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Abstract. The paper proposes empirical Bayes (EB) estimators for
simultaneous estimation of means in the natural exponential fam-
ily (NEF) with quadratic variance functions (QVF) models. Morris
(1982, 1983a) characterized the NEF-QVF distributions which in-
clude among others the binomial, Poisson and normal distributions.
In addition to the EB estimators, we provide approximations to the
MSE’s of these estimators. Our approach generalizes the findings of
Prasad and Rao (1990) for the random effects model where only area
specific direct estimators and covariates are available. The EB esti-
mators are derived using the theory of optimal estimating functions
as proposed by Godambe and Thompson (1989). This is in contrast
to the approach of Morris (1988) who found some approximate EB
estimators for this problem. Also, unlike Morris (1988), we allow un-
equal number of observations in different clusters in the derivation of
the EB estimators. In finding approximations to the MSE’s, we apply
a bias-correction technique as proposed in Cox and Snell (1968). We
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2 Crescenzi et al.

illustrate our methodology by reanalyzing the toxoplasmosis data of
Efron (1978, 1986).

1 Introduction

Empirical Bayes (EB) methods have played a major role in the theory
and practice of statistics for nearly two decades. These methods are
most advantageous in the context of simultaneous estimation and
prediction. In many instances, the direct estimators of the parameters
in the different strata have low precision, primarily due to smallness
of the sample sizes in the strata. EB estimators, on the other hand,
gain in precision by “borrowing strength” across all the strata. The
EB methods have been implemented very successfuly in many diverse
areas, such as surveys, economics, insurance, medicine and others.

There exists now a huge EB literature built on normal models,
popularized especially by Efron and Morris in a series of articles,
Morris (1983b) is a good source of reference for many of these key
papers. In contrast, the corresponding literature for the analysis
of discrete data is relatively sparse. Beginning with Dempster and
Tomberlin (1980), there are several attempts towards EB analysis of
binomial data (see for example MacGibbon and Tomberlin, 1989; Far-
rell, MacGibbon and Tomberlin, 1997; Jiang and Lahiri, 2001), but
a general systematic approach based on exponential family models
which handles both discrete and continuous data is mostly lacking.

Sarkar and Ghosh (1998) initiated such an EB analysis for the
natural exponential family (NEF) with quadratic variance functions
(QVF) models. Morris (1982,1983a) characterized the NEF-QVF
distributions. Its members are the binomial, Poisson, normal with
known variance, gamma, negative binomial and the generalized hy-
perbolic secant distributions. The Sarkar-Ghosh procedure was partly
ad hoc, especially in the context of estimating the dispersion param-
eters (to be explained in Section 2). More importantly, they did not
provide any measures of uncertainty associated with their estimates.

The primary objective of this paper is to develop EB estimation
procedures along with approximate measures of uncertainty for NEF-
QVF models based on the theory of “optimal estimating functions”
as proposed by Godambe and Thompson (1989). The stimulus for
this work came from our association with the United States Bureau
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of Census. The Bureau has the Federal mandate to produce esti-
mates of the proportion of poor school-age-children (chilren in the
age-group 5-17) in alternate years for the different states, counties
and school-districts of the United States. This forms a part of its
Small Area Income and Poverty Estimation (SAIPE) project. The
direct estimates, though reliable at the national level, are not so for
lower levels of geography, such as states, counties and school-districts
due to small sample sizes. EB methods are particularly valuable here
because of their inherent ability to borrow strength.

The present article, however, is primarily methodological, where
we formulate the EB procedure for NEF-QVF models and study their
properties. The procedure seems to be quite versatile, and can be
adapted in many different circumstances including small area esti-
mation problems. The EB estimation procedure is developed in Sec-
tion 2. In this section, we highlight also the difference between our
approach and the one proposed in Morris (1988) and Sarkar and
Ghosh (1998). Morris (1988) initiated EB estimation for NEF-QVF
models. However, there are three main counts where we differ from
Morris. First, our EB estimators are exact rather than approximate
as in Morris. Second, unlike Morris, we can allow unequal number
of observations in the different strata. Finally, while Morris provided
approximations for the posterior means and variances, we provide,
instead, in Section 3, approximations to the mean squared errors of
the proposed EB estimators . Our results are intended to generalize
those of Prasad and Rao (1990) for the random effects (often referred
to as the Fay-Herriot) model. Other than Prasad and Rao (1990),
related work in this area based primarily on the normal model is that
of Lahiri and Rao (1996) and Datta and Lahiri (2001), although the
former requires normality assumption only of the errors and not of
the random effects. Section 4 contains an application of the proposed
methodology for estimating the proportions of subjects for the dis-
ease toxoplasmosis in 34 cities of El Salvador. The main objective
of this example is to reemphasize that the naive (plug in) estimator
of the MSE associated with an EB estimator is typically an under-
estimate, and needs correction due to uncertainty in estimating the
prior parameters. Indeed, a comparison of our corrected MSE’s with
the naive MSE’s reveals clearly this fact. On the other hand, the
corrected MSE’s are still smaller than the variances of the direct es-
timates, namely, the sample proportions. In this way, we reap the
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benefits of borrowing strength. The present work also extends that of
Sarkar and Ghosh (1998) who provided only the naive MSE’s along
with the EB estimators. Section 5 contains some concluding remarks.
Some of the technical derivations are deferred to the Appendix.

2 EB Estimators

Let yj denote the direct estimator of the j -th stratum mean (j =
1, . . . , k). We assume the yj to be independent with pdf’s

f(yj |θj) = exp{ξj [yjθj − ψ(θj)]}c(yj , ξj), (2.1)

where ξj(> 0) are known constants. This is the one-parameter expo-
nential family model. From McCullagh and Nelder (1989, p.28) we
have

E(yj |θj) = ψ′(θj) = µj (say);

V ar(yj |θj) = ψ′′(θj)/ξj = V (µj) (say). (2.2)

Moreover, since V ar(yj |θj) > 0, µj is strictly increasing in θj . For the
NEF-QVF family of distributions, V (µj) = v0 + v1µj + v2µ

2
j , where

v0, v1 and v2 are not simultaneously zeroes. In particular, for the
binomial model, v0 = 0, v1 = 1 and v2 = −1. For the Poisson model,
v0 = v2 = 0 and v1 = 1. For the normal model with known variance,
v0 = 1 and v1 = v2 = 0.

For θj we consider the conjugate prior

π(θj) = exp{λ[mjθj − ψ(θj)]}K(λ,mj). (2.3)

The prior mean and variance of µj defined in (2.2) are then given by
(cf. Morris, 1983a) E(µj) = mj , V ar(µj) = V (mj)/(λ−v2) provided
λ > v2. This requires λ > 0 for the Poisson and normal models (since
v2 = 0) and λ > −1 for the binomial model (since v2 = −1).

It is easy to check from (2.1) and (2.3) that the posterior π(θj |yj)
also belongs to the NEF-QVF family with

π(θj |yj) ∝ exp[(ξjyj + λmj)θj − (ξj + λ)ψ(θj)], (2.4)

which leads to

E(µj |yj) = (1−Bj)yj +Bjmj , Bj = λ/(λ+ ξj); (2.5)

V ar(µj |yj) =
V [E(µj |yj)]
ξj + λ− v2

. (2.6)
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Also from (2.1) and (2.3), it follows that

E(yj) = EE(yj |µj) = E(µj) = mj ;

V ar(yj) = V ar[E(yj |µj)] + E[V ar(yj |µj)]

=
V (mj)(λ+ ξj)
ξj(λ− v2)

. (2.7)

Since V ar(yj) is monotonically decreasing in λ, λ may be referred
to the precision parameter. Also, the prior means mj are modeled
as g(mj) = xT

j b, where g is a strictly increasing function. (See for
example, Albert (1988)). Here, xj are the design vectors, and b is
the regression parameter.

The usual Fay-Herriot (Fay and Herriot, 1979) normal random ef-
fects model is given by yj |θj

ind∼ N(θj , σ
2
j ) and θj

ind∼ N(xT
j b, A). This

is a special case of (2.1) and (2.3) where g is the identity function,
v0 = 1, v1 = v2 = 0, ξj = σ−2

j and λ = A−1. Also, for the bino-
mial and Poisson cases, (2.1) and (2.3) together lead respectively to
the beta-binomial and gamma-Poisson marginal models for the yj ’s,
models that are typically used to account for overdispersion.

Although (2.1) and (2.3) can be viewed together as a general-
ized mixed linear model, the present formulation is not quite the
same as a standard GLMM. For instance, in the latter formulation
with a canonical link, the θj ’s are modeled as θj = xT

j b + uj where
the uj ’s are iid N(0, σ2

u) (cf. Breslow and Clayton, 1993). Jiang
and Lahiri (2001) have adopted such a formulation in the binomial
case. In contrast, in our canonical formulation, g = (ψ′)−1 so that
E(µj) = mj = ψ′(xT

j b). Thus, in the binary case with success prob-
abilities pj , θj = logit(pj) so that in the usual GLMM formulation,
E[logit(pj)] = xT

j b, while in our formulation, logit[E(pj)] = xT
j b.

For the Poisson(λj) case, θj = log(λj) and the usual GLMM for-
mulation yields, E[log(λj)] = xT

j b in contrast to log[E(λj)] = xT
j b

which comes out of our formulation.
While there is no particular theoretical reason to prefer one for-

mulation over the other, the present formulation has the pragmatic
advantage in nonnormal cases of obtaining the Bayes estimators of
the θj ’s in closed form rather than as integrals arising out of the other
method. This will be particularly useful in obtaining the EB estima-
tors, and then finding closed form approximations to their MSE’s for
very large datasets. We can provide a readily implementable software,
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which takes smaller amount of time to find all the EB estimates and
the related root mean squared errors as opposed to other approaches.
This is particularly valuable when the number of strata is in the order
of thousands, for example, simultaneous estimation of poverty rates
for all the counties of the United States.

For simplicity in the remainder of the paper, we will take g ≡
(ψ′)−1. In addition, we take ξj = nj which reflects the tacit assump-
tion that yj is the average of nj iid random variables each having a
distribution of the form (2.1) with ξj = 1.

We now develop the EB estimators of the θj ’s. This requires
estimation of b and λ from the marginal distributions of the yj ’s.
We use the theory of optimal estimating functions (Godambe and
Thompson, 1989) for simultaneous estimation of b and λ. Noting
that E(yj) = mj and V ar(yj) = E(yj − mj)2 = φjV (mj) where
φj = (λ+nj)/[nj(λ−v2)], following Godambe and Thompson (1989),
we begin with the elementary estimating functions gj = (g1j , g2j)T ,
where g1j = yj −mj and g2j = (yj −mj)2 − φjV (mj), j = 1, . . . , k.

Let

Dj =

[
−E(∂g1j

∂b ) −E(∂g2j

∂b )
−E(∂g1j

∂λ ) −E(∂g2j

∂λ )

]

=

[
V (mj)xj V (mj)V ′(mj)φjxj

0 V (mj)
(nj+v2)

nj(λ−v2)2

]
. (2.8)

Next, writing µrj = E(yj −mj)r (r = 1, 2, . . .), let

Vj =

[
µ2j µ3j

µ3j µ4j − µ2
2j

]
(2.9)

(Godambe and Thompson (1989) have expressed Vj in terms of the
cumulants rather than the central moments of yj). Let η = (b, λ)T

and

Sk(η) =
k∑

j=1

DT
j V−1

j gj . (2.10)

Following Godambe and Thompson (1989), the optimal estimat-
ing equations are given by Sk(η) = 0 and its solution, say η̂ is used
to estimate η. Note that

V−1
j = ∆−1

j

[
µ4j − µ2

2j −µ3j

−µ3j µ2j

]
,
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where ∆j = |Vj | = µ4jµ2j−µ2
3j−µ3

2j . Thus, the estimating equations
reduce to

k∑
j=1

∆−1
j [{µ4j − µ2

2j − µ3jφjV
′(mj)}g1j

+{µ2jφjV
′(mj)− µ3j}g2j ]V (mj)xj = 0 (2.11)

and
k∑

j=1

∆−1
j [g2jµ2jV (mj)− µ3jg1j ]V (mj)

(nj + v2)
nj(λ− v2)2

= 0. (2.12)

Solving (2.11) and (2.12) simultaneously, one obtains η̂ = (b̂, λ̂)T .
The proposed EB estimator of µj is then given by

µ̂EB
j = (1− B̂j)yj + B̂jψ

′(xT
j b̂), (2.13)

where B̂j = λ̂/(λ̂+ nj).
The equations (2.11) and (2.12) can only be numerically obtained.

We accomplish this by the Nelder-Meade algorithm. Specifically, we
use the optim function built in R to solve these equations. The R
code can be found from the authors.

In order to find η̂, we first need to find Vj . We have seen already
that µ2j = φjV (mj). The following theorem provides expressions for
µ3j and µ4j .

Theorem 2.1 . (a) µ3j = V (mj)V
′(mj)(λ+nj)(λ+2nj)

n2
j (λ−v2)(λ−2v2)

provided the

denominator is not zero;
(b) Let d = v2

1 − 4v0v2 (cf. Morris, 1983a). Then

µ4j =
d+ 3V (mj)(nj + 2v2)

n3
j

V (mj)

+
dv2 + 6n2

jV (mj) + (7nj + 6v2)(d/dmj)(V (mj)V ′(mj))
n3

j

× E(µj −mj)2

+
6(nj + v2)(nj + 2v2)V ′(mj)

n2
j

E(µj −mj)3

+
(nj + v2)(nj + 2v2)(nj + 3v2)

n3
j

E(µj −mj)4.
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The proof of this theorem involves heavy algebra, and is omitted.
The details can be found from the authors. We have noted already
that E(µj −mj)2 = V ar(µj) = V (mj)/(λ− v2). The expressions for
E(µj−mj)3 and E(µj−mj)4 are found from Morris (1983a, Theorem
5.3), and, in our notations, are given by

E(µj −mj)3 = 2V (mj)V ′(mj)/[(λ− v2)(λ− 2v2)]

and

E(µj−mj)4 = [3(λ+6v2)V 2(mj)+6dV (mj)]/[(λ−v2)(λ−2v2)(λ−3v2)]

provided λ > max(v2, 3v2).
The expressions given in Theorem 2.1 simplify somewhat for the

binomial and Poisson cases. In particular for the binomial case (where
v0 = 0, v1 = 1, v2 = −1),

µ2j =
mj(1−mj)(λ+ nj)

nj(λ+ 1)
; (2.14)

µ3j =
mj(1−mj)(1− 2mj)(λ+ nj)(λ+ 2nj)

n2
j (λ+ 1)(λ+ 2)

; (2.15)

µ4j =
3(nj−1)(nj−2)(nj−3)mj(1−mj)[2(1−3mj+3m2

j )+λmj(1−mj)]

n3
j (λ+1)(λ+2)(λ+3)

+
12(nj − 1)(nj − 2)mj(1−mj)(1− 2mj)2

n3
j (λ+ 1)(λ+ 2)

+
6(nj − 1)(nj − 6)m2

j (1−mj)2

n3
j (λ+ 1)

+
mj(1−mj)
n3

j (λ+ 1)

× {7(nj − 1) + (λ+ 1)[1 + 3(nj − 2)(λ+ 1)mj(1−mj)]}.
(2.16)

The expressions are even simpler for the Poisson case. Here, v0 =
v2 = 0 and v1 = 1. Then,

µ2j =
mj(λ+ nj)

njλ
;

µ3j =
mj(λ+ nj)(λ+ 2nj)

(njλ)2
;

µ4j =
mj(λ+ nj)(λ2 + 6λnj + 6n2

j )
(njλ)3

+
3m2

j (λ+ nj)2

(njλ)2
.
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Remark 2.1. The optimal estimating equation approach adopted
here is different from the currently available procedures for estimation
of b and λ even in the normal case. Back to the Fay-Herriot (1979)
formulation, marginally yj

ind∼ N(xT
j b, A + σ2

j ). Now we take λ =
A−1 and ξj = σ−2

j (rather than nj). Accordingly, the elementary
estimating functions g1j and g2j are given respectively by g1j = yj −
xT

j b, g2j = (yj − xT
j b)2 − (A+ σ2

j ). We write now

DT
j =

[
−E(∂g1j

∂b ) −E(∂g2j

∂b )
−E(∂g1j

∂A ) −E(∂g2j

∂A )

]
=

[
xj 0
0 1

]

(We are differentiating with respect to A rather than A−1).
Also,

Vj =

[
A+ σ2

j 0
0 2(A+ σ2

j )
2

]
.

This leads to the estimating equations∑k
j=1(A+ σ2

j )
−1(yj − xT

j b)xj = 0; (2.17)∑k
j=1(A+ σ2

j )
−2[(yj − xT

j b)2 − (A+ σ2
j )] = 0

⇔
∑k

j=1(A+ σ2
j )

−2(yj − xT
j b)2 =

∑k
j=1(A+ σ2

j )
−1 (2.18)

The set of estimating equations (2.17) is the same as that of Fay
and Herriot (1979) and Morris (1983b). Indeed, if A were known,
this provides the optimal (weighted least squares) estimator of b.
However, (2.18) is different from the equations of Fay and Herriot
(1979), Morris (1983b) or Prasad and Rao (1990) which were built on
a method of moments approach based on squared residuals. Sarkar
and Ghosh (1998) set up an ANOVA equation for estimating λ in-
stead of (2.18), but as mentioned in the introduction, this was more
or less an ad hoc procedure.

Remark 2.2. We may notice that in the very special case of normal
models with balanced data, yj |θj

ind∼ N(θj , σ
2), (σ2 known), and θj

ind∼
N(xT

j b, A). Here the estimating equations (2.17) and (2.18) simplify
to
∑k

j=1(yj−xT
j b)xj = 0 and

∑k
j=1(yj−xT

j b)2 = k(A+σ2
j ). Now b is

estimated by b̂ = (XTX)−1XTy, where y = (y1, . . . , yk)T , and XT =
(x1, . . . ,xk). Then A is estimated by Â = max(0, k−1∑k

j=1(yj −
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10 Crescenzi et al.

xT
j b)2− σ2). The resulting EB estimator of θj is similar to Lindley’s

modification of the James-Stein estimator.

Remark 2.3. One may also raise the issue of finding MLE’s of
b and λ from the marginal distribution of the yj ’s. A closed form
marginal likelihood for b and λ for the general NEF-QVF family does
not seem feasible. Datta and Lahiri (2001) have proposed ML and
REML methods for estimation in the normal case. The calculation
of ML seems quite difficult even for the beta-binomial case due to the
presence of a many digamma functions involved in the derivatives of
the likelihood. This difficulty will be more pronounced in the next
section when we seek approximations to the MSE’s of the EB esti-
mators.

Remark 2.4. Morris (1988) found approximate EB’s for NEF-QVF
models. He considered only the situation when each stratum contains
the same number of observations. More importantly, he approxi-
mated the marginal distributions (after integrating out the param-
eters) of the observations with NEF-QVF likelihoods and conjugate
priors by another NEF-QVF likelihood. This amounts, for example,
to approximating a beta-binomial by a binomial, or a gamma-Poisson
by a Poisson. The approximation is exact only for the normal distri-
bution. Also, rather than finding estimates of the parameters of the
conjugate prior, Morris put some prior on these parameters, similar
to, but not the same as Jeffreys’ prior. He then found approximations
to the resulting posterior means and variances of the parameters of
interest. Thus, Morris’s approach is primarily Bayesian, whereas ours
is primarily frequentist. Indeed, our mean squared error calculation
is based on an overdispersed exponential family model. Also, it is
not clear how to extend Morris’s Bayesian approximation to the un-
balanced case where the different strata contain unequal number of
observations.

3 Mean Squared Error Approximation

First we find an asymptotic (up to the order k−1) expansion of MSE
of µ̂EB

j ’s. We calculate

E(µj − µ̂EB
j )2 = E{µj − [(1−Bj)yj +Bjmj ]
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+[(1−Bj)yj +Bjmj − (1− B̂j)yj − B̂jm̂j ]}2

= E{µj − [(1−Bj)yj +Bjmj ]}2

+E[(1−Bj)yj +Bjmj − (1− B̂j)yj − B̂jm̂j ]2

= T1j(η) + T2j(η) (say). (3.1)

First we calculate

T1j(η) = E[(1−Bj)(yj − µj)−Bj(µj −mj)]2

= (1−Bj)2[V (µj)/nj ] +B2
jV (mj)/(λ− v2)

= (1−Bj)2
V (mj) + v2V (mj)/(λ− v2)

nj
+B2

jV (mj)/(λ− v2)

=
n2

jλV (mj)
(λ+ nj)2(λ− v2)nj

+
λ2

(λ+ nj)2
V (mj)
λ− v2

=
λ

(λ+ nj)
V (mj)
λ− v2

= V (mj)hj(λ), (3.2)

where hj(λ) = λ(λ+ nj)−1(λ− v2)−1.
In order to evaluate T2j(η), first we write q(η, yj) = (1−Bj)yj +

Bjmj . Then, by one term Taylor expansion,

T2j(η) = E[q(η̂, yj)− q(η, yj)]2
.= E[(

∂q

∂η
)T (η̂ − η)]2

= E[tr{( ∂q
∂η

)(
∂q

∂η
)T (η̂ − η)(η̂ − η)T }]

= trE[(
∂q

∂η
)(
∂q

∂η
)T (η̂ − η)(η̂ − η)T ]. (3.3)

But ∂q
∂b = BjV (mj)xj and ∂q

∂λ = −∂Bj

∂λ (yj − mj) = nj(yj −
mj)/(λ+ nj)2. Hence, from (3.3),

T2j(η) .=

trE[

 B2
jV (mj)xjxT

j
njBj

(λ+nj)2
(yj −mj)V (mj)xj

njBj

(λ+nj)2
(yj −mj)V (mj)xT

j

n2
j

(λ+nj)4
(yj −mj)2


×(η̂ − η)(η̂ − η)T ]. (3.4)

We will show that the right hand side of (3.4) can be approximated
by

tr

[(
B2

jV (mj)xjxT
j 0

0 njV (mj)
(λ+nj)3(λ−v2)

)
U−1

k

]
, (3.5)
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12 Crescenzi et al.

where Uk =
∑k

j=1 DT
j V−1

j Dj . The derivation of (3.5) is given in the
Appendix.

Since, Uk = O(k), U−1
k = O(k−1), we estimate T2j(η) by

T2j(η̂) = tr

 B̂2
jV (m̂j)xjxT

j 0
0 njV (m̂j)

(λ̂+nj)3(λ̂−v2)

 Û−1
k

 , (3.6)

where Ûk =
∑k

j=1 DT
j (η̂)V−1

j (η̂)Dj(η̂). This approximation is accu-
rate up to O(k−1).

Next to handle T1j(η), writing the right hand side of (3.2) as
vj(η), by a two step Taylor approximation,

vj(η̂) .= vj(η)+(
∂vj

∂η
)T (η̂−η)+

1
2
(η̂−η)T (

∂vj

∂η
)(
∂vj

∂η
)T (η̂−η). (3.7)

Thus,

E[vj(η̂)] .=

vj(η) + (
∂vj

∂η
)TE(η̂ − η) +

1
2
tr[(

∂2vj

∂η∂ηT
E(η̂ − η)(η̂ − η)T ]. (3.8)

Noting that

∂vj

∂η
=

(
∂vj

∂b
∂vj

∂λ

)
=

(
hj(λ)V (mj)V ′(mj)xj

h′j(λ)V (mj)

)
and

∂2vj

∂η∂ηT
=[

{2v2V (mj)(V ′(mj))2}V (mj)hi(λ)xjxT
j V (mj)(V ′(mj))h′j(λ)xj

V (mj)(V ′(mj))h′j(λ)xT
j V (mj)h′′j (λ)

]
,

one has

tr[(
∂2vj

∂η∂ηT
E(η̂ − η)(η̂ − η)T ] .= (3.9)

tr

[(
h2

j (λ)V 2(mj)[V ′(mj)]2xjxT
j hj(λ)n′j(λ)V 2(mj)V ′(mj)xj

hj(λ)n′j(λ)V 2(mj)V ′(mj)xT
j [h′j(λ)]2V 2(mj)

)
U−1

k

]
which is O(k−1), and is estimated by

tr

[(
h2

j (λ̂)V 2(m̂j)[V ′(m̂j)]2xjxT
j hj(λ̂)h′j(λ̂)V 2(m̂j)V ′(m̂j)xj

hj(λ̂)h′j(λ̂)V 2(m̂j)V ′(m̂j)xT
j [h′j(λ̂)]2V 2(m̂j)

)
Û−1

k

]

= T3j(η̂) (say) (3.10)
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Finally we approximate E(η̂ − η) (up to O(k−1)) by the method
of Cox and Snell (1968). We will write

E(η̂ − η) = T4(η), (3.11)

where T4(η) will be derived in the appendix. We will also show that
T4(η) is O(k−1).

Thus from (3.8), (3.10) and (3.11), we estimate vj(η) by

vj(η̂)−
[
nj(λ̂)V (m̂j)V ′(m̂j)xT

j n′j(λ̂)V (m̂j)
]
T4(η̂)− 1

2
T3j(η̂)

= T5j(η̂) (say) (3.12)

The final approximate estimator of the MSE E(µ̂EB
j −µj)2 is thus

T5j(η̂) + T2j(η̂), where T2j(η̂) is given in (3.6).

4 An Example

Efron (1978, 1986) considered an example showing the proportion
of subjects testing positive for the disease toxoplasmosis in 34 cities
of El Salvador. Efron’s prime objective was to assess the effect of
rainfall on the proportions positive. Efron (1978) met the objective
by fitting a logistic regression to the data, and subsequently (1986),
by fitting an overdispersed generalized linear model.

Our objective, however, is more modest. Since the sample sizes
in the local areas are mostly small, it is anticipated that the EB
estimates will have greater precision than the usual estimates, namely,
the sample proportions. This is substantiated in the following table
which provides the sample sizes (nj), the the sample proportions (p̂j),
the EB estimates (p̂EB

j ), the estimated standard errors of the sample
proportions, namely, SE(p̂j) = [p̂j(1− p̂j)/nj ]1/2, the naive standard
errors of the EB estimators, namely, MSE(p̂EB

j ) = [V ((1 − B̂j)yj +
B̂jm̂j)/(nj+λ̂+1)]1/2, and the approximate root mean squared errors
of the EB estimators as derived in Section 3, denoted by RMSE(p̂EB

j ).
We have considered the model mj = b0 + b1xj + b2x

2
j + b3x

3
j , j =

1, 2, · · · , 34, where xj denotes the amount of rainfall in the jth city.
The cubic equation is analogous to what is considered in Efron (1986).
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14 Crescenzi et al.

City(j) nj p̂j p̂EB
j SE(p̂j) MSE(p̂EB

j ) RMSE(p̂EB
j )

1 4 .500 .394 .250 .143 .165
2 5 .200 .389 .179 .144 .167
3 2 1.000 .513 .000 .162 .189
4 8 .250 .256 .153 .114 .127
5 6 .500 .469 .204 .140 .160
6 24 .292 .353 .093 .075 .078
7 30 .500 .511 .091 .075 .082
8 1 .000 .501 .000 .193 .231
9 1 .000 .338 .000 .197 .233

10 9 .444 .501 .166 .120 .137
11 12 .167 .191 .134 .114 .130
12 11 .727 .690 .134 .114 .130
13 51 .471 .462 .070 .058 .059
14 82 .561 .569 .055 .042 .042
15 43 .535 .525 .076 .064 .066
16 13 .615 .530 .135 .094 .101
17 6 .167 .327 .152 .140 .161
18 10 .300 .346 .145 .119 .133
19 10 .300 .374 .145 .118 .132
20 5 .600 .445 .219 .129 .147
21 19 .368 .436 .111 .080 .083
22 10 .800 .643 .126 .104 .113
23 1 .000 .215 .000 .177 .207
24 22 .182 .268 .082 .077 .080
25 11 .545 .468 .150 .101 .109
26 54 .611 .586 .066 .051 .051
27 8 .625 .672 .171 .109 .131
28 1 .000 .474 .000 .196 .260
29 77 .532 .518 .057 .043 .043
30 16 .437 .414 .124 .093 .100
31 13 .692 .713 .128 .090 .096
32 75 .707 .685 .053 .045 .045
33 10 .300 .322 .145 .115 .128
34 37 .622 .595 .080 .067 .073

Table 1: The estimates and the standard errors.
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Table 1 exhibits several interesting features. First, the naive stan-
dard errors grossly underestimate the precisions of the estimates, es-
pecially for the strata where the sample sizes are very small. Natu-
rally, these are the strata where the RMSE(p̂EB

j ) correct these naive
standard errors the most. For example, in City 3, the correction is
of the order 16% over the naive estimate, whereas in cities 13, 14,
26, 29 and 32, there is no correction at all. Also, there are several
strata where the sample sizes are 1, leading necessarily to zero stan-
dard errors of the classical MLE’s. The EB RMSE’s provide more
credible measures of uncertainty in these cases. For other strata,
RMSE(p̂EB

j ) are always smaller than SE(p̂j)’s, and sometimes are
substantially smaller when the strata sizes are very small (but not 1
or p̂j 6= 1). This is evidenced, for example, in city 1, where the im-
provement is of the order 33%. Also, the MLE’s for the population
proportions are shrunk most for strata with small sample sizes rather
than those with moderate or large sample sizes.

5 Concluding Remarks

The paper develops EB estimators for simultaneous estimation in
NEF-QVF populations. The EB estimators are obtained by employ-
ing the theory of optimal estimating functions as proposed in Go-
dambe and Thompson (1989). We provide also closed form approxi-
mate MSE’s in a vein similar to Prasad and Rao (1990). An example
illustrates the applicability and merits of the proposed method. The
method bears tremendous potential in the context of small area es-
timation where the number of local areas is very large, but sample
sizes within these areas is very small.

6 Appendix

Derivation of (3.5):

The first step is to obtain the asymptotic distribution of η̂. Once
again, by one step Taylor expansion,

0 = Sk(η̂) .= Sk(η) +
(
∂Sk(η)
∂η

)T

(η̂ − η).
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Thus,

η̂ − η
.=

[(
−∂Sk(η)

∂η

)T
]−1

Sk(η). (6.1)

We may note that V (Sk(η)) =
∑k

j=1 DT
j V−1

j Dj = Uk, and un-

der some simple regularity conditions,U
− 1

2
k Sk(η) is asymptotically

Nk(0, Ik) by the central limit theorem. Thus, U
− 1

2
k Sk(η) .= Op(1).

Now, from (6.1), writing

η̂ − η
.=

[(
−∂Sk(η)

∂η

)T
]−1

U
1
2
k U

− 1
2

k Sk(η),

it follows that

U
1
2
k (η̂ − η) .= U

1
2
k

[(
−∂Sk(η)

∂η

)T
]−1

U
1
2
k U

− 1
2

k Sk(η), (6.2)

But(
−∂Sk(η)

∂η

)T

= −[
k∑

j=1

(
∂

∂η
DT

j V−1
j )gj +

k∑
j=1

DT
j V−1

j (
∂gj

∂η
)T ].

Hence,

E

[(
−∂Sk(η)

∂η

)T
]

=
k∑

j=1

DT
j V−1

j Dj = Uk. (6.3)

It follows now from (6.2) and (6.3) that U
1
2
k (η̂ − η) has the same

asymptotic distribution as U
− 1

2
k Sk(η) which is Nk(0, Ik). Accord-

ingly, η̂−η is asymptotically normal with mean vector 0 and variance-
covariance matrix U−1

k . Thus, E[(η̂−η)(η̂−η)T ] .= U−1
k . Since U−1

k

is O(k−1), from (3.4),

T2j(η) .=

trE

 B2
jV (mj)xjxT

j
njBjV (mj)

(λ+nj)2
(yj −mj)xj

njBjV (mj)
(λ+nj)2

(yj −mj)xT
j

n2
j

(λ+nj)4
(yj −mj)2

U−1
k



which immediately yields (3.5).
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Derivation of (3.11)

Let U−1
k = ((U rs

k )). We first need a few notations stemming out
of DT

j V−1
j .

Let e1j = ∆−1
j [µ4j−µ2

2j−µ3jφjV (mj)], e2j = ∆−1
j [µ2jφjV

′(mj)−
µ3j ], e3j = −∆−1

j µ3jV (mj) and e4j = ∆−1
j µ2jV (mj), where we may

recall that V (mj) = v0 +v1mj +v2m
2
j and φj = (nj +λ)/[nj(λ−v2)].

We now write η = (η1, . . . , ηp+1)T and

Sk(η) ≡ Sk = (sk1, . . . , skp, sk,p+1)T ,

where

skr =
k∑

j=1

(e1jg1j + e2jg2j)V (mj)xjr

and

sk,p+1 = −
k∑

j=1

(e3jg1j + e4jg2j)
∂φj

∂λ
.

We will also find it convenient to write λ = bp+1. Then following Cox
and Snell (1968), let Jt,rs = Cov(U st

k ,
∂skr
∂bs

), and Krtu = E( ∂2skr
∂bs∂bt

),
(r, s, t = 1, . . . , p + 1). Now writing Jk(r) = ((Jt,rs)) and Kk(r) =
((E( ∂2skr

∂bs∂bt
))), by the Cox-Snell formula (r, s, t = 1, . . . , p+ 1)

E(η̂ − η)

=
1
2
U−1

k

[
2

(
tr(U−1

k Jk(r))
tr(U−1

k Jk(p+1))

)
+

(
tr(U−1

k Kk(r))
tr(U−1

k Kk(p+1))

)]

= T4(η) (say). (6.4)

Finding the elements of T4(η) requires heavy algebra, and can
be found from the authors. We omit the details. We note also that
T4(η) = O(k−1) since U−1

k is O(k−1) and its multiplier is O(1).
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