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Abstract. Given a sequence of letters generated independently from
a finite alphabet, we consider the case when more than one, but not
all, letters are generated with the highest probability. The length of
the longest run of any of these letters is shown to be one greater than
the length of the longest run in a particular state of an associated
Markov chain. Using results of Foulser and Karlin (1987), a conjec-
ture of a previous paper (Smythe, 2003) concerning the expectation
of this length is verified.

1 Introduction

Let A be an alphabet of k letters, a1, . . . , ak, and assume that we have
an independent sequence of n letters chosen from A with probabilities
p1, . . . , pk respectively. In the case when all pi are equal, we presented
in this journal (Smythe (2003)) some results on the longest run of any
letter in A. An exact relation, valid for all n, was given between the
longest run of any letter and the longest run of a specific letter. An
extension was given to the case where the sequence is generated by
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a Markov chain. When the letters have different probabilities, it was
shown that the length of the longest run of any letter is asymptotically
the same as the length of the longest run of the letter with highest
probability, when this letter is unique.

Left unresolved in that paper was the case when the alphabet has
size greater than two, and exactly r letters a1, . . . , ar, 2 ≤ r < k,
are taken with the highest probability among the pi. A conjecture
was made, based on a heuristic argument, relating the asymptotic
expectation of the length of longest run of any letter among a1, . . . , ar,
to the longest expected run of a1. The purpose of this note is first to
present an exact relation between the longest run of any of a1, . . . , ar

and the longest run in state 1 of a simple Markov chain with states
{0,1,2}. Then, using a previously unnoticed (by the author) paper
of Foulser and Karlin (1987), we are able to verify the conjecture in
equation (1) below.

In a slight departure from the notation of the previous paper, let

Ri,n := length of the longest run of a given letter ai,

Ln := length of the longest run of any letter,

L∗n := length of the longest run of any letter among a1, . . . , ar.

The conjecture was made in Smythe (2003) that

E(Ln) = E(R1,n) + log1/p1
(r) + o(1). (1)

As shown in that paper, the longest run of a1, . . . , ar will dominate
the longest run of any other letters in this case, so the conjecture in
(1) is equivalent to

E(L∗n) = E(R1,n) + log1/p1
(r) + o(1). (1′)

In Section 2 we give an exact result relating E(L∗n) to the expected
length of the longest run in a state of a related Markov chain. Section
3 then applies the results of Foulser and Karlin (1987) to this Markov
chain and gives a verification of (1′).

2 The Exact Result

Assume for simplicity that there are just two letters, a1, a2, taken
with the highest probability p. (The extension to the general case
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is straightforward.) Define a mapping T from sequences {si} with
letters in A into {0,1,2} as follows:

T (s1) = 0,

T (si) = 0 if si = a1 or a2, si 6= si−1,

T (si) = 1 if si = si−1 = a1 or a2,

T (si) = 2 otherwise.

It is straightforward to verify that the resulting sequence {T (si) :
i ≥ 2} is a Markov chain on {0,1,2} with initial distribution π(0) =
2p(1 − p), π(1) = 2p2, π(2) = 1 − 2p. The transition matrix of this
Markov chain is  p p 1− 2p

p p 1− 2p
2p 0 1− 2p


and the stationary distribution is given by the initial measure.

Let L∗n denote the longest run of a1 or a2 in the initial sequence.
If R∗n−1 denotes the longest run of 1’s in the derived Markov chain,
then clearly

L∗n({si}) = 1 + R∗n−1(T ({si})). (2)

Both sides of equation (2) are random variables defined on the prob-
ability space of sequences {s1, . . . , sn} with the product measure, so
the expected value of the longest run of a1 or a2 is one greater than
the expected value of the longest run of 1’s in the Markov chain.

3 Relation to asymptotic results

Foulser and Karlin (1987) prove a general result for semi-Markov
chains that can be used to derive the asymptotic distribution of R∗n−1

and of R1,n in our problem. The limiting distribution of L∗n will of
course follow from that of R∗n−1, permitting verification of the con-
jecture of (1′). (In fact, the result of Foulser and Karlin is sufficiently
general to permit calculation of the limiting distribution of L∗n di-
rectly, providing a second route to establishing (1′).)

The aymptotic distributions of R1,n and R∗n−1 are not difficult to
compute from Section 4 of Foulser and Karlin. Our case is simple
enough that their Corollary 2 includes the result we need, but some
preparations are necessary to present this result.
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Let the Markov chain X1, X2, . . . on the states 1, 2, . . . K have
transition probability matrix P . Let Σ = {(σ1, s1), . . . , (σj , sj)} be
the set of transitions regarded as successes, where σi and si denote
states of the chain. (In our Markov chain of Section 2, a successful
transition would be from state 1 to itself.) All other transitions are
considered failure transitions. Let φij = 1 iff (i, j) is a success tran-
sition in Σ, and φij = 0 otherwise, and let Φ(Σ) denote the matrix
with entries φij , 1 ≤ i, j ≤ K.

Denote by the matrix S the success transition probabilities of the
grouped transition runs, and by R the remaining failure transitions,
so that

S = Φ(Σ) ◦P, R = P− S,

where the matrix composition A ◦B is the Schur matrix product
‖ aijbij ‖ . The matrix S is substochastic, hence has principal eigen-
value satisfying 0 ≤ λ ≤ 1. In our application (and generally in
nontrivial cases) we have λ < 1.

The success transitions of the Markov chain induce a semi-Markov
process on the state space, with transition probability matrix Q,
where qij gives the probability of a success run starting at state i and
making an eventual failure transition to j; thus

Q = (I− S)−1R.

Let w be the stationary distribution for Q. Let the distribution tail
1−Fij(m) be defined as the probability that a success transition run
exceeds length m, conditioned on starting in state i and ending in
state j, and let aij =

∑∞
0 (1 − Fij(m)) (assumed to be finite). The

matrix F then gives the sojourn duration distribution for the induced
semi-Markov process, and we have

Q ◦ (E− F(m)) = SmQ,

where E is the matrix of all 1’s. The matrix A =‖ aij ‖ thus satisfies

Q ◦A =
∑
m≥0

SmQ = (I− S)−1Q.

The growth rate of the largest relevant tails depends on the eigenvalue
λ of the matrix S. The normalizing function for our case is λ−m,
the reciprocal of the decay of Sm. The matrix of normalized tail
distributions then satisfies

Q ◦ λ−m(E− F)(m) == λ−mSmQ.
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The key to the limit distribution is the normalized tail quantity

ρ(m) =
〈w,Q ◦ λ−m(E− F)(m)e〉

〈w,Q ◦Ae〉
=

〈w, λ−mSme〉
〈w, (I− S)−1e〉

,

where e is the vector (1, 1, . . . , 1). If S is aperiodic and irreducible,
as in our case,

limm→∞λ−mSm ≡ U exists, and Sm = λmU(1 + O(µm)),

where |µ| < 1. This allows simplification of ρ(m) as m →∞ :

limm→∞ρ(m) =
〈w,Ue〉

〈w, (I− S)−1e〉.

Let Mσ(t) denote the maximal sojourn duration (longest run, in our
case). Corollary 2 of Foulser and Karlin (1987) for this case then
reads as follows:

Corollary 3.2. Suppose that all relevant distribution functions
with largest order tail growth have expponential tail behavior, e.g.,
maxrelevant(i,j){1 − Fij(x)} = λx, for some 0 < λ < 1. Then ρ̂ =
limx→∞ρ(x) exists and the maximal sojourn duration random vari-
able has the limiting distribution

limu→∞Pr
{
Mσ(u)− ln(u)

−lnλ
< z

}
= exp(−ρ̂λz).

Applying this result to our case, for R1,n we derive ρ̂ = p(1− p),
whereas for R∗n−1 we get ρ̂ = 2p2(1 − p). This gives the asymptotic
distributions

P (R1,n − log1/p(n) < z) = exp{−p(1− p)pz}+ o(1),

P (R∗n−1 − log1/p(n− 1) < z) = exp{−2p2(1− p)pz}+ o(1).

These asymptotic distributions are both location-scale shifts of an
extreme value distribution (with distribution function F (x) = ee−x

).
The asymptotic means are then given by

E(R1,n) = log1/p(n) +
γ + ln(p(1− p))

ln(1/p)
+ o(1),

E(R∗n−1) = log1/p(n− 1) +
γ + ln(2p2(1− p))

ln(1/p)
+ o(1),
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where γ is Euler’s constant (cf. David (1981), p. 260). Then

E(L∗n) = E(R∗n−1 + 1) = E(R1,n) + log1/p(2) + o(1),

as asserted by (1′) in the case r = 2.
In the case when r > 2 letters are taken with the same maximal

probability p, we can use the same 3-state derived Markov chain, now
with a transition matix of (r − 1)p p 1− rp

(r − 1)p p 1− rp
rp 0 1− rp

 .

In this case ρ(x) = rp2(1− p), and computing the asymptotic distri-
bution of the longest run of 1’s in this Markov chain gives the general
form of (1′).
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