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Abstract. This paper reviews some recent results on stochastic or-
ders and dependence among order statistics when the observations
are independent and follow the proportional hazard rates model.

1 Introduction

Independent random variables X1, X2, . . . , Xn are said to follow the
proportional hazard rates (PHR) model if for i = 1, 2, . . . , n, the
survival function of Xi can be expressed as,

F i(x) = [F (x)]λi , for λi > 0, (1.1)

where F (x) is the survival function of some random variable X. If r(t)
denotes the hazard rate corresponding to the base line distribution
F , then the hazard rate of Xi is λir(t), i = 1, 2, . . . , n. We can
equivalently express (1.1) as

F i(x) = e−λiR(x), i = 1, 2, . . . , n (1.2)

Key words and phrases: Dispersive order, likelihood ratio order, parallel sys-
tem, reversed hazard rate order, right-tail increasing, sample range, stochastically
increasing.
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where R(x) =
∫ x
0 r(t)dt, is the cumulative hazard rate of X. Many

well-known models are special cases of the PHR model. Here are
some examples.

(a) Weibull: Let R(x) = xα and λi = b−α
i , α > 0, then F̄i(x) =

exp
{
−

(
x

bi

)α}
is Weibull survival function with shape pa-

rameter α and scale parameter bi. It is one of most widely used
lifetime distributions in reliability engineering.

• Exponential: Put R(x) = x, then F̄i(x) = e−λix. It is
the survival function of exponential random variable, well-
known for its non-aging property in reliability theory.

• Rayleigh: Let R(x) = x2 and λi = (2σ2
i )
−1, α > 0, then

F̄i(x) = exp
{
− x2

2σ2
i

}
is Rayleigh survival function with

parameter σi. It is often used to model scattered signals
that reach a receiver by multiple paths in communications
theory.

(b) Pareto: If R(x) = log(x/b) and x ≥ b > 0, then F̄i(x) =
(

b

x

)λi

is Pareto survival function with shape parameter λi and scale
parameter b, playing important roles in the field of economics
since it can be used to describe the allocation of wealth among
individuals.

(c) Lomax: If R(x) = log(1 + x/b) and b > 0, then F̄i(x) =(
1 +

x

b

)−λi

is Lomax survival function used for stochastic mod-
elling of decreasing failure rate life components. It is also a use-
ful model in the study of labour turnover, biological analysis,
and queueing theory.

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics of
random variables X1, X2, · · · , Xn. In the reliability theory context,
Xn−k+1:n denotes the lifetime of a k-out-of-n system. In particular,
the parallel and series systems are 1-out-of-n and n-out-of-n systems.
Order statistics have received a tremendous amount of attention from
many researchers since they play an important role in reliability, data
analysis, goodness-of-fit tests, statistical inference and other applied
probability areas. A lot of work has been done in case the parent
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observations are independent and identically distributed. Please re-
fer to David and Nagaraja (2003) and Balakrishnan and Rao (1998a,
1998b) for more details. However, in many cases the observations are
not necessarily identically distributed. The distribution theory of or-
der statistics and statistics based on them becomes very complicated
in this case.

In this review paper, in Section 2, we first focus on stochastic
comparisons of order statistics from PHR models as the parameter
vector (λ1, . . . , λn) varies. In Section 3, we stochastically compare
the sample range for this model, which is one of the criteria for com-
paring variabilities among distributions. In Section 4, we study the
dependence properties of order statistics when the observations are
independent and follow the PHR model.

We first review some stochastic orders which will be used in the
sequel. Let X and Y be two nonnegative random variables with
distribution functions F and G; survival functions F̄ and Ḡ; and
density functions f and g, respectively.

Definition 1.1. [Shaked and Shanthikumar, 2007 and Müller and
Stoyan, 2002] If the ratios below are well defined, X is said to be
smaller than Y in the

(i) likelihood ratio order (denoted by X ≤lr Y ) if g(x)/f(x) is in-
creasing in x;

(ii) hazard rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄ (x) is in-
creasing in x;

(iii) reversed hazard rate order (denoted by X ≤rh Y ) if G(x)/F (x)
is increasing in x;

(iv) stochastic order (denoted by X ≤st Y ) if F̄ (x) ≤ Ḡ(x) for all x.

It is well known that

X ≤lr Y ⇒ X ≤hr(rh) Y ⇒ X ≤st Y.

Definition 1.2. The random vector X = (X1, . . . , Xn) is said to
be smaller than another random vector Y = (Y1, . . . , Yn) (denoted

by X
st
� Y) according to the multivariate stochastic ordering if

E[φ(X)] ≤ E[φ(Y)]
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for all increasing functions φ. It is known that multivariate stochas-
tic order implies component-wise stochastic order. For more details
on the multivariate stochastic orders, see Shaked and Shanthikumar
(2007) and Müller and Stoyan (2002).

Definition 1.3. (Shaked and Shanthikumar, 2007) X is said to be
less dispersed than Y (denoted by X ≤disp Y ) if

F−1(β)− F−1(α) ≤ G−1(β)−G−1(α)

for all 0 < α ≤ β < 1, where F−1 and G−1 denote their corresponding
right continuous inverses. Equivalently, one has X ≤disp Y if and only
if

F{F−1(u)− c} ≤ G{G−1(u)− c}
for every c ≥ 0 and 0 < u < 1.

We shall also be using the concept of majorization in our discus-
sion. Let {x(1), x(2), · · · , x(n)} denote the increasing arrangement of
the components of the vector x = (x1, x2, · · · , xn).

Definition 1.4. The vector x is said to majorize the vector y

(denoted by x
m
� y) if

j∑
i=1

x(i) ≤
j∑

i=1

y(i)

for j = 1, · · · , n− 1 and
∑n

i=1 x(i) =
∑n

i=1 y(i).

For extensive and comprehensive details on the theory of the ma-
jorization order and its applications, please refer to Marshall and
Olkin (1979).

Another interesting order related to the majorization order intro-
duced by Bon and Pǎltǎnea (1999) is the p-larger order.

Definition 1.5. A vector x in R+n is said to be p-larger than

another vector y in R+n (denoted by x
p
� y) if

j∏
i=1

x(i) ≤
j∏

i=1

y(i), j = 1, · · · , n.

Khaledi and Kochar (2002 a) proved that, for x,y ∈ R+n,

x
m
� y =⇒ x

p
� y.

However, the converse is not true.

Archive of SID

www.SID.ir



Some Recent Results on Stochastic Comparisons and ... 129

2 Order Statistics

In reliability engineering, it is of great interest to investigate the
effect of the change in the random vector (X1, · · · , Xn) which has the
hazard rate vector (λ1, · · · , λn) switches to another one (X∗

1 , · · · , X∗
n)

with the hazard rate vector (λ∗1, · · · , λ∗n) due to some factors, say,
aging, environment, shocks, etc. Pledger and Proschan (1971) proved
the following result (see also Bon and Pǎltǎnea, 2006).

Theorem 2.1. If random vectors (X1, · · · , Xn) and (X∗
1 , · · · , X∗

n)
have proportional hazard rate vectors (λ1, · · · , λn) and (λ∗1, · · · , λ∗n),
respectively, then, for i = 1, · · · , n,

(λ1, · · · , λn)
m
� (λ∗1, · · · , λ∗n) ⇒ Xi:n ≥st X∗

i:n (2.1)

Subsequently, Proschan and Sethuraman (1976) strengthened this
result from component wise stochastic ordering to multivariate stochas-
tic ordering. That is, under the assumptions of Theorem 2.1, they
proved that

(X1, · · · , Xn)
st
� (X∗

1 , · · · , X∗
n). (2.2)

Boland et al. (1994) showed with the help of the following counterex-
ample that (2.1) can not be strengthened from stochastic ordering to
hazard rate ordering when n ≥ 3.

Example 2.1. Let (X1, X2, X3) be independent exponential ran-
dom vector with hazard rate vector (λ1, λ2, λ3) = (0.1, 1, 9) and
(X∗

1 , X∗
2 , X∗

3 ) be independent exponential random vector with haz-
ard rate vector (λ∗1, λ

∗
2, λ

∗
3) = (0.1, 4, 6). It is easily seen that

(λ1, λ2, λ3)
m
� (λ∗1, λ

∗
2, λ

∗
3).

However,
rX3:3(2) ≈ 0.113 > rX∗

3:3
(2) ≈ 0.100.

Hence,
X3:3 �hr X∗

3:3.

This topic is followed up by Dykstra et al. (1997) where they
showed that if X1, . . . , Xn are independent exponential random vari-
ables with Xi having hazard rate λi, i = 1, . . . , n, and Y1, . . . , Yn
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is a random sample of size n from an exponential distribution with
common hazard rate λ̄ =

∑n
i=1 λi/n, then

Yn:n ≤hr Xn:n and Yn:n ≤disp Xn:n. (2.3)

Under a weaker condition that if Z1, . . . , Zn is a random sample with
common hazard rate λ̃ = (

∏n
i=1 λi)

1/n, the geometric mean of the
λ’s, Khaledi and Kochar (2000 a) proved that,

Zn:n ≤hr Xn:n and Zn:n ≤disp Xn:n. (2.4)

They also showed there that

(λ1, λ2, · · · , λn)
p
� (λ∗1, λ

∗
2, · · · , λ∗n) ⇒ Xn:n ≥st X∗

n:n, (2.5)

which improved the bound given by (2.1). Later, Khaledi and Kochar
(2002 b) extended the results (2.4) and (2.5) from the exponential
case to the PHR model.

Theorem 2.2. Let X1, . . . , Xn be independent random variables
with Xi having survival function F̄ λi, i = 1, . . . , n. Let Z1, . . . , Zn be
a random sample with common population survival distribution F̄ λ̃,
where λ̃ = (

∏n
i=1 λi)

1/n, then

(i) Zn:n ≤hr Xn:n;

(ii) Zn:n ≤disp Xn:n if F is of decreasing hazard rate (DFR).

These results give nice bounds for parallel systems with compo-
nents which are independent following the PHR model in terms of
the case when they are i.i.d..

Theorem 2.3. Let X1, . . . , Xn be independent random variables
with Xi having survival function F̄ λi, i = 1, . . . , n, and let X∗

1 , . . . , X∗
n

be another random sample with X∗
i having survival distribution F̄ λ∗,

i = 1, . . . , n. Then

(λ1, λ2, · · · , λn)
p
� (λ∗1, λ

∗
2, · · · , λ∗n) ⇒ Xn:n ≥st X∗

n:n. (2.6)

The following example due to Khaledi and Kochar (2002 b) shows
that Theorem 2.3 may not hold for other order statistics.
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Example 2.2. Let (X1, X2, X3) be independent exponential ran-
dom vector with hazard rate vector (λ1, λ2, λ3) = (0.1, 1, 7.9) and
(X∗

1 , X∗
2 , X∗

3 ) be independent exponential random vector with haz-
ard rate vector (λ∗1, λ

∗
2, λ

∗
3) = (1, 2, 5). It is easy seen that

(λ1, λ2, λ3)
p
� (λ∗1, λ

∗
2, λ

∗
3).

However,
rX1:3(x) = 9 > rX∗

1:3
(x) = 8,

which implies
X1:3 ≤st X∗

1:3.

More recently, Kochar and Xu (2007) proved that the relationship
in (2.3) could be strengthened to the likelihood ratio order in the PHR
model.

Theorem 2.4. Let X1, . . . , Xn be independent random variables
with Xi having survival function F̄ λi, i = 1, . . . , n. Let Y1, . . . , Yn be
a random sample with common population survival distribution F̄ λ̄,
where λ̄ =

∑n
i=1 λi/n, then

Yn:n ≤lr Xn:n.

The following example due to Kochar and Xu (2007) shows that
(2.4) of Khaledi and Kochar (2000 a) can not be strengthened from
the hazard rate order to the likelihood ratio order.

Example 2.3. Let X1, . . . , Xn be independent exponential random
variables with Xi having hazard rate λi, i = 1, . . . , n, and Z1, . . . , Zn

be a random sample of size n from an exponential distribution with
common hazard rate λ̃ = (

∏n
i=1 λi)

1/n. Then, the reversed hazard
rate of Xn:n is

fn:n(x)
Fn:n(x)

=
n∑

i=1

λie
−λix

1− e−λix
.

Similarly, the reversed hazard rate of Zn:n is

gn:n(x)
Gn:n(x)

= nλ̃
e−λ̃x

1− e−λ̃x
.

Let λ1 = λ2 = 1, λ3 = 3 and n = 3, then,

fn:n(1)
Fn:n(1)

≈ 1.321 ≤ 1.339 ≈ gn:n(1)
Gn:n(1)

.
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Thus,
Xn:n �rh Zn:n,

which implies that
Xn:n �lr Zn:n.

Remark. Remark 2.2 of Khaledi and Kochar (2000 a) asserted that
the stochastic order in (2.5) can not be extended to the hazard rate
order. Example 2.3 above also shows that

(λ1, λ2, · · · , λn)
p
� (λ∗1, λ

∗
2, · · · , λ∗n) ; X∗

n:n ≤rh Xn:n.

3 Sample Range

Kochar and Rojo (1996) pointed out that in the case of heterogeneous
exponentials,

Yn:n − Y1:n ≤st Xn:n −X1:n. (3.1)

Later Khaledi and Kochar (2000 b) improved upon this result. They
proved that

Zn:n − Z1:n ≤st Xn:n −X1:n,

where Zn:n is the maximum of a random sample from exponential dis-
tribution with common parameter as the geometric mean of the λi’s.
Recently, Kochar and Xu (2007) strengthened (3.1) from stochastic
order to the reversed hazard rate order, i.e.,

Yn:n − Y1:n ≤rh Xn:n −X1:n.

Now, we will extend (3.1) to the PHR model.

Theorem 3.1. Let X1, . . . , Xn be independent random variables
with Xi having survival function F̄ λi, i = 1, . . . , n. Let Y1, . . . , Yn be
a random sample with common population survival distribution F̄ λ̄,
where λ̄ =

∑n
i=1 λi/n, then

Yn:n − Y1:n ≤st Xn:n −X1:n.
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Proof. From David and Nagaraja (2003, p. 26), the distribution
function of RX = Xn:n −X1:n is, for x ≥ 0,

FRX
(x) =

n∑
i=1

∫ ∞

0
λiF̄

λi−1(u)f(u)
n∏

j=1,j 6=i

[
F̄ λj (u)− F̄ λj (u + x)

]
du.

Similarly, the distribution function of RY = Yn:n − Y1:n is, for x ≥ 0,

FRY
(x) = n

∫ ∞

0
λ̄F̄ λ̄−1(u)f(u)

[
F̄ λ̄(u)− F̄ λ̄(u + x)

]n−1
du.

Hence, it is enough to prove, for u ≥ 0, x ≥ 0,

n∑
i=1

λiF̄
λi−1(u)f(u)

n∏
j=1,j 6=i

[
F̄ λj (u)− F̄ λj (u + x)

]
≤ nλ̄F̄ λ̄−1(u)f(u)

[
F̄ λ̄(u)− F̄ λ̄(u + x)

]n−1
,

i.e.,

n∑
i=1

λi

1− F̄ λi
u (x)

n∏
j=1

[
1− F̄

λj
u (x)

]
≤ nλ̄

[
1− F̄ λ̄

u (x)
]n−1

,

where

F̄u(x) =
F̄ (u + x)

F̄ (u)
,

which is the survival function of Xu = X − u|X > u, the residual life
of X at time u ≥ 0. Now, using the transform,

H(x) = − log F̄u(x), u ≥ 0,

it follows that,

n∑
i=1

λi

1− e−λiH(x)

n∏
j=1

[
1− e−λjH(x)

]
≤ nλ̄

[
1− e−λ̄H(x)

]n−1
.

It can be seen that (3.1) is equivalent to the following inequality,

n∑
i=1

λi

1− e−λix

n∏
j=1

[
1− e−λjx

]
≤ nλ̄

[
1− e−λ̄x

]n−1
.

Replacing x with H(x), the required result follows immediately.
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The concept of variability is a basic one in statistics, probabil-
ity and many other related areas, such as reliability theory, business,
economics and actuarial science, among others. Most of the classical
methods for variability comparisons are based upon summary statis-
tics such as variance and standard deviation. In the following result,
we compare the variability of sample ranges of i.i.d samples and that
of non-i.i.d samples.

Theorem 3.2. Let X1, . . . , Xn be independent exponential random
variables with Xi having hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn

be a random sample of size n from an exponential distribution with
common hazard rate λ̄ =

∑n
i=1 λi/n. Then

Var {Yi:n − Y1:n} ≤ Var {Xi:n −X1:n} .

Proof. Since Xi:n − X1:n and X1:n are independent (see Kochar
and Korwar, 1996),

Cov {Xi:n −X1:n, X1:n} = 0,

i.e.,
Cov{Xi:n, X1:n} = VarX1:n.

Similarly,
Cov{Yi:n, Y1:n} = VarY1:n.

Observing X1:n
st= Y1:n,

VarX1:n = VarY1:n.

Hence,

Var {Yi:n − Y1:n} = VarYi:n −VarX1:n

≤ VarXi:n −VarX1:n

= Var {Xi:n −X1:n} ,

where the inequality follows from Theorem 2 of Sathe (1988).

Remark. It should be noted that the expression of the variance
in inequality (4) of Sathe (1988) is not correct. However, by Jensen’s
inequality, one can show the inequality there is true. It will be of
interest to see whether the above result can be extended to the dis-
persive order,

Yi:n − Y1:n ≤disp Xi:n −X1:n.
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4 Dependence

Many well-known notions of positive dependence between two ran-
dom variables have been discussed. For examples, random variable
Y is said to be stochastically increasing (SI) in random variable X if
for all y,

P (Y ≤ y|X = x) ≥ P (Y ≤ y|X = x∗), x ≤ x∗. (4.1)

Lehmann (1966) uses the term positively regression dependent to de-
scribe the SI property. A weaker dependence order called right tail
increasing (RTI) is defined in Barlow and Proschan (1981) as, ran-
dom variable Y is said to be RTI in random variable X if for all
y,

P (Y ≤ y|X > x) ≥ P (Y ≤ y|X > x∗), x ≤ x∗. (4.2)

Please refer to Barlow and Proschan (1981), Joe (1997) and Nelsen
(1999) for more dependence notions and orders.

Boland et al. (1996) studied in detail the dependence properties of
order statistics. In particular, they proved the following dependence
result for the PHR model.

Theorem 4.1. Let X1, . . . , Xn be independent random variables
with differentiable densities and proportional hazard functions on an
interval. Then Xi:n is SI in X1:n.

They also give a counterexample to illustrate that, in general, Xi:n is
not SI in X1:n.

Observing that when X and Y are continuous, (4.1) can be writ-
ten as

H[ξq ] ◦H−1
[ξp](u) ≤ u

where ξp = F−1(p) stands for the pth quantile of the marginal distri-
bution of X, and H[s] denotes the conditional distribution of Y given
X = s. Avérous, Genest and Kochar (2005) proposed the following
definition to measure the relative dependence degree of two pairs of
random variables.

Definition 4.1. Y1 is said to be less stochastic increasing in X1

than Y2 is in X2, denoted by (Y1|X1) ≺SI (Y2|X2), if and only if, for
0 ≤ u ≤ 1, and 0 ≤ p ≤ q ≤ 1,

H2[ξ2q ] ◦H−1
2[ξ2p](u) ≤ H1[ξ1q ] ◦H−1

1[ξ1p](u),
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where ξip = F−1
i (p) stands for the pth quantile of the marginal dis-

tribution of Xi, and Hi[s] denotes the conditional distribution of Yi

given Xi = s, for i = 1, 2.

When the observations are independent and identically distributed,
Avérous, Genest and Kochar (2005) used this concept to study the
problem of comparing different pairs of order statistics according to
the degree of dependence. In a very general sense, they proved that
the dependence between pairs of order statistics decreases as the in-
dices of the order statistics draw apart. Dolati, Genest and Kochar
(2007) proposed another weaker dependence order based on (4.2),
called more RTI order.

Definition 4.2. Y1 is said to be less right-tail increasing (RTI) in
X1 than Y2 is in X2, denoted by (Y1|X1) ≺RTI (Y2|X2), if and only
if, for 0 ≤ u ≤ 1, and 0 ≤ p ≤ q ≤ 1,

H∗
2[ξ2q ] ◦H∗−1

2[ξ2p](u) ≤ H∗
1[ξ1q ] ◦H∗−1

1[ξ1p](u),

where ξip = F−1
i (p) stands for the pth quantile of the marginal dis-

tribution of Xi, and H∗
i[s] denotes the conditional distribution of Yi

given Xi > s, for i = 1, 2.

It is easy to see that both more SI order and more RTI order are
copula-based orders. For the concept of copula, please refer to Nelsen
(1999) for more details.

Dolati, Genest and Kochar (2007) used the more RTI order to
investigate the relative dependence between the extreme order statis-
tics in the PHR model. We give a different proof here, which is more
straightforward.

Theorem 4.2. Let X1, . . . , Xn be independent continuous random
variables with Xi having survival function F̄ λi, i = 1, . . . , n. Let
Y1, . . . , Yn be i.i.d. continuous random variables, then

(Xn:n|X1:n) ≺RTI (Yn:n|Y1:n).

Proof. Without loss of generality, we assume that Xi’s are exponen-
tially distributed with parameters λ1, λ2, . . . , λn, since the RTI depen-
dence order is copula based. Observing that (Yn:n|Y1:n) has the same
copula structure with (Un:n|U1:n) (see Avérous, Genest and Kochar,
2005), where Un:n and U1:n are extreme order statistics from uniform
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distribution. Hence, we can also assume Yi, i = 1, · · · , n have com-
mon population survival distribution Ḡ = F̄ λ̄, where λ̄ =

∑n
i=1 λi/n.

Now, for u > s ≥ 0,

H∗
1[s](u) = P [Xn:n ≤ u|X1:n > s]

=
P [s < Xi ≤ u, i = 1, . . . , n]

P [Xi > s, i = 1, . . . , n]

=
∏n

i=1[F i(s)− F i(u)]∏n
i=1 F i(s)

=
n∏

i=1

[
1− F i(u)

F i(s)

]

=
n∏

i=1

[1− e−λi(u−s)]

= Fn:n(u− s)

where Fn:n denotes the distribution function of Xn:n. Let ξp denote
the pth quantile of the common distribution of X1:n and Y1:n. There-
fore,

H∗−1
1[ξp](u) = F−1

n:n(u) + ξp

and, for 0 ≤ p < q ≤ 1,

H∗
[1ξq ] ◦H∗−1

[1ξp](u) = Fn:n[F−1
n:n(u)− (ξq − ξp)].

Similarly,

H∗
[2ξq ] ◦H∗−1

[2ξp](u) = Gn:n[G−1
n:n(u)− (ξq − ξp)],

where Gn:n denotes the distribution function of Yn:n. According to
the definition, we need to prove

Gn:n[G−1
n:n(u)− (ξq − ξp)] ≤ Fn:n[F−1

n:n(u)− (ξq − ξp)],

i.e.,
Yn:n ≤disp Xn:n,

which is a fact that was established in (2.3) by Dykstra et al. (1997).

Remark. It will be of interest to know whether the above result
can be extended from more RTI order to more SI order under the
general order statistics, that is, for 2 ≤ j ≤ n,

(Xj:n|X1:n) ≺SI (Yj:n|Y1:n).
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Dolati, Genest and Kochar (2007) has partly answered this question.
It is proved there

(X2:n|X1:n) ≺SI (Y2:n|Y1:n).

It is also worth remarking that Dolati, Genest and Kochar (2007) got
a nice bound for Kendall’s tau of (Yn:n, Y1:n) by using Theorem 4.2,

τ(Yn:n, Y1:n) ≤ 1
2n− 1

.
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