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Abstract. We study the problem of testing the hypothesis that the
mean vector of a random vector belongs to a given set. For this
purpose, we consider a semiparametric mixture of Dirichlet process
model in which the mean vector has a prior distribution concentrated
on the set of interest. A computational method is given to obtain
a sample from the posterior distribution of the mean vector. On
the basis of this sample, we can obtain the Bayes estimate and the
posterior probability that the hypothesis is true. We give a numerical
example to demonstrate the application of this method.

1 Introduction

In recent years, the mixture of Dirichlet process (MDP) models has
played an important role in Bayesian nonparametric and semipara-
metric inference. In a MDP model, the probability density function
is written as a mixture of known nonnegative measurable functions
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and then a Dirichlet process prior is assigned to the mixing distribu-
tion. Unlike the Dirichlet process prior, these models provide a class
of priors that selects a continuous distribution with probability 1. Lo
(1984) obtained the Bayes estimator of the density function and its
functionals in a MDP model. Then, Brunner and Lo (1989) applied
the results to an unknown unimodal density (by the Khintchine and
Shepp theorem (Feller, 1971), a unimodal density can be written as
a scale mixture of uniform densities). Brunner (1995) then gave a
generalization to a linear regression model with symmetric unimodal
error terms. A Dirichlet mixture of normals is another example of
the MDP model, which has a normal density function as its kernel,
(e.g., Ferguson (1983), West (1990), Escobar (1994)), and Escobar
and West (1995)) Escobar (1994) applied a computational approach,
based on a Gibbs sampler algorithm, to find the Bayes estimate of
normal means in this model. He also considered the case when a
prior distribution is assigned to the parameters of the Dirichlet pro-
cess. Escobar and West (1995) studied Bayesian density estimation
using a Dirichlet mixture of normal densities. Consistency of the pos-
terior of such models is discussed by Ghosal, et al. (1999) and Lijoi
et al. (2005). Using a semiparametric MDP prior, Merrick et al.
(2003) proposed a proportional hazards model to describe the rela-
tionship between machine tool life and operational variables. Further
applications can be found in Mukhopadhyay and Gelfand (1997 and
references therein), Kottas and Gelfand (2001), Hoff (2004), Kottas et
al. (2004) and Lijoi, et al. (2005). See also Walker et al. (1999) and
Muller and Quintana (2004) for a review of Bayesian nonparametric
inference, and MacEachern and Muller (2000) for other surveys of
MDP models.

The main contribution of this article is to review Dirichlet Process
mixing and show its application in testing hypothesis about a mean
vector. Let µ be the mean vector of a random vector Y = (Y1, ..., Ym)
and let A denote some subset of Rm . We wish to test whether or
not the sample is compatible with the hypothesis H0 : µ ∈ A.

Here we review Dirichlet process mixing and study a related com-
putational procedure. Let k(., .) : Rm × R1 → R1 be a known non-
negative valued and measurable function with the following property:∫

Rm

k(y, θ) dy = 1 ∀θ ∈ R . (1.1)

Given the distribution function G( .), we suppose that the random
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vector Y has the probability density function:

fY(y|G) =
∫

R
k(y, θ) G(dθ). (1.2)

We further assume a Dirichlet process prior for G( .), G ∈ DP (cG0),
where G0 is a specified distribution function and c > 0 is a precision
parameter ( see Ferguson, 1973). In fact, the distribution G( .) is the
infinite dimensional parameter of the model. The Bayes estimate of
(1-2) for the no sample problem is

E(fY(y|G)) = fY(y|G0). (1.3)

For a random sample D = (Y1, ...,Yn) from fY( . |G), we can ap-
ply the results given by Lo (1984) to obtain the Bayes estimator of a
functional H(fY(.|G)). Since Lo’s expressions are intractable, some
authors provide approximation methods to compute posterior mo-
ments of functionals. See e.g., Escobar (1994), Gelfand and Mukhopad-
hyay (1995), Escobar and West (1995), Ishwaran and Zarepour (2000),
Gelfand and Kottas (2002) and Ishwaran and Zarepour (2002).

Here, we briefly review the work of Gelfand and Kottas (2002).
For this purpose, we restate the MDP model as follows

Yi|G, θ1, ..., θn ∼ k(., θi), i = 1, ..., n (indep.)
θ1, ..., θn|G ∼ G(.) (i.i.d.)
G ∈ D P (cG0)

(1.4)

Then, Y1, ...,Yn are i.i.d. random vectors from fY( . |G). In what
follows, we use the bracket notation of Gelfand and Smith (1990) to
write the distribution of random variables. For example the distri-
bution of the random variable Z at z is denoted by [z] and given the
value w of a random variable W , the conditional distribution of Z is
denoted by [z|w]. Then,

[θi|θj ; j 6= i,D] ∝
n∏

i=1

k(yi, θi) [θi|θj ; j 6= i], (1.5)

where,

[θi|θj , j 6= i] =
1

c + n− 1
(cG0 +

n∑
j 6=i

δθj
), (1.6)

for i = 1, ..., n (δθ is assumed to be a degenerate distribution at θ).
Using these n conditional distributions, we can implement a Gibbs
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sampler to obtain a sample point from the posterior distribution of
θ1, ..., θn.

Let θ∗b = (θ∗b1, ..., θ
∗
bn); b = 1, ..., B; be a sample from [θ1, ..., θn|D]

and define

G∗0b(.) = (c + n)−1{cG0(.) +
n∑

i=1

δθ∗bi
(.)}. (1.7)

It can be shown that G∗b =
∑∞

j=1 wjδθj
is a realization from

[G|θ∗b ], where w1 = z1, wj = zj(1− zj−1)...(1− z1), j = 2, 3, ... ;zj ∼
Beta(1, c + n)(i.i.d) and θj ∼ G∗0b (i.i.d.) (Sethuraman (1994)).

For sufficiently large J , we can use a partial sum approximation,∑J
j=1 wjδθj

. If θ
′
1, ..., θ

′
l is a sample from G∗b , then the Monte Carlo

integration

H∗
b =

1
l

l∑
j=1

H(k(., θ
′
j)) (1.8)

is a realization from [H(fY(.|G))|D], where H is a linear functional,

H(fY(.|G)) =
∫

H(k(., θ))G(dθ). (1.9)

The sample H∗
b ; b = 1, ..., B; can be used to approximate the pos-

terior moments of H(fY(.|G)). For the linear functionals H1(f(.|G))
and H2(f(.|G)) and an arbitrary function T (., .), one may use T ∗b =
T (H∗

1b,H
∗
2b) as a realization from [T (H1,H2)|D] (See Gelfand and

Kottas (2002) for further details). For example, suppose that we
want to estimate the conditional probability density f(y(1)|y(2), G),
where the random vector Y is partitioned as Y = (Y(1),Y(2)). We
consider the “p.d.f.-at-a-point” functionals

H1(fY(.|G)) = f(y(1), y(2)|G), (1.10)

and
H2(fY(.|G)) = f(y(2)|G) =

∫
k(y(2)|θ) G(dθ). (1.11)

If we define
T (H1,H2) =

H1

H2
, (1.12)

then, T (H∗
1b,H

∗
2b); b = 1, ..., B ; is a sample from the conditional

predictive density E(f(y(1)|y(2), G)|D).
The rest of this article is organized as follows. Section 2 is devoted

to an approach for testing hypotheses about the mean vector of a
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random vector under a MDP prior. We consider appropriate prior
distributions concentrated on the sets of interest.

In Section 3, we give an example to illustrate the approach.

2 Inference about the mean vector

In this section, we propose a semiparametric procedure to test H0 :
µ ∈ A versus H1 : µ ∈ Ac, where µ denotes the mean vector of Y, A
is some subset of Rm and Ac is its complement. For this purpose, we
consider the function k(., .) defined in Section 1 and suppose that it
satisfies ∫

Rm

y k(y, θ) dy = 0 ∀ θ ∈ R . (2.1)

The random vector Y is assumed to have the following probability
density function

fY(y|µ , G) =
∫

R
k(y − µ, θ) G(dθ), (2.2)

where µ = (µ1, ..., µm) and G( .) is a distribution function. It can be
shown that the mean vector of Y is µ. (Given G( .) and µ, Y − µ
has the density.) Consider the 0-1 loss function {L(ai, µ), i = 0, 1},
where ai denotes the decision to accept that the hypothesis Hi is true;
i = 0, 1,

L(a0, µ) =
{

0 µ ∈ A
1 µ ∈ Ac , (2.3)

and
L(a1, µ) = 1− L(a0, µ). (2.4)

To minimize the expected posterior loss, we make the decision a0

if (and only if)

P (µ ∈ A|data) ≥ 1
2
. (2.5)

Note that the hypothesis H0 must have a positive probability
under the prior distribution of µ. ( For example, the Bayes rule always
rejects the null hypothesis H0 : µ = µ0 if we assign an absolutely
continuous prior distribution to µ.)

We suppose that G ∈ DP (cG0) and consider the following prior
distribution for µ: 

µ|µ ∈ A ∼ π0( . )
µ|µ ∈ Ac ∼ π1( . )
P (µ ∈ A) = p0

, (2.6)
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where π0( . ) and π1( . ) are specified density functions and 0 <
p0 < 1. Our prior opinion about the hypothesis H0 is expressed by
p0. The densities π0( . ) and π1( . ) are selected by the statistician, but
otherwise arbitrary non-informative uniform densities can be chosen.
Let D = (Y1, ...,Yn) be a random sample from fY(.|µ , G). Following
Mukhopadhyay and Gelfand (1997), we consider latent θi associated
with Yi and suppose that

Yi|G, θ1, ..., θn, µ ∼ k( y − µ , θi) ; i = 1, ..., n (indep.). (2.7)

Given G( .) and µ, θ,
is are assumed to be i.i.d. random variables

with the distribution G( .). Then,

[µi|θ1, ..., θn, µj ; j = 1, ...,m ; j 6= i ;D] ∝
n∏

h=1

k(yh − µ , θh)[µ], i = 1, ...,m (2.8)

and

[θi|µ , θj ; j = 1, ..., n ; j 6= i;D] ∝

qi0g0(.) k(yi − µ, . ) +
n∑

j=1, j 6=i

qijIθj
(.) ; i = 1, ..., n (2.9)

where g0(.) is the density associated with G0(.),

qi0 ∝ c(
∫

g0(θ)k(yi − µ, θ)dθ)−1, (2.10)

and
qij ∝ k(yi − µ , θj), (2.11)

subject to
∑

j 6=i qij = 1. Using the conditional distributions (2-8)
and (2-9), a Gibbs sampler can be implemented to provide a sample,
µ1, ..., µl; from the posterior, [µ|D]. The posterior probability P (µ ∈
A|D) and the Bayes estimate of µ are respectively approximated by
1
l

∑l
j=1 IA(µj) and µ̄ = 1

l

∑l
j=1 µj . The Bayes rule rejects H0 when

the posterior probability of {µ ∈ A} is less than 0.5.
An extension of this method considers more than two hypotheses,

i.e.
Hi : µ ∈ Ai ; i = 1, ..., t, (2.12)

where A1, ..., At form a partition for Rm. Then, we accept the hy-
pothesis which has the highest posterior probability.
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3 Numerical example

In this section, we used the lumber data (Johnson and Wichern
(1988), exercise 5.14) to illustrate our approach. The variables are
Y1 =stiffness and Y2 =bending strength and the units are pounds
/ (inches)2. In this exercise, it is assumed that µ10 = 2000 and
µ20 = 10000 represent “ typical ” values for stiffness and bending
strength respectively. The aim is to verify whether the data are con-
sistent with these values. Using normal probability plots, we conclude
that the assumption of bivariate normal distribution is not reason-
able. Instead, we consider the density function (2-2), where k(., ., θ) is
the joint density function of two jointly normal distributed variables
with zero means, unit variances and correlation coefficient θ. The
random distribution function G( .) is assumed to be a Dirichlet pro-
cess, where c = 1 and G0( .) is a uniform distribution function on the
interval (-1,1). Here, we wish to test H0 : (µ1, µ2) ∈ (c1, d1)×(c2, d2).
We assume that µi has the following prior distribution


µi|µi ∈ (ci, di) ∼ U( ci, di)
µi|µi ∈ (−ai, ci]

⋃
[di, ai) ∼ U(−ai, ci]

⋃
[di, ai)

P (µi ∈ (ci, di)) = 0.5
P (µi /∈ (−ai, ai)) = 0

, i = 1, 2,

(3.1)
where −ai < ci < di < ai and ai is sufficiently large, for i = 1, 2. In
other words, Ai = (ci, di) and Ac

i = (−ai, ci]
⋃

[di, ai), for i = 1, 2 and
π0( . ) and π1( . ) are non-informative uniform densities. We also take
a1 = a2 = 100000.

It can be shown that the conditional distribution (2-8) is propor-
tional to

φ(µi|
∑n

h=1(1− θ2
h)−1(y1h − θh(y2h − µj))∑n
h=1(1− θ2

h)−1
, (

n∑
h=1

(1− θ2
h)−1)−1)[µi]

(3.2)
where φ(.|µ, σ2) denotes the probability density function of a normal
distribution with mean µ and variance σ2 and [µi] is the density
function associated with (3-1).

In order to generate a sample point from (3-2), we first observe
the result of some Bernoulli trial that has probability of success 0.5.
If the Bernoulli trial results in a success, then we generate a sample

Archive of SID

www.SID.ir

http://www.nitropdf.com/


30 Ghalamfarsa Mostofi and Behboodian

point from the density function that is proportional to

φ(µi|
∑n

h=1(1− θ2
h)−1(y1h − θh(y2h − µj))∑n
h=1(1− θ2

h)−1
, (

n∑
h=1

(1−θ2
h)−1)−1)I(ci,di)(µi)

(3.3)
Otherwise, the sample point is generated from the density func-

tion that is proportional to

φ(µi|
∑n

h=1(1− θ2
h)−1(y1h − θh(y2h − µj))∑n
h=1(1− θ2

h)−1

, (
n∑

h=1

(1− θ2
h)−1)−1)I(−ai,ci]

⋃
[di,ai)(µi)

Table 3.1 shows the results for some different values of each of
c1, d1, c2 and d2. For example, the Bayes rule accepts H0 : (µ1, µ2) ∈
(1500, 2500)×(4000, 13000) and rejectsH0 : (µ1, µ2) ∈ (1700, 2300)×
(6000, 11000). The typical values µ10 and µ20 belong to (c1, d1) and
(c2, d2) respectively if we consider each of the first three hypotheses.
The last column shows the Bayes estimates of µ1 and µ2 under the
corresponding prior distributions.

Table 3.1: Posterior probabilities and Bayes estimates
P ((µ1, µ2) ∈

(c1, d1) (c2, d2) (c1, d1)× (µ̂1, µ̂2)
(c2, d2)|D)

(1500,2500) (4000,13000) 0.64 (2065.44,8266.68)
(1600,2400) (5000,12000) 0.50 (1939.34,8370.71)
(1700,2300) (6000,11000) 0.25 (2018.53,8373.34)
(1900,2100) (8000,9000) 0.10 (2094.53,8461.79)
(1800,1900) (8200,8400) 0.01 (1973.72,8400.90)
(1500,2500) (8000,9000) 0.55 (1921.18,8259.15)
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