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Institute of Mathematics, Polish Academy of Science, Warszawa, Poland.
(R.Zielinski@impan.gov.pl)

Abstract. Sharp bounds for medians of L-statistics in the nonpara-
metric statistical model with all continuous and strictly increasing
distribution functions are given. As a corollary we conclude that
L-statistics are very poor nonparametric quantile estimators.

1 Result

Let X1, . . . , Xn be a sample from a distribution F ∈ F , where F is
the class of all continuous and strictly increasing distribution func-
tions on their supports. Let X1:n, . . . , Xn:n be the order statistics, let
T =

∑n
j=1 λjXj:n; λj ≥ 0, j = 1, 2, . . . , n;

∑n
j=1 λj = 1, be a nontriv-

ial L-statistic (at least two λ’s are positive). Let S = S(X1, . . . , Xn)
be any function of observations X1, . . . , Xn and let Med(F, S) de-
note a median (of the distribution) of S if the sample comes from
the distribution F . Our primary interest are functions of the form
S(.) = F (T (.)).

Key words and phrases: Harrell-Davis estimator, Kaigh-Cheng estimator, L-
statistics, quantiles, quantile estimators.
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Theorem 1.1. If T =
∑m

j=k λjXj:n is an L-statistic such that
λk > 0, λm > 0, k < m, and λk + λk+1 + . . . + λm = 1, then

(∗) m(Uk:n) ≤ Med(F, F (T )) ≤ m(Um:n),

where m(Uk:n) and m(Um:n) are medians of order statistics Uk:n and
Um:n from a sample of size n from the uniform U(0, 1) parent distri-
bution. The bounds are sharp in the sense that for every ε > 0 there
exists F ∈ F such that Med(F, F (T )) > m(Um:n) − ε and for every
η > 0 there exists G ∈ F such that Med(G, G(T )) < m(Uk:n) + η.

Proof. The first statement follows easily from the fact that Xk:n <
T < Xm:n and hence for every F ∈ F we have Uk:n = F (Xk:n) <
F (T ) < F (Xm:n) = Um:n. To prove the second part of the theorem it
is enough to construct families of distributions Fα, α > 0, and Gα, α >
0, such that Med(Fα, Fα(T )) → m(Um:n) and Med(Gα, Gα(T )) →
m(Uk:n), as α → 0.

Consider the family of power distributions Fα(x) = xα, 0 < x < 1,
α > 0. Then Xj:n = F−1

α (Uj:n) = U
1/α
j:n and

Fα(T ) =
(
λkU

1/α
k:n + λk+1U

1/α
k+1:n + . . . + λm−1U

1/α
m−1:n + λmU1/α

m:n

)α

= Um:n

[
λk

( Uk:n

Um:n

)1/α
+ λk+1

(Uk+1:n

Um:n

)1/α
+ . . .

+λm−1

(Um−1:n

Um:n

)1/α
+ λm

]α
If α → 0 then Fα(T ) → Um:n and Med(Fα, Fα(T )) → m(Um:n).

Now consider the family Gα with Gα(x) = 1 − (1 − x)α; in full
analogy to the above we conclude that then Gα(T ) → Uk:n and
Med(Gα, Gα(T )) → m(Uk:n) as α → 0.

Corollary 1.1. If an L-statistic T =
∑m

j=k λjXj:n, λk > 0,
λm > 0, λk + λk+1 + . . . + λm = 1, k < m, and λj = λj(q),
j = k, . . . ,m, is considered as a nonparametric estimator of the
q-th quantile xq(F ) = F−1(q) of an unknown distribution F ∈ F ,
then the error of estimation may be arbitrarily large in the sense
that for every C > 0 there exists a distribution F ∈ F such that
|Med(F, T )− xq(F )| > C.

Proof. Suppose that q < m(Um:n). The case that q > m(Uk:n) can
be considered in full analogy.
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Choose ε > 0 such that m(Um:n)− ε > q. By the Theorem there
exists a distribution F ∈ F such that Med(F, F (T )) > m(Um:n) −
ε > q. By the obvious equality that states that Med(F, F (T )) =
F (Med(F, T )) we obtain that Med(F, T )− xq(F ) > 0. For an σ > 0
consider the distribution Fσ ∈ F defined by the formula Fσ(x) =
F (x/σ). Then xq(Fσ) = σ ·xq(F ) and, due to the fact that T is
scale equivariant, Med(Fσ, T ) = σ ·Med(F, T ). Hence Med(Fσ, T )−
xq(Fσ) = σ·(Med(F, T )− xq(F )) which by a suitable choice of σ > 1
may be arbitrarily large.

2 Numerical illustrations (simulations)

To demonstrate that L-statistics may produce very large errors in es-
timating quantiles in the nonparametric model F with all continuous
and strictly increasing distribution functions we decided to present
the problem of estimating the median of an unknown F ∈ F with
the following well known estimators:

Davis and Steinberg (1986)

X(n+1)/2:n, if n is odd;
(
Xn/2:n + Xn/2+1:n

)
/2, if n is even,

Harrell and Davis (1982)

HD =
n!

[(n−1
2 )!]2

n∑
j=1

[∫ j/n

(j−1)/n
[u(1− u)](n−1)/2du

]
Xj:n,

Kaigh and Cheng (1991) for n odd

KC =
1(2n−1
n

) n∑
j=1

(
n−3

2 + j
n−1

2

)(
3n−1

2 − j
n−1

2

)
Xj:n.

As the distributions for studying our problem we have chosen
Pareto with cdf

1− 1
xα

, x > 1, heavy tails, no moments of order k ≥ α,

Power (special case of Beta) with cdf

xα, x ∈ (0, 1), no tails, all moments ,
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Exponential with cdf

1− exp{−αx}, x > 0, very regular ,

all distributions for α = 1/2, 1/4, and 1/8.
Results of our numerical investigations for samples of size n = 9

(Harrell-Davis and Kaigh-Cheng) or for samples of size n = 10 (Davis-
Steinberg statistic (X5:10 + X6:10)/2) are presented in the Table be-
low. The number of simulated samples, and consequently the num-
ber of simulated values of the estimator under consideration, was
N = 9, 999, and the median from the sample of size N = 9, 999 has
been taken as an estimator of the median of the distribution of the
estimator under consideration. Observe that m(Un:n) − m(U1:n) in-
creases with n so that errors of estimators with k = 1 and m = n
(e.g. HD and KC) increase with n.

Simulated medians of estimators

Distribution Median HD KC
X5:10 + X6:10

2
Pareto

α = 1/2 4 7.72 13.71 4.13
α = 1/4 16 255 1107 18.45
α = 1/8 256 3.3× 106 2.8× 107 383

Power

α = 1/2 0.25 0.2780 0.2919 0.2535
α = 1/4 0.0625 0.1055 0.1286 0.0692
α = 1/8 0.0039 0.0241 0.0432 0.0053

Exponential

α = 1/2 1.3863 1.5138 1.6235 1.4079
α = 1/4 2.7726 3.0571 3.2731 2.8036
α = 1/8 5.5452 6.0595 6.4897 5.6143

3 A remark

A reason for the bad behavior of nontrivial L-statistics as quantile
estimators is that they are not equivariant under monotonic trans-
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formation of data while the class F of all continuous and strictly in-
creasing distribution functions allows such transformations. In some
parametric families of distributions L-statistics may perform excel-
lently. The problem is discussed thoroughly in a Technical Report
(Zieliński 2005).
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