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Abstract. Recently attempts have been made to construct some
measures to compute the local dependence between two random vari-
ables. Bairamov et al. (2003) introduced a measure of local depen-
dence which is essentially an extension of Galton correlation coeffi-
cient. In the present paper, we give an extension of the measure of
local dependence, given by the cited authors, and study some of its
properties. In particular, we show that our measure of local depen-
dence can be applied to measure the dependency between two residual
lifetime random variables. In this case, we give an estimator of the
proposed measure of local dependency based on the bivariate mean
residual lifetime. The connections between different forms of local
dependency measure given in this paper and some other concepts of
dependency are also investigated.

Key words and phrases: Bivariate distributions, bivariate mean residual life-
time, correlation coefficient, exchangeable random variables, residual lifetime, to-
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1 Introduction

In recent years several authors have shown intensified interest to
study the local dependency between two random variables. Bjerve
and Doksum (1993), Doksum et al. (1994), Blyth (1994a,b), Jones
(1996) and Nelsen (1999) are among the authors who study and dis-
cuss various measures of local association between two random vari-
ables. Consider a bivariate random vector (X,Y ) with finite second
moments, Galton correlation coefficient ρ, and support NX,Y . In a
recent work, Bairamov et al. (2003) proposed a linear local depen-
dence function between X and Y , based on regression concept, as
follows:

H(x, y) =
E{(X − E(X | Y = y))(Y − E(Y | X = x))}√
E(X − E(X | Y = y))2

√
E(Y − E(Y | X = x))2

. (1)

They showed that equation (1) can be rewritten as

H(x, y) =
ρ+ φX(y)φY (x)√

1 + φ2
X(y)

√
1 + φ2

Y (x)
, (2)

where

φX(y) =
E(X | Y = y)− EX

σX
, φY (x) =

E(Y | X = x)− EY

σY
, (3)

and, σX and σY are the standard deviations of X and Y , respectively.
Several properties of H(x, y) are derived by these authors. Nadarajah
et al. (2003) provide details analysis (both algebraic and numerical)
of the linear local dependence function in (1) for the class of bivariate
extreme value distributions.

In the present paper, we extend the result of Bairamov et al.
(2003) by giving a measure of dependency between two random vari-
ables X and Y whith it enables us to characterize the effect of X
on Y (and vice versa) under the condition that X and Y belong to
subsets A and B of their supports, respectively. We call this measure
H(A,B). In Section 2, several properties of the local dependency
measure H(A,B) are derived. In Section 3, we consider two special
cases for sets A and B and propose two measures for computing the
dependency between two residual lifetime and two past lifetime ran-
dom variables, respectively. These measures are useful in branches of
sciences, such as reliability and survival analysis, that deal with the
study of duration. Some properties and connections between the pro-
posed measures of local dependence for the residual and past lifetime
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random variables are also discussed. It is proved, for example, that
when the random variables X and Y are exchangeable, the marginal
distribution of X can be recovered from H(x, x) and H(A,B), where
A and B are the residual lifetime sets. Section 4, considers the rela-
tion between the local dependency H(A,B) and some other concepts
of dependency. It is shown, among others, that when two random
variables X and Y are positively quadrant dependent (PQD), then
H(A,B), for some special cases of A and B, is totally positive of
order two. In Section 5, we supply several illustrative examples. In
section 6, we give an estimator for H(A,B), where the sets A and
B denote the residual lifetime sets. An example containing the real
data is also presented.

2 A general form of the local dependence
function

Assume that A and B are two sets such that A × B ⊆ NX,Y . Mo-
tivated by the definition of the linear local dependence function in
equation (1), given by Bairamov et al. (2003), we propose the follow-
ing set function for measuring the local association between X and
Y :

H(A,B) =
E{(X − E(X | Y ∈ B))(Y − E(Y | X ∈ A))}√

E{(X − E(X | Y ∈ B))2}
√
E{(Y − E(Y | X ∈ A))2}

. (4)

H(A,B) measures the dependency between two random variables X
and Y under the condition that X and Y belong to subsets A and
B of their supports, respectively. Hence it enables us to measure the
effect of X on Y (and vice versa) in the case where X and Y belong
to the subsets A and B, respectively. Similar to (2), it can be shown
that an alternative expression for equation (4) is

H(A,B) =
ρ+ φX(B)φY (A)√

1 + φ2
X(B)

√
1 + φ2

Y (A)
, (5)

where

φX(B) =
E(X | Y ∈ B)− EX

σX
and φY (A) =

E(Y | X ∈ A)− EY

σY
.

Remark 2.1. Note that if we take A = {x} and B = {y}, the
H(A,B) reduces to H(x, y) in (1). In the following, some properties
of the local dependence function H are provided.
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Theorem 2.1. Let (X,Y ) have a bivariate distribution with finite
second moments, correlation coefficient ρ, support NX,Y , and local
dependence function H, given in (4). Let also NX be the support of
X. Then,

1. If X and Y are independent, then H(A,B) = 0, for all A and B
such that A×B ⊆ NX,Y .

2. |H(A,B)| ≤ 1, for all A and B such that A×B ⊆ NX,Y .

3. If |H(A,B)| = 1, for some A and B such that A × B ⊆ NX,Y ,
then ρ 6= 0.

4. Let Y = aX + b, a.s. If A ⊆ NX and B = {ax+ b : x ∈ A}, then
H(A,B) = sign(a).

5. If ρ = ±1, then H(A,B) = ±1 for each A ⊆ NX and B = {ax+b :
x ∈ A} with the same a and b given in part 4.

6. If X̃ = aX + b, a.s., and Ỹ = cY + d, a.s., then H
X̃,Ỹ

(Ã, B̃) =

sign(ac)HX,Y (A,B) where Ã = {ax + b : x ∈ A} and B̃ =
{cy + d : y ∈ B}.

7. If H(A,B) = 0, for all A and B such that A × B ⊆ NX,Y , then
either E(X | Y ∈ B) = EX or E(Y | X ∈ A) = EY , for all A
and B, and ρ = 0.

8. If the distribution is axially symmetric, i.e. either (X,Y ) and
(−X,Y ) or (X,Y ) and (X,−Y ) follow the same distribution,
then H(A,B) = 0, for every A and B such that A×B ⊆ NX,Y .

Proof. The proof follows the same steps as the proof of Lemma 2.1
of Bairamov et al. (2003).

In the following theorem, we restrict ourselves to the cases where
A and B are of the following forms:

A = {x}, B = {y},

A = (x,∞), B = (y,∞),

or
A = (−∞, x), B = (−∞, y).
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On a New Measure of Linear Local Dependence 39

Now, as a function of x and y, the local dependence function H
in equation (5), can be written as

H(x, y) = k(u(y), v(x)), (6)

where u(y) = φX(B), v(x) = φY (A), and

k(u, v) =
ρ+ uv√

1 + u2
√

1 + v2
. (7)

Now we prove the following theorem.

Theorem 2.2. Let (X,Y ) have a bivariate distribution with finite
second moments and correlation coefficient ρ. Consider the local de-
pendence function in (6).

1. Assume that |ρ| < 1. The point (x∗, y∗) satisfying u(y∗) = v(x∗) =
0 is a saddle point of H and H(x∗, y∗) = ρ.

2. For fixed v and ρ > 0 (ρ < 0), H in equation (6) as a function
of u attain its absolute maximum (minimum) at u = v/ρ. Its
absolute minimum (maximum) attains as u → ∞ or u → −∞
(whichever gives the smaller (larger) limit).

3. For fixed u and ρ > 0 (ρ < 0), H in equation (6) as a function
of v attain its absolute maximum (minimum) at v = u/ρ. Its
absolute minimum (maximum) attains as v → ∞ or v → −∞
(whichever gives the smaller (larger) limit).

Proof. Part 1, follows from Lemma 2.1 of Bairamov et al. (2003).
To prove part 2, first define

k?(u) =
ρ+ uv√

1 + u2
√

1 + v2
.

Note that
d

du
k?(u) =

v − ρu√
1 + v2(1 + u2)3/2

,

which implies that the only critical point of k? is u = v/ρ. Also we
have

d2

du2
k?(u) =

−3uv − ρ(1− 2u2)√
1 + v2(1 + u2)5/2

.

This shows that

d2

du2
k?(v/ρ) =

−(v2 + ρ2)/ρ√
1 + v2(1 + v2/ρ2)5/2

,
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which is negative (positive) if ρ > 0 (ρ < 0). Thus the critical point
is absolute maximum (minimum) of k?. For proving part 3, we use
the same argument as in part 2.

Suppose that two random variables X and Y are exchangeable,
i.e. (X,Y ) d= (Y,X). Then u ≡ v and H in equation (6) at line y = x
is equal to

H(x, x) =
ρ+ u2(x)
1 + u2(x)

. (8)

The following theorem gives some result on H(x, x).

Theorem 2.3. Suppose that X and Y are exchangeable random
variables and ρ < 1. Then H in equation (8) has minimum at the
point x∗ satisfying u(x∗) = 0 and therefore ρ ≤ H(x, x) < 1.

Proof. The proof is simple and hence is omitted.

3 Local dependency of the residual lifetime
and past lifetime random variables

In many branches of science such as reliability, survival analysis, actu-
ary, economics, business, and many other fields, a subject of interest
is the study of duration. Let X and Y be nonnegative random vari-
ables denoting the lifetimes of two components. Capturing effects of
the age of the components on the correlation between them is im-
portant in many applications. For example, assume that X and Y
denote the lifetimes of two components which are connected as paral-
lel in a system. When the components are working at time t = (x, y),
one is interested in the study of the lifetime of system beyond t. In
such case, the set of interest is the residual lifetime

A×B = {(u, v) : u > x, v > y}.

In this section, we study the local dependence function, introduced in
section 2, in the special case when X and Y belong to the set A×B
given above.

Definition 3.1. Let X and Y be two random variables with
distribution functions FX(x) and FY (y). Define the residual local

Archive of SID

www.SID.ir

http://www.nitropdf.com/


On a New Measure of Linear Local Dependence 41

dependence function between X and Y as follows:

H(1)(x, y) =
E{(X − E(X | Y > y))(Y − E(Y | X > x))}√
E(X − E(X | Y > y))2

√
E(Y − E(Y | X > x))2

,

(9)
provided that FX(x) < 1 and FY (y) < 1.

An alternative expression for (9) is

H(1)(x, y) =
ρ+ ψX(y)ψY (x)√

1 + ψ2
X(y)

√
1 + ψ2

Y (x)
, (10)

where ρ is the correlation coefficient between X and Y ,

ψX(y) =
E(X | Y > y)− EX

σX
and ψY (x) =

E(Y | X > x)− EY

σY
. (11)

Theorem 3.1. For all (x, y) such that FX(x) < 1 and FY (y) < 1,
ψX(y) = E{φX(Y ) | Y > y} and ψY (x) = E{φY (X) | X > x}, where
φX and φY are defined in (3).

Proof. The result follows from two equations in (3) and the facts
that E(X | Y > y) = E{E(X | Y ) | Y > y} and E(Y | X > x) =
E{E(Y | X) | X > x}.

Theorem 3.1 provides the following result for obtaining H(1) in
terms of H(x, y) at line y = x.

Lemma 3.1 If X and Y be exchangeable random variables, then

H(1)(x, x) =
ρ+ ψ2(x)
1 + ψ2(x)

,

where

ψ(x) = E

sign(φ(X))

√
H(X,X)− ρ

1−H(X,X)
X > x

 ,

and H is defined in (1).

Remark 3.1. In special case when the dependence structure of
X and Y , on the set {(u, v); u > x, v > −∞} is of interest, H(1)

becomes of the form

H(1)(x,−∞) =
ρ√

1 + ψ2
Y (x)

.
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In this case, a bound for H(1) which is sharper than that of H(1) in
part 2 of Theorem 2.1 is as follows:

|H(1)(x,−∞)| ≤ |ρ|.

If we consider again X and Y as the lifetimes of two compo-
nents and assume that the components have failed before x and y,
respectively, then a set of interest in which one might be interested
in measuring the dependency between X and Y is the past lifetime
defined as

A×B = {(u, v) : u < x, v < y}.

Motivated by this, we have the following definition.

Definition 3.2. Let X and Y be two random variables with distri-
bution functions FX(x) and FY (y). Define the past local dependence
function between X and Y as follows:

H(2)(x, y) =
E{(X − E(X | Y < y))(Y − E(Y | X < x))}√
E(X − E(X | Y < y))2

√
E(Y − E(Y | X < x))2

,

(12)
assuming that FX(x) > 0 and FY (y) > 0.

Another expression for (12) is

H(2)(x, y) =
ρ+ γX(y)γY (x)√

1 + γ2
X(y)

√
1 + γ2

Y (x)
,

where ρ is the correlation coefficient,

γX(y) =
E(X | Y < y)− EX

σX
and γY (x) =

E(Y | X < x)− EY

σY
.

Remark 3.2. Similar to Theorem 3.1, we have γX(y) = E{φX(Y ) |
Y < y} and γY (x) = E{φY (X) | X < x}, for all (x, y) such that
FX(x) > 0 and FY (y) > 0.

Remark 3.3. A result similar to Lemma 3.1 can be obtained for
H(2).

Remark 3.4. In general, if the local dependence function is equal to
zero for all (x, y), one can not conclude thatX and Y are independent.
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A counter example is as follows. LetX and Y have a joint distribution
with probability density function

f(x, y) =
1√
2π3

1√
x2 + y2

e−(x2+y2)/2, −∞ < x, y <∞.

Clearly in this case X and Y are dependent. However, it can be
shown that all local dependence functions H in equation (1), H(1)

and H(2) are equal to zero.

The next result shows a connection between the local dependence
functions H(1) and H(2).

Lemma 3.2. If Y = aX + b, a.s., with a < 0 and b ∈ R, (i.e.
if ρ = −1) then H(1)(X,Y ) = H(2)(X,Y ), a.s., on the set A × B =
{(x, y) ∈ NX,Y : y = ax+ b}.

Proof. Under the assumption that (x, y) ∈ A × B, i.e. y = ax + b,
we get after some simple algebra, γX(y) = −ψY (x) and γY (x) =
−ψX(y). This proves the assertion.

Lemma 3.3. Let X and Y be exchangeable. Assume that ψX(x) =
ψY (x) = ψ(x) and ρ < 1. Then H(1) can be represented as follows:

H(1)(x, y) =
1

1− ρ

{
ρ
√

(1−H(1)(x, x))(1−H(1)(y, y))

+ sign(ψ(x))sign(ψ(y))

×
√

(ρ−H(1)(x, x))(ρ−H(1)(y, y))
}
.

Proof. Since ρ < 1, using Theorem 2.3, we have H(x, x) < 1, for all
x. After substituting

ψ(x) = sign(ψ(x))

√
H(1)(x, x)− ρ

1−H(1)(x, x)
(13)

in equation (10) with ψX and ψY replaced by ψ, the result follows.

Remark 3.5. A result similar to the result of Lemma 3.3 can be
obtained for the local dependence functions H in equation (2) and
H(2) by considering appropriate changes.
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Remark 3.6. Lemma 3.3 enables us to identify the residual local
dependence function H(1)(x, y) from ρ, signs of ψ(x) and ψ(y), and
H(1) at the points (x, x) and (y, y). In Section 4, a sufficient condition
under which the function ψ(x) has the same sign for all x, will be
studied.

Theorem 3.2. Let exchangeable random variables (X,Y ) have
an absolutely continuous distribution function with finite second mo-
ments, correlation coefficient ρ < 1, local dependence function H(x, y),
and residual local dependence function H(1)(x, y). Suppose that NX,Y ,
the support of (X,Y ), is a rectangular and E(Y | X > x) is differ-
entiable and strictly monotone. Then the hazard rate of X (or of Y )
is

λ(x) =

d
dx sign(ψ(x))

√
H(1)(x,x)−ρ

1−H(1)(x,x)

sign(ψ(x))
√

H(1)(x,x)−ρ

1−H(1)(x,x)
− sign(φ(x))

√
H(x,x)−ρ
1−H(x,x)

,

where φ(x) = φY (x) and ψ(x) = ψY (x) are defined in (3) and (11),
respectively. This shows that the marginal distribution of X can be
recovered from H and H(1).

Proof. First note that

E(Y | X = t) =
1

fX(t)

∫ ∞

−∞
yf(t, y)dy.

Hence

E(Y | X > x) =
1

F̄X(x)

∫ ∞

−∞

∫ ∞

x
yf(t, y)dtdy

=
1

F̄X(x)

∫ ∞

x
E(Y | X = t)fX(t)dt.

On differentiating two sides of the last equality with respect to x, we
have

d

dx
E(Y | X > x) = λ(x){E(Y | X > x)− E(Y | X = x)}.

Hence

λ(x) =
d
dxE(Y | X > x)

E(Y | X > x)− E(Y |X = x)

=
d
dxψ(x)

ψ(x)− φ(x)
. (14)
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Note that since E(Y | X > x) is strictly monotone, the denominator
is always non-zero. Substituting (13) and

φ(x) = sign(φ(x))

√
H(x, x)− ρ

1−H(x, x)

in (14), the result follows.

4 Relation with some other notions of depen-
dence

In this section we study the connection between the local dependence
functions introduced in this paper and some other concepts of depen-
dency available in the literature. Consider two random variables X
and Y with bivariate cumulative distribution function F (x, y) and
bivariate survival function F̄ (x, y). Let F̄X(x) and F̄Y (y) denote the
marginal survival functions of X and Y , respectively.

Definition 4.1. Two random variables are said to be positively
(negatively) quadrant dependent (PQD)(NQD) if for all x and y,

F (x, y) ≥ (≤)FX(x)FY (y).

Remark 4.1. The condition PQD (NQD) is equivalent to

F̄ (x, y) ≥ (≤) F̄X(x)F̄Y (y).

Definition 4.2. Two random variables X and Y are said to be
positive (negative) regression dependent (PRD (NRD), for abbrevi-
ation) if P (Y ≤ y | X = x) is non-increasing (non-decreasing) in x,
for all fixed y.

Definition 4.3. A nonnegative function f(x, y) is said to be totally
positive of order two (TP2) if

f(x1, y2)f(x2, y1) ≤ f(x1, y1)f(x2, y2),

for all x1 < x2 and y1 < y2. Also f(x, y) ≤ 0 is said to be reverse
regular of order two (RR2) if we reverse the inequality.

It is proved that if the joint density function of (X,Y ) is TP2, then
X and Y are PQD and PRD. For more details of these concepts we
refer the reader to Karlin (1968) and Drouet Mari and Kotz (2001).

Now we are ready to prove the following theorem.
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Theorem 4.1. Let the continuous nonnegative random variables X
and Y are exchangeable and PRD (NRD). Then the local dependence
functions H in equation (2), H(1) and H(2) are TP2 (RR2).

proof. First we prove that H is TP2 (RR2). Since X and Y are
exchangeable we assume φ(x) = φX(x) = φY (x). The condition
PRD (NRD) implies that P (Y ≥ y | X = x) is non-decreasing (non-
increasing) in x, which in turns implies that E(Y | X = x) is non-
decreasing (non-increasing) in x. Hence φ(x) and φ(y) are both non-
decreasing (non-increasing) in their arguments. Suppose that x1 < x2

and y1 < y2. Then

k(x1, y1)k(x2, y2)− k(x1, y2)k(x2, y1) =
ρ(x2 − x1)(y2 − y1)√

1 + x2
1

√
1 + y2

1

√
1 + x2

2

√
1 + y2

2

,

where the function k is defined in equation (7). This shows that
k(x, y) is TP2 (RR2). (Note that the condition PRD (NRD) implies
that ρ ≥ 0 (ρ ≤ 0), see equation (15).) Now the result follows from
the fact that if two functions g(x) and h(y) are monotone in the same
direction and k is TP2 (RR2), then k(g(x), h(y)) is TP2 (RR2). That
is H(x, y) = k(φ(y), φ(x)) is TP2 (RR2).

To prove the result for the local dependence functions H(1) and
H(2), it suffices to note that under the condition of PRD (NRD),
P (Y ≥ y | X > x) and P (Y ≥ y | X < x) (and hence ψ(x) =
ψX(x) = ψY (x) and γ(x) = γX(x) = γY (x)) are both non-decreasing
(non-increasing) in x. ThusH(1)(x, y) = k(ψ(y), ψ(x)) andH(2)(x, y) =
k(γ(y), γ(x)) are TP2 (RR2). This completes the proof.

Remark 4.2. Under the condition of PQD, we have ψY (x) ≥ 0,
ψX(y) ≥ 0 and γY (x) ≤ 0, γX(y) ≤ 0. On the other hand, since for
PQD random variables ρ ≥ 0 (see, equation (15)), we conclude in
this case that, for all (x, y), H(1)(x, y) and H(2)(x, y) are nonnegative
functions.

Based on a result due to Hoeffding (1940), it is known that, the
covariance between two random variables X and Y can be written as

Cov(X,Y ) =
∫ ∞

−∞

∫ ∞

−∞
{F (x, y)− FX(x)FY (y)}dxdy. (15)

Hence the condition of PQD implies that Cov(X,Y ) ≥ 0. Moreover
two PQD random variables are independent if and only if they are
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uncorrelated. In the following we give similar result for the numerator
of the measure H in (4).

Denote the numerator of the local dependence function H(A,B)
in equation (4) by C(A,B). That is,

C(A,B) = E{(X − E(X | Y ∈ B))(Y − E(Y | X ∈ A))}.

Then we have the following theorem.

Theorem 4.2. Let the random variables X and Y have a bivariate
survival function F̄ (x, y) and marginal survival functions F̄X(x) and
F̄Y (y), respectively. Assume that E(X), E(Y ) and E(XY ) are finite.
Then

C(A,B) =
∫ ∞

−∞

∫ ∞

−∞
{F̄ (u, v)− F̄X(u)P (Y ≥ v | X ∈ A)

−F̄Y (v)P (X ≥ u | Y ∈ B)

+P (Y ≥ v | X ∈ A)P (X ≥ u | Y ∈ B)} dudv,

for each (A,B) such that P (X ∈ A), P (Y ∈ B) > 0.

Proof. Let (X1, Y1), (X2, Y2) and (X3, Y3) be independent and iden-
tically distributed random vectors with common distribution function
F (x, y). Define

XB = (X2 | Y2 ∈ B) and YA = (Y3 | X3 ∈ A).

Then
C(A,B) = E{(X1 −XB)(Y1 − YA)}.

Note that

X1 −XB =
∫ ∞

−∞
{I(−∞,X1](u)− I(−∞,XB ](u)}du,

and
Y1 − YA =

∫ ∞

−∞
{I(−∞,Y1](v)− I(−∞,YA](v)}dv,

where I(−∞,X1](·) is the indicator function on (−∞, X1]. Hence

C(A,B) = E

{∫ ∞

−∞

∫ ∞

−∞
{I(−∞,X1](u)− I(−∞,XB ]}

{I(−∞,Y1](v)− I(−∞,YA](v)}du dv
}

=
∫ ∞

−∞

∫ ∞

−∞
{F̄ (u, v)− F̄1(u)P (Y ≥ v | X ∈ A)

−F̄2(v)P (X ≥ u | Y ∈ B)

+P (Y ≥ v | X ∈ A)P (X ≥ u | Y ∈ B)}dudv,
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and the proof is complete.

Let

C(1)(x, y) = E{(X − E(X | Y > y))(Y − E(Y | X > x))},

and

C(2)(x, y) = E{(X − E(X | Y < y))(Y − E(Y | X < x))},

i.e., the numerators of H(1)(x, y) and H(2)(x, y), respectively. We
have the following corollary from Theorem 4.2.

Corollary 4.1. Let the random variables X and Y have a bivariate
survival function F̄ (x, y) and marginal survival functions F̄X(x) and
F̄Y (y), respectively. Assume that E(X), E(Y ) and E(XY ) are finite.
Then

C(1)(x, y) =
∫ ∞

−∞

∫ ∞

−∞

{
G(u, v) +

G(u, y)G(x, v)
F̄X(x)F̄Y (y)

}
dudv, (16)

for each (x, y) such that F̄X(x), F̄Y (y) > 0, where G(u, v) = F (u, v)−
FX(u)FY (v). Furthermore,

C(2)(x, y) =
∫ ∞

−∞

∫ ∞

−∞

{
G(u, v) +

G(u, y)G(x, v)
FX(x)FY (y)

}
dudv,

for each (x, y) such that FX(x), FY (y) > 0.

Remark 4.3. From Corollary 4.1, one can again conclude that
under the condition of PQD, for each (x, y), H(1)(x, y) ≥ 0 and
H(2)(x, y) ≥ 0.

The following result gives some characterizations for indepen-
dence of X and Y , using the concept of PQD.

Theorem 4.3. Assume that the continuous distribution function F
belongs to the family of PQD distributions.
(i) If H(1)(x, y) = 0, for some (x, y) with F̄X(x), F̄Y (y) > 0, then X
and Y are independent.
(ii) If H(2)(x, y) = 0, for some (x, y) with FX(x), FY (y) > 0, then X
and Y are independent.
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Proof. For proving part (i), first assume that the condition of PQD
holds, i.e., for all u and v, G(u, v) ≥ 0. From the assumption of the-
orem, we conclude that the integrand in right hand side of equation
(16) is equal to zero and hence G(u, v) = F (u, v)− FX(u)FY (v) = 0,
for all u, v. That is, X and Y are independent.

Part (ii) can be proved similarly. This completes the theorem.

5 Examples

In this section we provide some examples of important bivariate dis-
tributions to illustrate the concepts of local dependence functions
introduced in this study.

Example 5.1. Consider a bivariate normal distribution with zero
means, unit variances and correlation coefficient ρ. Then it can be
easily seen that

φX(y) = ρy and φY (x) = ρx,

and hence from Theorem 3.1 we have

ψX(y) = E{φX(y) | Y > y} = E{ρY | Y > y} = ρλ(y),

and similarly
ψY (x) = ρλ(x),

where λ(x) = f(x)
F̄ (x)

denotes the hazard rate function of the standard
normal distribution. Hence the residual local dependence function is

H(1)(x, y) =
ρ+ ρ2λ(x)λ(y)√

1 + ρ2λ2(x)
√

1 + ρ2λ2(y)
.

Also we have

γX(y) = ρr(y) and γY (x) = ρr(x),

where r(x) = f(x)
F (x) denotes the reversed hazard rate function of the

standard normal distribution. The past local dependence function is
of the form

H(2)(x, y) =
ρ+ ρ2r(x)r(y)√

1 + ρ2r2(x)
√

1 + ρ2r2(y)
.
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Example 5.2. In one-parameter family of Farlie-Gumbel-Morgenstern
(FGM) distributions with standard exponential marginal distribu-
tions, the joint density function is

f(x, y) = e−x−y{1 + α(2e−x − 1)(2e−y − 1)}, x, y ≥ 0, |α| ≤ 1,

and the joint cumulative distribution function is

F (x, y) = (1− e−x)(1− e−y)(1 + αe−x−y), x, y ≥ 0.

See, Gumbel (1960).
For this distribution one can show that ψX(y) = α

2 (1 − e−y)
and ψY (x) = α

2 (1− e−x). Hence

H(1)(x, y) =
ρ+ 4ρ2(1− e−x)(1− e−y)√

1 + 4ρ2(1− e−x)2
√

1 + 4ρ2(1− e−y)2
,

where ρ = α
4 is the correlation coefficient. Note that since |α| ≤ 1,

the correlation coefficient ρ is between −1
4 and 1

4 .
Similarly γX(y) = −α

2 e
−y and γY (x) = −α

2 e
−x. Thus

H(2)(x, y) =
ρ+ 4ρ2e−x−y√

1 + 4ρ2e−2x
√

1 + 4ρ2e−2y
.

Obviously X and Y are exchangeable random variables. The
conditional cumulative distribution function of Y , given X = x, is

FY |X(y | x) = (1− e−y){1 + α(2e−x − 1)e−y},

which is, for 0 ≤ α ≤ 1, a non-increasing function of x. In this
case X and Y are PRD. Similarly it can be seen that X and Y are
NRD if −1 ≤ α ≤ 0. Using Theorem 4.1, we conclude that when
0 ≤ α ≤ 1, the local dependence functions H(1)(x, y) and H(2)(x, y)
are TP2, and when −1 ≤ α ≤ 0, the local dependence functions
are RR2. Also it follows from Remark 4.3 that if 0 ≤ α ≤ 1, then
H(1)(x, y),H(2)(x, y) ≥ 0.

Example 5.3. Gumbel (1960) studied a bivariate exponential dis-
tribution with standard exponential marginals. Gumbel’s bivariate
exponential distribution has the joint density function of the form

f(x, y) = e−x−y−θxy{(1 + θx)(1 + θy)− θ}, x, y ≥ 0, 0 ≤ θ ≤ 1.
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The correlation coefficient between X and Y is

ρ =
1
θ
e1/θE1(

1
θ
)− 1,

where

E1(z) =
∫ ∞

z

e−t

t
dt

is the exponential integral function (see Abramowitz and Stegun
(1965), formula 5.1.1.). For θ = 0, the variables are independent
with ρ = 0. At the other extreme, the correlation is about −0.40365
for θ = 1.

For this distribution ψX(y) = − θy
1+θy and ψY (x) = − θx

1+θx . Hence
the residual local dependence function takes the form

H(1)(x, y) =
ρ+ θ2xy/{(1 + θx)(1 + θy)}√

1 + θ2x2/(1 + θx)2
√

1 + θ2y2/(1 + θy)2
.

Also

γX(y) = −θy(e
y − 1)−1

1 + θy
and γY (x) = −θx(e

x − 1)−1

1 + θx
.

Thus

H(2)(x, y) =
ρ+ θ2xy/{(1 + θx)(1 + θy)(ex − 1)(ey − 1)}√

1 + θ2x2/{(1 + θx)2(ex − 1)2}
√

1 + θ2y2/{(1 + θx)2(ey − 1)2}
.

For this family, the conditional cumulative distribution function
of Y , given X = x, is

FY |X(y | x) = 1− (1 + θy)e−(1+θx)y, y ≥ 0,

which is non-decreasing in x, for all θ. That is, X and Y are NRD.
Theorem 4.1 indicates that the local dependence functions are RR2.

6 A nonparametric estimator for the residual
local dependence function

Let X and Y denote the lifetime random variables. The concept of
bivariate mean residual life function has been considered by several
authors in the literature. Among others, Jupp and Mardia (1982),

Archive of SID

www.SID.ir

http://www.nitropdf.com/


52 Tavangar and Asadi

defined a multivariate mean residual life, as a vector valued function,
where in the bivariate case it is defined as follows:

(m1(x, y),m2(x, y)) =
(E(X − x | X > x, Y > y), E(Y − y | X > x, Y > y)).

Recently, Kulkarni and Rattihalli (2002) have considered the problem
of estimating m1 and m2. Let (Xi, Yi), i = 1, 2, . . . , n, be n indepen-
dent and identically distributed pairs of failure times with survival
function F̄ (x, y) = P (X > x, Y > y). Kulkarni and Rattihalli (2002)
have proposed the following estimators for m1 and m2:

m̂1(x, y) =
∑

(Xi − x)I(Xi > x, Yi > y)∑
I(Xi > x, Yi > y)

,

m̂2(x, y) =
∑

(Yi − y)I(Xi > x, Yi > y)∑
I(Xi > x, Yi > y)

,

where I(·) indicates the usual indicator function. Several properties of
these estimators, including the asymptotic unbiasedness, the uniform
strong consistency, and weak convergence to a Gaussian process, are
studied by these authors. We use their estimators to estimate the
residual local dependence function H(1)(x, y) in (10).

Note that

(m1(0, y),m2(x, 0)) = (E(X | Y > y), E(Y | X > x)).

Using the estimator (m̂1, m̂2), we have

m̂1(0, y) =
∑
XiI(Yi > y)∑
I(Yi > y)

, and m̂2(x, 0) =
∑
YiI(Xi > x)∑
I(Xi > x)

.

Hence we have the following estimator for H(1)(x, y):

Ĥ(1)(x, y) =
ρ̂n + (m̂1(0, y)− X̄)(m̂2(x, 0)− Ȳ )/(SXSY )√

1 + (m̂1(0, y)− X̄)2/S2
X

√
1 + (m̂2(x, 0)− Ȳ )2/S2

Y

,

(17)
where

ρ̂n =
n

∑
iXiYi − (

∑
iXi)(

∑
i Yi)√

n
∑

iX
2
i − (

∑
iXi)2

√
n

∑
i Y

2
i − (

∑
i Yi)2

,

X̄ = (1/n)
∑

i

Xi, Ȳ = (1/n)
∑

i

Yi,

S2
X = (1/(n−1))(

∑
i

X2
i −nX̄2), and S2

Y = (1/(n−1))(
∑

i

Y 2
i −nȲ 2).
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Example 6.1. In this example a real data set is taken from An-
drews and Herzberg (1985, pp.253-260). Using the data we estimate
the residual local dependence function (9). The data includes the
observations on patients having bladder tumors when they entered
the trial. These tumors were removed and patients were given a
treatment called ‘placebo pills’. At subsequent follow-up visits, any
tumors found were removed, and treatment was continued. The vari-
ables observed are X, time (in month) to first recurrence of a tumor,
and Y , time (in month) to second recurrence of a tumor. Table 1
shows the data. Table 2 displays estimates (17) of the residual local
dependence function.

Table 1. Data on Time of First Recurrence (Xi), and Second
Recurrence (Yi) of Bladder Tumor for Patients

Undergoing Placebo Pills Treatment

Patient/ 1 2 3 4 5 6 7 8 9 10
Xi 12 10 3 3 7 3 2 28 2 3
Yi 16 15 16 9 10 15 26 30 17 6

Patient/ 11 12 13 14 15 16 17 18 19 20
Xi 12 9 16 3 9 3 2 5 2 3
Yi 15 17 19 6 11 15 15 14 8 4

Patient/ 21 22 23 24 25 26 27 28 29 30
Xi 2 3 3 3 2 6 8 44 8 1
Yi 3 10 9 7 6 20 15 47 14 3
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Table 2. Estimates (17) of the Residual Local Dependence
Function for the Data Given in Table 1

X
Y 0 1 2 3 5 6 7
0 0.825 0.824 0.821 0.727 0.714 0.717 0.685
3 0.824 0.825 0.825 0.748 0.736 0.739 0.710
4 0.823 0.825 0.826 0.757 0.745 0.748 0.720
6 0.818 0.823 0.827 0.785 0.776 0.778 0.755
7 0.814 0.820 0.826 0.794 0.786 0.788 0.766
8 0.809 0.0.817 0.824 0.805 0.798 0.799 0.780
9 0.798 0.808 0.818 0.824 0.819 0.820 0.805

10 0.785 0.798 0.811 0.837 0.833 0.834 0.823
11 0.784 0.796 0.810 0.839 0.835 0.836 0.825
14 0.770 0.785 0.801 0.848 0.847 0.847 0.840
15 0.673 0.697 0.725 0.866 0.872 0.871 0.881
16 0.613 0.640 0.674 0.856 0.866 0.864 0.882
17 0.493 0.527 0.567 0.813 0.829 0.825 0.856
19 0.473 0.507 0.549 0.804 0.820 0.817 0.849
20 0.376 0.413 0.459 0.752 0.772 0.767 0.808
26 0.244 0.285 0.334 0.666 0.690 0.685 0.735
30 0.195 0.236 0.286 0.630 0.655 0.656 0.703
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Table 2. (Continued)

X
Y 8 9 10 12 16 28
0 0.637 0.556 0.506 0.364 0.281 0.214
3 0.666 0.560 0.541 0.405 0.324 0.258
4 0.677 0.603 0.556 0.422 0.0341 0.277
6 0.718 0.625 0.608 0.483 0.406 0.344
7 0.731 0.669 0.627 0.505 0.429 0.368
8 0.748 0.689 0.649 0.532 0.458 0.398
9 0.779 0.727 0.691 0.582 0.512 0.455

10 0.801 0.756 0.724 0.622 0.556 0.500
11 0.804 0.760 0.728 0.627 0.561 0.506
14 0.823 0.784 0.756 0.662 0.600 0.547
15 0.887 0.881 0.869 0.816 0.773 0.733
16 0.899 0.908 0.905 0.827 0.838 0.806
17 0.890 0.925 0.936 0.937 0.922 0.902
19 0.886 0.924 0.937 0.944 0.932 0.914
20 0.856 0.911 0.934 0.965 0.965 0.957
26 0.796 0.870 0.905 0.965 0.981 0.986
30 0.768 0.849 0.887 0.958 0.980 0.989
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