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Abstract. Recently Habibi et al. (2006) defined a pre-experimental
criterion for the potential strength of evidence provided by an ex-
periment, based on Kullback-Leibler distance. In this paper, we in-
vestigate the potential statistical evidence in an experiment in terms
of Renyi distance and compare the potential statistical evidence in
lower (upper) record values with that in the same number of iid ob-
servations from the same parent distribution.

1 Introduction and Preliminaries

Let p(x) be the joint probability density function (pdf) of n iid ob-
servations from a distribution with pdf f(x), obtained from the ex-
periment E , then the likelihood ratio

RE(x) =
p1(x)
p0(x)

measures the strength of evidence in E favorable to the simple hy-
pothesis H1 : p = p1 against the simple hypothesis H0 : p = p0,

Key words and phrases: Law of likelihood, record values, Renyi information,
strong true evidence, weak evidence.
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40 Abbasnejad and Arghami

(Royall, 1992, 1997, 2000, 2003, Royall and Tsou, 2003).
Suppose E1 and E2 are two experiments (or sampling schemes)

with (approximately) the same cost, having outcomes x and y, which
are the realizations of random vectors X and Y, with densities p(x)
and q(y), respectively.

When the objective of the study is to produce statistical evidence
for one hypothesis against another (in the above sense), it is desir-
able to have a measure of performance of the experiments E1 and
E2. Habibi et al. (2006), combining the values of potential statistical
evidence, under H1 and H0, defined

Sϕ(E) = E1ϕ[RE(X)] + E0ϕ[1/RE(X)]

where ϕ(.) is a non-decreasing function.
If

ϕ(t) =

{
1, t ≥ K
0, t < K,

Sϕ(E) is the sum of the probabilities of observing strong true evidence
under H1 and H0, where K is arbitrary and is usually between 8 and
32 (Royall, 1997).

If ϕ(t) = t/(1 + t), then Sϕ(E)= abc(E) is the area between the
cumulative distribution function (cdf) curves (under H1 and H0) of
η = RE(X)/[1 + RE(X)] (Emadi and Arghami, 2003).

If ϕ(t) = log(t), then

Sϕ(E) = D(p1, p0) + D(p0, p1) = J(p1, p0)

(Habibi et al., 2006), where D(p1, p0) and J(p1, p0) are, respectively,
asymmetric and symmetric Kullback-Leibler (K-L) distance (infor-
mation) of p1 and p0.
The rest of the paper is organized as follows:

In Section 2 we define a pre-experimental criterion for the poten-
tial strength of evidence provided by an experiment, which is a gener-
alization of the above criterion proposed by Habibi et al. (2006). In
Section 3 we compare the potential statistical evidence in record val-
ues with that in the same number of iid observations from the same
parent distribution, in terms of Renyi information (Renyi, 1961). In
Section 4, some well known distributions are classified to three classes
based on their Renyi information.
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2 Renyi information as a measure of
statistical evidence

For testing a general hypothesis about parameters of one population,
the likelihood ratio test statistic is of general use. The likelihood ratio
test statistic is a measure of deviation between the maximum likeli-
hood achieved under the null hypothesis and the maximum achieved
over the whole parameter space. Following this philosophy, a different
measure of deviation, like a divergence, can be used. Some tests based
on divergences have already been proposed in the literature, and it
has been shown that in many cases they represent good competitors
to classical tests. For example, Salicru et al. (1994) and Morales et
al. (1997, 2000, 2004) suggested to test composite hypotheses, using
some families of divergence, like φ-divergence or Renyi distance. In
the following, we define Renyi distance as a pre-experimental tool.

Consider a generalization of Sϕ(E) of Section 1 to

Sϕ1,ϕ2(E) = ϕ2[E1ϕ1[RE(X)]] + ϕ2[E0ϕ1[1/RE(X)]]

where both ϕ1(.), ϕ2(.) are non-decreasing or non-increasing func-
tions.
If we take

ϕ1(t) = tα−1

and
ϕ2(t) =

1
α− 1

log t

α > 0 and α 6= 1, then

Sϕ1,ϕ2(E) =
1

α− 1
log

{
E1

[
p1(X)
p0(X)

]α−1
}

+
1

α− 1
log

{
E0

[
p0(X)
p1(X)

]α−1
}

= Dα(p1, p0) + Dα(p0, p1)
= Jα(p1, p0),

where Dα(p1, p0) and Jα(p1, p0) are, respectively, asymmetric and
symmetric Renyi distance (information) of p1 and p0.

Example 2.1. (Bernoulli trials) Let E1 and E2 be as follows.
E1: Take a random sample of size n from B(θ), a Bernoulli distribu-
tion with parameter θ.
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E2: Continue sampling from B(θ) distribution until pθ1(x)/pθ0(x) <
1/K or pθ1(x)/pθ0(x) > K.

The question may be: “Which one of E1 and E2 have more po-
tential statistical evidence regarding the hypotheses H0 : θ = θ0 and
H1 : θ = θ1.”

Let X =
∑n

i=1 Zi, where Z1, . . . , Zn are the outcomes of E1. We,
then, have

Sϕ1,ϕ2(E1) =
1

α− 1
log

[
Eθ1

(
θ

X(α−1)
1 (1− θ1)(n−X)(α−1)

θ
X(α−1)
0 (1− θ0)(n−X)(α−1)

)]

+
1

α− 1
log

[
Eθ0

(
θ

X(α−1)
0 (1− θ0)(n−X)(α−1)

θ
X(α−1)
1 (1− θ1)(n−X)(α−1)

)]

=
1

α− 1
log

[
Eθ1

(
(
1− θ1

1− θ0
)n(α−1)

(
θ1(1− θ0)
θ0(1− θ1)

)X(α−1)
)]

+
1

α− 1
log

[
Eθ0

(
(
1− θ0

1− θ1
)n(α−1)

(
θ0(1− θ1)
θ1(1− θ0)

)X(α−1)
)]

=
1

α− 1
log[(

1− θ1

1− θ0
)n(α−1)]

+
1

α− 1
log

[(
θ1(1− θ0)
θ0(1− θ1)

)α−1

θ1 + (1− θ1)

]n

+
1

α− 1
log[(

1− θ0

1− θ1
)n(α−1)]

+
1

α− 1
log

[(
θ0(1− θ1)
θ1(1− θ0)

)α−1

θ0 + (1− θ0)

]n

=
n

α− 1
log

[
1− θ0 − θ1 + 2θ1θ0 +

(1− θ0)αθα
1

(1− θ1)α−1θα−1
0

+
(1− θ1)αθα

0

(1− θ0)α−1θα−1
1

]
.

Ignoring the “over shoot”, for E2 we have

Sϕ1,ϕ2(E2) =
1

α− 1
log[Kα−1Pθ1(R > K) + (

1
K

)α−1Pθ1(R <
1
K

)]

+
1

α− 1
log[(

1
K

)α−1Pθ0(R > K) + Kα−1Pθ0(R <
1
K

)]

' 1
α− 1

log[Kα−1(1− 1
K + 1

) + (
1
K

)α−1(
1

K + 1
)]
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+
1

α− 1
log[(

1
K

)α−1(
1

K + 1
) + Kα−1(1− 1

K + 1
)]

=
1

α− 1
log

[
K2α−1 + 1

Kα−1(K + 1)

]
,

where the approximate equality follows from Wald inequalities in the
theory of SPRT ( Rohatgi, 1976, pp. 616-617).

Experiments E1 and E2 will have, on average, approximately the
same cost if n = E(N), where N is the final sample size of E2.
If θ0 = 1

3 and θ1 = 2
3 then

Eθi
(N) =

[1− 2/(K + 1)] log K

(1/3) log 2
i = 0, 1.

For K = 8 we can see the result in Figure 1.

Figure 1: Potential evidence ( symmetric Renyi information) of E1

and E2 in Example 2.1 for K = 8, θ0 = 1/3 and θ1 = 2/3.

According to Figure 1, E1 has more potential evidence than E2

for α > 1. The reverse holds for 0 < α < 1, but the difference
between E1 and E2 is not remarkable. For 0 < α < 1, E2 may be

Archive of SID

www.SID.ir



44 Abbasnejad and Arghami

preferable to E1, because E2 has no probability of weak evidence (that
is Pθi

(1/K < R < K) = 0, i = 0, 1). On the other hand E1 has the
advantage of having a fixed sample size. We have similar result for
K = 16 (See Figure 2).

Figure 2: Potential evidence (symmetric Renyi information) of E1

and E2 in Example 2.1 for K = 16, θ0 = 1/3 and θ1 = 2/3.

Example 2.2. (Measuring the strength of wooden beams, Glick
(1978)) Pressure is continuously increased until the beam breaks.
The cost of the experiment is assumed to be equal to the number of
broken beams. Let E1 and E2 be as follows.
E1: We measure the strength of each one of n wooden beams, so the
number of broken beams is equal to n.
E2: We break only the beams that are weaker than all previous beams.
We continue until n beams are broken, so the number of broken beams
is equal to the number of lower record values.
The question is “Do the first n lower record values have more (less,
equal) expected statistical true evidence as compared the same num-
ber, n, of iid observations from the same parent population?”

Ahmadi and Arghami (2001 and 2003) classified many classic fam-
ilies of distributions into three classes RMI, RLI and REI according
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to whether record values contain More, Less or Equal amount of
Fisher information when compared with the same number of iid ob-
servations. Similar classification has been done by Hofmann (2004).
Habibi et al. (2006) did a similar classification based on K-L infor-
mation.

In the next Section, we first discuss the distribution of record
values and then compare their potential evidence with that of iid
observations in terms of Renyi information.

3 Record values and iid observations

Let Xi, i ≥ 1, be a sequence of iid continuous random variables.
An observation Xj will be called a lower record value if its value is
smaller than that of all previous observations. Thus Xj is a lower
record value if Xj < Xi for all i < j. By convention X1 is the first
lower record value.

The times at which lower record values appear are given by the
random variables Tj which are called record times and are defined by
T1 = 1 with probability 1 and, for j ≥ 2, Tj = Min{i : Xi < XTj−1}.
The waiting time between the ith lower record value and the (i+1)th

lower record value is called the inter-record time (IRT), and is de-
noted by ∆i = Ti+1 − Ti, i = 1, 2, ... . Record times and inter-record
times for upper record values are defined analogously.

Let L1, L2, ..., Ln be the first n lower record values from a distri-
bution with the cdf F (x; θ) and the pdf f(x; θ). Then the pdf of the
joint distribution of the first n lower record values is given by

q(l; θ) =
n−1∏
i=1

f(li; θ)
F (li; θ)

f(ln; θ),

and the marginal density of Li (the ith lower record value, i ≥ 1) is
given by

qi(li) =
[− log F (li; θ)]i−1

(i− 1)!
f(li; θ).

The joint distribution of lower record values and their IRT’s has
density

q(l,∆; θ) =
n∏

i=1

f(li; θ)[1− F (li; θ)]∆i−1,
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and the joint density of Li and ∆i is

qi(li,∆i; θ) =
[− log F (li; θ)]i−1

(i− 1)!
f(li; θ)F (li; θ)[1− F (li; θ)]∆i−1.

Let U1, U2, ..., Un be the first n upper record values from a distri-
bution with the cdf F (x; θ) and the pdf f(x; θ). Then the pdf of the
joint distribution of the first n upper record values is given by

q(u; θ) =
n−1∏
i=1

f(ui; θ)
1− F (ui; θ)

f(un; θ),

and the marginal density of Ui (the ith upper record value, i ≥ 1) is
given by

qi(ui) =
[− log(1− F (ui; θ))]i−1

(i− 1)!
f(ui; θ).

The joint distribution of upper record values and their IRT’s has
density

q(u,∆; θ) =
n∏

i=1

f(ui; θ)[F (ui; θ)]∆i−1,

and the joint density of Ui and ∆i is

qi(ui,∆i; θ) =
[− log(1− F (ui; θ))]i−1

(i− 1)!
f(ui; θ)(1−F (ui; θ))[F (li; θ)]∆i−1.

See Arnold et al. (1998) for more details.
In experiments such as in Example 2.2, where the experimenter

has a choice between observing n iid random variables or n record
values from the same distribution (almost at the same cost), it is
desirable to know which experiment provides us (on average) with
more statistical true evidence, that is which one of Jα(pθ1 , pθ0) or
Jα(qθ1 , qθ0) is greater.

We shall call the family of distributions {f(x; θ); θ ∈ Ω} RMI, RLI
or REI if Jα(qθ1 , qθ0) is More than, Less than or Equal to Jα(pθ1 , pθ0)
respectively, where pθ is the joint distribution of X1, . . . , Xn and qθ

is the joint distribution of L1, . . . , Ln or U1, . . . , Un.
We should note that throughout this section we are considering

record values without their IRT’s.

Example 3.1. (Extreme value distribution, location family) The
parametric family with pdf

f(x; θ) = βe−β(x−θ) exp{−e−β(x−θ)}, x ∈ <, θ ∈ <,
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where β is assumed to be known, is called extreme value (location)
family. This family is REI, that is, lower record values contain equal
amount of Renyi information when compared with the same number
of iid observations from the original distribution. This is implied by
Theorem 3.1 below.

We shall denote by C1 the class of all continuous distribution
functions F such that

F (x; θ) = e−a(θ)b(x),

where a(.) and b(.) are real positive functions and b(.) is decreasing.
This class includes, several important distributions such as:

- Extreme value distribution (location family) with cdf

F (x; θ) = exp{−e−β(x−θ)}, x ∈ <, θ ∈ <.

- Power distribution with cdf

F (x; θ) = xθ = exp{−θ log(
1
x

)}, 0 < x < 1; θ > 0.

- Frechet distribution (scale family) with cdf,

F (x; θ) = exp{−θx−β}, x > 0; θ > 0.

Ahmadi and Arghami (2001) showed that for all members of the class
C1 of families of distributions, Ln (the nth lower record value) is a
sufficient statistic for the entire set of the first n lower record values
and b(Ln) is distributed as T (X) =

∑n
i=1 b(Xi).

Theorem 3.1. All members of the class C1 are REI, that is,
lower record values contain equal amount of Renyi information when
compared with the same number of iid observations from the original
distribution.

Proof. We have

f(x; θ) = a(θ)(−b
′
(x))F (x; θ),

so

q(ln; θ) = −[a(θ)b
′
(ln)/(n− 1)!][a(θ)b(ln)]n−1 exp{−a(θ)b(ln)}.

Thus
R(ln) = [

a(θ1)
a(θ0)

]n exp{−[a(θ1)− a(θ0)]b(ln)}.
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Hence

Dα(qθ1 , qθ0) =
1

α− 1
log

{
Eθ1 [(R(Ln))α−1]

}
=

1
α− 1

log
{
[
a(θ1)
a(θ0)

]n(α−1)

×Eθ1

[
exp[−(α− 1)(a(θ1)− a(θ0))b(ln)]

]}
= n log[

a(θ1)
a(θ0)

]

+
1

α− 1
log Eθ1

[
exp(−(α− 1)(a(θ1)− a(θ0))

n∑
i=1

b(Xi)
]

= Dα(pθ1 , pθ0). 2

Example 3.2. (Weibull distribution) The parametric family with
pdf

f(x; θ) = θβxβ−1e−θxβ
, x > 0, θ, β > 0,

is called weibull (scale) family, β is assumed to be known. This family
is REI, that is, upper record values contain equal amount of Renyi
information when compared with the same number of iid observations
from the original distribution. This is implied by Theorem 3.2 below.

We shall denote by C2 the class of all continuous distribution
functions F such that

F (x; θ) = 1− e−a(θ)b(x),

where a(.) and b(.) are real positive functions and b(.) is increasing.
This class includes, several important distributions such as:

- Weibull distribution (location family) with cdf

F (x; θ) = 1− e−θxβ
, x > 0, θ, β > 0.

- Parto distribution with cdf

F (x; θ) = 1− 1
xθ

= 1− e−θ ln x, x > 1; θ > 0.

- Exponential distribution with cdf

F (x; θ) = 1− e−θx, x > 0; θ > 0.
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Ahmadi and Arghami (2001) showed that for all members of the class
C2 of families of distributions, Un (the nth upper record value) is a
sufficient statistic for the entire set of the record values and b(Un) is
distributed as T (X) =

∑n
i=1 b(Xi).

Theorem 3.2. All members of the class C2 are REI, that is, up-
per record values contain equal amount of Renyi information when
compared with the same number of iid observations from the original
distribution.

The proof is similar to that of Theorem 3.1 and is thus omitted.

In Section 4 we show that a theorem, proved in Abbasnejad and
Arghami (2006), can be used to extend the classifications of families
by Ahmadi and Arghami (2001 and 2003) and Habibi et al. (2006),
to the case of Renyi information.

4 Classification of some well known
distribution

In the previous section we have discussed two classes of family of dis-
tributions characterized by the sufficiency of upper and lower record
values. Ahmadi and Arghami (2001 and 2003) classified many clas-
sic families of distributions into REI, RMI and RLI classes based on
Fisher information. Habibi et al. (2006) did the same thing based
on Kullback-Leibler distance. Our aim here is to extend their results
based on Renyi information by using the following theorem. We de-
rive Table 4.1 below from Table II of Ahmadi and Arghami (2003).

Theorem 4.1. (Theorem 4.1 of Abbasnejad and Arghami (2006)) Let
{pθ, θ ∈ Ω} and {qθ, θ ∈ Ω} be two families of densities. Assume
that both family have finite Fisher and Renyi information, continu-
ous in their arguments. If the following conditions hold

(i) IX(θ)− IY (θ) ≥ d0 > 0, ∀θ ∈ I = [θ0, θ1]

(ii) The third derivatives of Dα
X(pθ+δ, pθ) and Dα

Y (qθ+δ, qθ) with re-
spect to (w.r.t) δ are bounded for every θ ∈ I and every δ in the
neighborhood I0 = [0, c] of zero, then

Dα
X(pθ1 , pθ0) > Dα

Y (qθ1 , qθ0).
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Table 4.1 below, reproduced from Ahmadi and Arghami (2003),
indicates the types (RMI, REI or RLI) of a number of important fam-
ilies of distributions with respect to Fisher (and thus, by Theorem
4.1, wrt Renyi) information.

Table 4.1. Families of distributions classified on the basis of Renyi
information. (reproduced from Ahmadi and Arghami (2003), RMI
cases are printed in bold face.)

Upper Upper Lower Lower
record record record record
without with without with

cdf IRT IRT IRT IRT
N(θ, σ2) RLI RMI RLI RMI
N(β, θ) RMI RMI RMI RMI

Γ(β, θ), 0 < β < 1 RMI RMI RLI RLI
Γ(β, θ), β = 1 REI RMI RLI REI
Γ(β, θ), β > 1 RLI RMI RLI RMI
1− exp(−θx) REI RMI RLI REI

xθ RLI REI REI RMI
exp{− exp[−β(x− θ)]} RLI REI REI RMI
exp{− exp[−θ(x− β)]} REI RLI RMI REI

L(θ, β) RLI RMI RLI RMI
L(β, θ) RLI RMI RLI RMI
1− x−θ REI RMI RLI REI

1− exp(− 1
2θ2 x2) REI RMI RLI REI

1− (1 + xθ)−β REI RMI RLI REI
1− exp(−θxβ) REI RMI RLI REI

Our classification is also consistent with that of Habibi et al. (2006).
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