→n Z(t) (4)

for all sequences ln satisfying ln
n →n→∞ t ∈ [0, 1]. This result is true

for the 2-version and the 3-version of FIND.
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Since Xn,ln
n and Z(t) have finite exponential moments, standard

arguments on uniformly integrable random variables provide the con-
vergence of any moment or exponential moment,

E
(Xn,ln

n

)a
→n→∞ EZa(t), E

(
ea

Xn,ln
n

)
→n→∞ EeaZ(t).

5 Asymptotic moments

In this section we give some consequences of the process convergence
for moments.

Expectation: Grübel [9] gives an alternative proof of (4) via Markov
chain methods. Kodaj and Mori [23] give the rate

l1

(
Xk

n,l

n
,Zk(

l − 1/2
n

)

)
≈ ln

l5(n− l + 1)5

n2
,

for the distance of
Xk

n,l

n to Zk( l−1/2
n ) in Wasserstein metric

l1(µ, ν) = inf ‖X − Y ‖1,

where ‖.‖1 denotes the L1-norm and the infimum is taken over all
random variables X, Y on some probability space such that the dis-
tribution of X is µ, and that of Y is ν. We use here l1(X, Y ) for
the l1-distance of the distribution of X to that of Y. (Therefore,
l1(X, Y ) =

∫
|F (x)−G(x)| dx, where F,G are the distribution func-

tions for X, Y.)
Furthermore, Kodaj and Mori [23] give a limit process which pro-

vides for the 1-dimensional marginals an upper bound in stochastic
order. Similar results were given for higher moments and for other
(Orlicz) distances.

Higher moments: We are now able to give statements on higher
moments of X via higher moments of the FIND process Z. Let mk :
[0, 1] → IR, k ∈ IN , be the moment generating function

mk(t) = EZk(t)

of the FIND process. The previous section provides

lim
n→∞

E
Xk

n,ln

n
= mk(t),
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for all k ∈ IN , and any sequence ln satisfying ln
n →n t ∈ [0, 1].

All moments exists since Xn,l

n (cf. [5]), and Z(t) (cf. [8]) have
(uniformly in l, t) exponentially decreasing tails. Weak convergence
and uniform integrability (consequences of exponential tails) imply
the convergence of the moments.

We can identify mk as a fixed point of some operator. Let B be the
Banach space of all bounded measurable functions f : [0, 1] → [0, 1]
endowed with the supremum norm. For given k and mi, i < k as
above define the operator Kk : B → B via

Kk(f)(t) :=
∫ 1

t
ukf

( t

u

)
du +

∫ t

0
(1− u)kf

( t− u

1− u

)
du + bk(t),

where

bk(t) =
k∑

i=1

(−1)i−1
(

k

i

)
mk−i(t).

The function mk is the unique fixed point of Kk:

Kk(mk) = mk,

for k ∈ IN, see Paulsen [32].
From the fixed point property of mk Paulsen [32] derived the

differential equation

Dk+2mk(t) =
(

1
1− t

− 1
t

)
Dk+1mk(t) + Dk+2bk(t),

where D denotes the differentiation with respect to t. Explicit solu-
tions for m1 and m2 are given above. Explicit solutions for higher
moments are not known and, although it seems manageable, they ap-
pear to be inattractive in view of the formula for the variance. The
above two characterisations allow (good) numerical approximations.

Joint moments: We also obtain asymptotic results on joint distribu-
tions. Recall the definition of Xn,J in Section 3. Let jn,1 < · · · < jn,p

be the elements of J = J(n) ⊂ {1, . . . , n}. Assume limn
jn,i

n = ti ∈
[0, 1], for 1 ≤ i ≤ p. Then we state as an exercise,

Xn,J

n
D→n

∑
v∈V

11∃i:ti∈L(v)L(v).

Further all moments converge as do all exponential moments.
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Grand averages: For grand averages the asymptotic via FIND is
not obvious, and although it has not been done, it will work in
a straightforward way. However, grand averages satisfy an easier
stochastic fixed point equation. The grand averages X

(p)
n
n = Y

(p)
n con-

verge (weakly and in Mallows l2-metric) to some random variable
Y (p). Lent and Mahmoud [24] follow up.

The limit satisfies the stochastic fixed point equation, cf. Mah-
moud and Smythe [26],

Y (p) D= −2Hp +
p∑

i=0

11U(i)<U≤U(i+1)
((Y (i) + 2Hi + 1)U

+(Y (p−i) + 2Hp−r + 1)(1− U)),

where U,U1, . . . , Up, Y
(i), Y

(i)
, 1 ≤ i ≤ p, are independent random

variables. The variables U,U1, . . . , Up are uniformly distributed on
[0, 1], and U(1) ≤ · · · ≤ U(p) is the order statistic of U1, . . . , Up. By
definition U(0) := 0 and U(p+1) := 1. The random variables Y (i) are

distributed as Y
(i), the distribution is recursively given.

The fixed point equation for the special case p = 1, shown in
Mahmoud, Modarres, and Smythe [25], is

Y
D= X(Y + 3)− 2,

where X, Y are independent, and X has density x 7→ 2x11[0,1](x). The
characteristic function is

EeitY = e
∫ t

0
eiu−1−iu

u
du.

Recalls: Recently Grübel and Stefanowski [11] studied recalls via
the FIND process.

The supremum of FIND: Consider the supremum M := supt Z(t)
of the FIND process. The fixed point equation (3), using the given
representation via random variables, provides

M = 1 + (UM (0)) ∨ ((1− U)M (1)),

with M (i) = supt Z(i)(t). Therefore M is a solution of the stochastic
fixed point equation

X
D= 1 + (UX) ∨ ((1− U)X),
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where U,X,X are independent, U has a uniform distribution and
X, X have the same distribution.

This fixed point equation has a unique solution [8] in the set of
square integrable random variables. (It is to our knowledge the first
stochastic fixed point equation considered involving the supremum
(infimum). A systematic study has just started.)

Fixed point equations may help in deriving properties of random
variables. Devroye [5] obtained lower and upper estimates

2.3862 < 1 + 2 ln 2 ≤ E(M − 1) ≤ 5√
2π

+ 12
12e

5
< 8.5185

for the expectation. For higher moments Devroye [5] obtains

E(M − 1)k ≤ 3k−1k! E(M − 1).

(A better constant is also given in [5].) M has a smooth density
[5], which is supported on [2,∞), has a variation bounded by 2 and
is Lipschitz with Lipschitz constant not exceeding 2. Thus, M has
superexponential tails in the sense that, for all λ > 0, there exists a
constant C = C(λ) such that, for all t ≥ 0,

P (M ≥ t) ≤ Ce−λt.

We shall give a different proof highlightening the fixed point equa-
tion. The method is applicable to more general recurrences, e.g. the
discrete random variables supl

Xn,l

n have also superexponential tails.

Lemma 5.1. Let M = supt Z(t), or M = supl
Xn,l

n . Then, for every
λ > 0, there exists a constant C = C(λ) (uniformly in n) such that

P (M ≥ t) ≤ Ce−λt.

EeλM is finite uniformly in n.

Proof heuristics: Assume, for any a < 0, there exists b > 0 such
that for all, x ≥ 0:

P (X ≥ x) ≤ beax.

Further let beax0 ≥ 1 and 2e−a

−a(x0−1) < 1 for some x0 > 1. Then the
fixed point equation provides for x ≥ x0

P (X ≥ x) = P ((UX) ∨ ((1− U)X) ≥ x− 1)
≤ P (UX ≥ x− 1) + P ((1− U)X ≥ x− 1)
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= 2P (UX ≥ x− 1) ≤ 2bEea(x−1) 1
U

≤ 2b

∫ ∞

1

1
v2

ea(x−1)v dv ≤ 2b

∫ ∞

1
ea(x−1)vdv

≤ 2b
ea(x−1)

−a(x− 1)
≤ beax 2e−a

−a(x− 1)
≤ beax

The term I is strictly smaller than 1 for sufficiently large x.

This observation enables us to give a formal correct proof via
the contraction method, [35], [38]. Let K be a map on probability
measures defined by

K(µ) =  L(1 + (UX) ∨ ((1− U)X)

where U,X,X are independent, U has a uniform distribution and
X, X the same distribution µ. If µ satisfies the condition µ([x,∞)) ≤
beax, for all x ≥ 0 and some a < 0 < b, then K(µ) satisfies the
condition with the same a and b.

Since K is a strict contraction, with respect to the Mallows l2-
metric, the sequence

µ0 := δ0, µ1 := K(µ0), µ2 := K(µ1), . . .

converges in l2-metric to a limit µ∞, which is the distribution of M.
If µ0 satisfies the condition, then all µn, n ∈ IN , satisfy the condition
and also the l2-limit µ∞.

The same argument works for the discrete analog supl
Xn,l

n . We
only have an additional index n, and have to use some uniformity in
n for the induction step. (The choice of b may be different.) We shall
not pursue the details.

6 FIND revisited

From the above we have a good understanding of FIND and all ma-
jor questions seem to be reasonably answered. So, why return to
FIND? The (adhoc method of) Skorodhod convergence of the pro-
cesses worked for the 2-version of FIND, but it is not true for the
3-version. However, we still obtain all results for the 3-version as
for the 2-version. There should be no major difference between the
versions. It seems to be a purely technical difficulty.

The trouble is the Skorodhod convergence is too fine a conver-
gence. We actually need to ask for process convergence in the sense
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of convergence of the finite marginal distributions to some limit and a
good representation of the limiting process. (This requires less than
the convergence of special realisations of processes.) We will show
in the sequel, that this program works for the 2-version and the 3-
version simultaneously, since the limiting marginal distributions are
the same.

Our point in doing this for FIND is to sharpen the tools and meth-
ods for more complex algorithms. FIND serves as a major toy exam-
ple to try new ideas and techniques. We intend to develop a method,
which works for both versions and also in a more general setting: the
setting of stochastic fixed point equations for measures on function
spaces.

Let X be a random variable with values in IRI , I ⊂ IR. Let
ΦJ,K : IRJ → IRK , for K ⊂ J ⊂ I, be the projection from IRJ

to the subspace IRK . We use ΦJ for ΦI,J . The distribution PΦJ (X)

of the random variable ΦJ(X), ΦJ(X)(ω) = ΦJ(X(ω)), is called the
marginal distribution of X for the set of coordinates J. The finite
marginal distributions are those with a finite index set J.

Our program consists of 3 steps. Let ϕ
(n)
J be the marginal distri-

bution of Yn to the coordinates J. The first step of our program is to
show ϕ

(n)
J converges weakly, as n → ∞, to some limit called ϕJ for

every finite set J ⊂ [0, 1].
In the second step we show the consistency of the family ϕJ , J ⊂

[0, 1] finite: For all finite K ⊂ J ⊂ [0, 1], with |J | = |K|+ 1 < ∞, the
following relation holds:

ϕJ(Φ−1
J,K(·)) = ϕK(·).

The consistency is equivalent to the existence of a probability measure
µ on IR[0,1] satisfying

µΦ−1
J = ϕJ ,

for all finite J ⊂ [0, 1]. The function space IR[0,1] is endowed with the
smallest σ-field A ensuring all one dimensional projections Φ{i}, i ∈
[0, 1] are measurable.

In a third step we show a “nice” representation of a random vari-
able X with the distribution µ as above. The meaning of “nice” is
something like the paths X(ω) : I → IR have desirable properties for
almost all ω ∈ Ω. For the Brownian motion “nice” is continuity. In
our setting “nice” requires the realisation of the limiting process with
paths in D.
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Step 1: This should purely be a consequence of the recursion on Yn.
The 1-dimensional distributions satisfy

ϕ
(n)
{t}

l2→n→∞ ϕ{t},

the convergence, for all t ∈ [0, 1], is to some distribution [37]. The
convergence is in Mallows l2-metric. (Mallows l2-convergence is equiv-
alent to weak convergence and the convergence of the finite second
moments. For general information on the Mallows metric see Bickel
and Freedman [1].) Further the function

[0, 1] 3 t 7→ ϕ{t}

is continuous in l2-Mallows metric. The measures ϕ{t} were identified
with the distribution of Z(t). Recently Knof [20] showed steps 1 and
2 in full detail—the convergence of the finite dimensional marginals
to some limit ϕ and the consistency.

Step 2: Once the convergence in step 1 is done, the consistency of
the family ϕJ , J ⊂ [0, 1] finite, is easy and an immediate consequence
of the recursive structure.

Let µ be the corresponding probability measure. As a conse-
quence there exists a process Z with distribution µ. Notice that the
process Z has values in IR[0,1], which is endowed with the σ-field A
generated by one-dimensional projections. This process satisfies the
stochastic fixed point equation

(Z(t))t
D=
(

1 + 1U>tUZ(0)(
t

U
) + 1U≤t(1− U)Z(1)(

t− U

1− U
)
)

t
, (5)

where t ∈ [0, 1]. The random variables Z(0), Z(1), U are independent.
The random variable U is uniformly distributed on [0, 1]. The pro-
cesses Z(0), Z(1) and Z all have the same distribution µ. The symbol
D= denotes the same distribution. We use the notation X = (X(t))t

for a processes X : Ω → IR[0,1]. Notice that all this involves the finite
dimensional distributions only.

We should explain, why the equation (5) is a stochastic fixed
point equation for distributions. Define the map K from probability
measures on (IR[0,1],A) to itself,

K(ν) =  L
((

1 + 1U>tUZ(0)(
t

U
) + 1U≤t(1− U)Z(1)(

t− U

1− U
)
)

t

)
.
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The random variables Z(0), Z(1), U are independent. The variable U
is uniformly distributed on [0, 1]. The processes Z(0) and Z(1) have
the distribution ν. The symbol  L denotes the distribution of a random
variable. Equation (5) now reads K(µ) = µ, i.e. µ is a fixed point
of K. Actually K is a strict contraction for a suitable metric, as shown
in Knof [20]. This opens the field for the contraction method [38] for
recursive equations of random variables now with values in a function
space.

Step 3: Given a consistent family of distributions, when there exists
a process with nice paths in D, the space of right continuous paths
with left limits. The FIND process Z with path in D, seen as a process
with values in (IR[0,1],A), has distribution µ.

Lemma 6.1. There exists a random variable with the distribution µ
from step 2 and with values in D.

Proof: According to Theorem 1 of Dubins, Hahn [6], it is equivalent
that the family of marginals (ϕJ)J on IR[0,1] is right continuous and
the following condition is satisfied: For all ε > 0, β > 0, there is
a finite positive integer k such that, for all finite J , the condition
ϕJ({f ∈ IR[0,1] | Nε,J(f) > k}) < β holds, where Nε,J(f) is the
supremum over all integers r such that there exist r nonoverlapping
intervals [si, ti], with si, ti ∈ J , and |f(si)− f(ti)| ≥ ε.

The right continuity is easy to show, since even continuity is given,
if the elements jn,1 ≤ jn,2 ≤ · · · ≤ jn,p of Jn converge to the elements
j1 ≤ j2 ≤ · · · ≤ jp of J then ϕJn converges weak to ϕJ , see [20].

We next turn to showing the condition. Fix ε, J, β. Let n, k be
natural numbers. Split the set S of n numbers by a uniform dis-
tributed random variable into two sets S<, S≥. The left set gets the
name 0, and the right the name 1. These are the sets of the first
generation. Split every set of the first generation independently into
two sets. Give them a name by adding 0 to the name of the mother
for the left set and adding 1 for the right set. Let Ln(v) be the set
to the name v ∈ V. (Some of these sets might be empty.) The k-th
generation consists of all sets Ln(v), |v| = k.

Let Ln,k = sup|v|=k
|Ln(v)|

n be the maximal size of a set in k-th
generation divided by n. Let X|Ln(v)|,J(v) be the number of compar-
isons of FIND in order to find all l-th smallest elements, l ∈ J of
the v-interval. (This interval has |Ln(v)| elements.) We continue the
procedure up to the k-th generation. Then the distribution of Xn
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satisfies

(Xn,l)l
D=

∑
|v|=k

X|Ln(v)|,l(v)(v) + C


l

,

where X.,.(v), Ln(v), l(v), C, |v| = k are appropriate random vari-
ables. Consider now [0, 1] 3 t 7→ Yn,t as (linear or piecewise constant)
continuation of Yn,t = Xn,tn

n for t = 1
n , . . . , n

n .
Let Mn(v) = supt Y|Ln(v)|,t(v) be the maximum for the X(v) pro-

cess for the v-interval. Hence, Mn(v) = supl
X|Ln(v)|,l(v)

|Ln(v)| . We use

Mn = supl
Xn,l

n . We obtain an upper estimate for N via

Nε,J(Yn) ≤ 2k +
∑
|v|=k

Nε,J(v)(
|Ln(v)|

n
Y|Ln(v)(v)),

since the interval [si, ti] contains either a dividing point or is contained
in an interval L(v), |v| = k.

Estimate for δ:
We have

P (Nε,J(Yn) ≥ 2k + 1) ≤ P (Ln,k > nδ) + P (Ln,k ≤ nδ)P
(
∃|v| = k,

Nε,J(v)

( |Ln(v)|
n

Y|Ln(v)|(v)
)
≥ 1 | Ln,k ≤ nδ

)
≤ P (Ln,k > nδ) +

∑
|v|=k

P (Nε,J(v)

( |Ln(v)|
n

×Y|Ln(v)|(v)
)
≥ 1 | Ln,k ≤ nδ

)
≤ P (Ln,k > nδ)

+
∑
|v|=k

P
(
Mn(v) ≥ n

|Ln(v)|
| Ln,k ≤ nδ

)
≤ P (Ln,k > nδ)

+
∑
|v|=k

P
(
Mn(v) ≥ 1

δ
| Ln,k ≤ nδ

)
≤ P (Ln,k > nδ) +

∑
|v|=k

sup
i

P
(
Mi ≥

1
δ

)
≤ P (Ln,k > nδ) + 2k sup

i
P
(
Mi ≥

1
δ

)
= I + II.
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For fixed k, Ln,k

n converges weakly to a random variable L∞,k. Lemma 1
of [8] states that there exists a random variable K = K(ω) such that,
for all k ≥ K,

Mk(ω) ≤ k

(
2
3

)k/2

.

Choose k sufficiently large such that P ({ω ∈ Ω | k > K(ω)}) < β/2.

Choose δ = 2k
(

2
3

)k/2
. Then for n = n(k) sufficiently large

I = P (Ln,k > δ) ≤ P (L∞,k > δ/2) ≤ β/2.

For an estimate of the second term, use the result of Section 5,

II = 2k sup
i

P
(
Mi ≥

1
δ

)
≤ 2kC(λ)e−

λ
δ ,

for some (even for any) λ > 0. Fix λ > 0, and choose eventually k
larger to ensure II < β/2. (Recall that δ depends on k.)

Altogether, we obtain for this fixed k and for n sufficiently large
uniformly in J

P (Nε,J(Yn) ≥ 2k + 1) < β.

Since ϕ
(n)
J converges weakly to ϕJ we obtain the condition for ϕ.

This proof works also for the 3-version.

Once we have finished all 3 steps in a general setting including
FIND, we are able to show process convergence in more complex sit-
uations, like the profile of binary trees. And we are able to use the
stochastic fixed point equation for further asymptotic results, now for
measures on function spaces.

The FIND process itself satisfies the stochastic fixed point equation

(Z(t))t
D=
(

1 + 1U>tUZ(0)(
t

U
) + 1U≤t(1− U)Z(1)(

t− U

1− U
)
)

t
,

now for processes on D endowed, for example, with the Borel σ-field
induced by the Skorodhod metric.

Again, this is a fixed point equation, this time on the space D. It
would be nice to have some good metric on D available, such that K
is a strict contraction and converges by Banach’s fixed point theorem.
Of course, D has to be a complete metric space.
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[10] Grübel, R. (1999), On the median-of-K version of Hoare’s selec-
tion algorithm. Theor. Inform. Appl., 33, 177–192.
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