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Abstract. In this research, the generalized maximum likelihood es-
timator (GMLE) is used to investigate the parameters estimation for
weighted distributions. There exist situations where the random sam-
ple from the population of interest is not available due to the data
having unequal probabilities of entering the sample. The method of
weighted distributions models the certainty of the probabilities of the
events as observed and recorded. It is shown that if the mechanism
of sample selection is known up to one unknown parameter, the max-
imum likelihood estimator (MLE) would be unidentifiable when the
conjugate weight function is used. This problem is solved by addi-
tion of a prior distribution on model parameters yielding the GMLEs
which are identifiable. We also propose the GMLEs for negative ex-
ponential, normal and Poisson weighted distributions when MLEs are
unidentifiable.
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1 Introduction

Consider a random sample from a distribution function, Fθ, θ ∈ Θ,
consistent MLEs of real-valued function of that exist in most of the
situations we shall encounter (Lehmann and Casella, 1998). However,
there is an important exception when the parameter is not identifi-
able. It is necessary to establish that the parameters are identifiable
before discussing estimation of the parameters. Understanding the
sources of identification is essential to determining under what con-
ditions parameters can be recovered and which hypotheses can be
tested without imposing arbitrary distributional or functional form
assumptions on estimating equations. The parameters identifiablity
were investigated for various models and distributions, mixing dis-
tributions (Heckman and Singer, 1984, 1985); single-spell duration
distribution (Ridder, 1984); Bayesian models (Omlin and Reichert,
1999); competing risk models (Kalbfleisch and Prentice, 2002) and
measurement error models (Fuller, 2006).

It is claimed that, the weighted distributions occur naturally in
a wide variety of settings with applications in reliability, forestry,
ecology, bio-medicine, and many other areas, (Patil, 2002; Oluyede,
2002). In fact, the weighted distribution arises when the observa-
tions do not have equal chance of being recorded, due to particular
experimenter design or the consequence of behavioral observations.
The concept of a weighted distribution can be traced to Fisher (1934)
although these models were first formulated in a unified way by Rao
(1965). Good surveys on this topic are Rao (1985) and Patil (2002).

If the mechanism of sample selection is completely known, the
parameter estimators can be obtained by ML method if the regu-
lar conditions are satisfied (Lehmann and Casella, 1998). However,
in practice, the functional form of sample selection is known up to
unknown parameter. In this case, it is possible that the problem of
identifiablity of the parameters occurs. In this regard, Gilbert et al.
(1999) investigated parameter identifiablity in the weighted logistic
model. But, some authors investigated various models to obtain con-
sistent parameters estimators (Sun and Woodroofe, 1997; Silliman,
1997; Bayarri and Berger, 1998; Cristobal and Alcala, 2001; Ma et
al., 2005).

The objective of the present study is to investigate the GMLEs
in the weighted distributions when the MLEs are unidentifiable. In
fact, when the statistical method is incapable of handling MLE, the
GMLE may solve the problem (Berger, 1985; Martins and Stedinger,
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2001; Adlouni et al., 2007).
The rest of the paper is organized as follows. In Section 2, we

discuss identifiability issues for weighted distributions when the con-
jugate weight function is used. In section 3, we introduce the GMLE
procedure and discuss the conditions on the weight functions to find
unique parameter estimations. Conclusion is presented in section 4.

2 Identifiability and conjugate weight func-
tion

Let the original observation Y have probability density function (pdf)
f(y|θ), θ ∈ Θ where it is interesting to perform statistical inference
about θ. Let ω(y|τ) be the probability of recording the observation
y, then the pdf of the recorded observation, Y w, is

fw(y|θ, τ) =
w(y|τ)f(y|θ)

W (θ, τ)
(2.1)

where W (θ, τ) = Eθ(w(y|τ)) =
∫

w(y|τ)f(y|θ)dy is just a normalizing
constant, and the weight function w(y|τ) may depend on some per-
haps unknown parameter τ . In general, the weight function, w(y|τ),
is a non-negative function with the parameter τ representing the
recording mechanism. Clearly, the recorded y is not observation on
Y, but on the random variable Y w. The random variable Y w is called
the weighted version of Y. Note that the weight function w(y|τ) need
not be between zero and one and actually it may exceed unity, as, for
example when w(y|τ) = y, in which case Y w is called the size-biased
version of Y.

Definition 2.1. Let Y be distributed according to f(y|θ, τ). If there
exist pairs (θ1, τ1) and (θ2, τ2) with θ1 6= θ2 for which f(y|θ1, τ1) =
f(y|θ2, τ2), the parameter θ is said to be unidentifiable.

Definition 2.2. Let F denote the class of density functions f(y|θ)
(indexed by θ). A class Π of weight functions is said to be conjugate
for F if fw(y|θ, τ) is in the class F . In other words, there exists some
real function g(.) such that fw(y|θ, τ) = f(y|θ∗) where θ∗ = g(θ, τ),
θ∗ ∈ Θ. The function w(y|τ) is called conjugate weight function.

Theorem 2.1. Let Y1, Y2, ..., Yn be independent identical dis-
tributed (i.i.d) according to a distribution f(y|θ), θ ∈ Θ where θ′ =
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(θ1, θ2, ..., θk), a vector of unknown parameters, and Y w
1 , Y w

2 , ..., Y w
n

be the weighted version of Y’s with weight function w(y|τ). The pa-
rameters of the weighted distribution are not identifiable if w(y|τ) is
a conjugate weight function.

Proof. Suppose w(y|τ) is a conjugate weight function. By def-
inition, there is a function g(θ, τ) = (g1(θ, τ), g2(θ, τ), ..., gr(θ, τ)),
1 ≤ r ≤ k such that θ∗ = g(θ, τ) and fw(y|θ, τ) = f(y|θ∗), θ∗ ∈ Θ. If
θ̂∗(y1, y2, ..., yn) is the MLE of θ∗, the MLE of θ and τ are obtained
by solving the equation θ̂∗i (y1, y2, ..., yn) = ĝi(θ, τ) = gi(θ̂, τ̂) where
i = 1, 2, ..., r. But both θ and τ cannot be estimated separately be-
cause they are not uniquely defined. Hence, the parameters θ and τ
are unidentifiable.

Example 2.1. Let Y1, Y2, ..., Yn be a random sample from the neg-
ative exponential distribution with parameter θ and the weight func-
tion, w(y|τ) = exp(τy) τ > 0. Then fw(y|θ, τ) = (θ − τ)exp[−(θ −
τ)y] = θ∗exp(−θ∗y) = f(y|θ∗), θ∗ = (θ − τ) > 0 and w(y|τ) =
exp(τy) is a conjugate weight function. The MLE of θ∗ is θ̂∗(y1, y2, ...,
yn) = n∑n

i=1
yi

= (θ̂− τ̂) and θ and τ are unidentifiable. However, for

the weight function w(y|τ) = yτ , τ > 0, the weighted density func-
tion is given by fw(y|θ, τ) = θτ+1

Γ(τ+1)y
τexp(−θy) and w(y|τ) = yτ is

not a conjugate weight function. The likelihood function is

L(θ, τ) =
n∏

i=1

fw(yi|θ, τ) =
θn(τ+1)

[Γ(τ + 1)]n
(Πn

i=1yi)τexp(−θ
n∑

i=1

yi)

`(θ, τ) = lnL(θ, τ)

= n(τ + 1)ln(θ)− nln(Γ(τ + 1)) + τ
n∑

i=1

ln(yi)− θ
n∑

i=1

yi

Hence, the MLE of θ and τ are obtained by solving the equations
∂`(θ,τ)

∂θ = 0 and ∂`(θ,τ)
∂τ = 0. In this case, the unique MLE of θ and

τ exist, Lehmann and Casella (1998) and θ and τ are identifiable.
However, if the density function of Y is f(y|θ, τ) = θα

Γ(α)y
α−1exp(−θy)

where the weight function is w(y|τ) = yτ , τ > 0, then fw(y|α, θ, τ) =
θτ+α

Γ(τ+α)y
τ+α−1exp(−θy) and θ, α and τ are not identifiable, because

the weight function is conjugate. Therefore, the identifiability of
parameters depends on the form of both density function and weight
function.
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Theorem 2.2. Consider two functions, W1(τ) and W2(θ) such
that W (θ, τ) = Eθ(w(y|τ)) = W1(τ)W2(θ). Then the parameters of
the weighted distribution are identifiable.

Proof. Suppose that the expectation of weight function factors into
the product of a function of τ alone and a function of θ alone, so that
we can write the weighted density function as follows:

fw(y|θ, τ) =
w(y|τ)f(y|θ)
W1(τ)W2(θ)

.

The likelihood function is given by

L(θ, τ) =
n∏

i=1

fw(yi|θ, τ) =
∏n

i=1 w(yi|τ))
[W1(τ)]n

∏n
i=1 f(yi|θ)
[W2(θ)]n

,

the log-likelihood function is

`(θ, τ) = [
n∑

i=1

ln(w(yi|τ))− nln(W1(τ))]

+[
n∑

i=1

ln(f(yi|θ))− nln(W2(θ))]

= `1(τ) + `2(θ)

If the regular conditions are satisfied, the unique and consistence
MLE of θ and τ are obtained by solving the following equations:
∂`(θ,τ)

∂τ = ∂`1(τ)
∂τ = 0, ∂`(θ,τ)

∂θ = ∂`2(θ)
∂θ = 0. This means that the param-

eters θ and τ are identifiable.

Some authors assumed that the parameter τ is known and weight
function w(y|τ) = w(y) is free from unknown parameters (Patil,
2002). But, the asymptotic variance of an efficient estimator of θ
when τ is unknown can never fall bellow its value when is known
unless

Cov(
∂ ln fw(y|θ, τ)

∂θ
,
∂ ln fw(y|θ, τ)

∂τ
) = 0 (2.2)

This condition states that the Hessian matrix should be diagonal.
Therefore, if condition (2.2) is not satisfied and wrongly we assume
that τ is known, it results in misleading statistical inference about θ
(Lemann and Casella, 1998).

The exponential family is widely used in the applications of weighted
distributions (Rao, 1985; Patil, 2002). Theorem 2.3 investigates the
identifiablity conditions of the family.

Archive of SID

www.SID.ir

http://www.nitropdf.com/


78 Zadkarami

Theorem 2.3. Let Y1, Y2, ..., Yn be i.i.d form multi-parameter ex-
ponential family with the density function

f(y|θ) = a(θ)b(y)exp[
J∑

j=1

θjTj(y)], θ′ = (θ1, θ2, ..., θJ)

Let Y w
1 , Y w

2 , ..., Y w
n be the weighted version of Y’s when the weight

function is given by w(y|θ) = exp[
∑J

j=1 Cj(θ, τ)Tj(y)] for some func-
tions Cj(θ, τ). Then the weight function is conjugate and the param-
eters are unidentifiable.

Proof. It is easy to show that W (θ, τ) = Eθ(w(y|τ)) = a(θ)[k(θ∗)]−1

where [k(θ∗)]−1 =
∫

b(y)exp[
∑J

j=1 θ∗j Tj(y)]dy, θ′∗ = (θ∗1, θ
∗
2, ..., θ

∗
J)

and θ̂∗j = θj + Cj(θ, τ) j = 1, 2, ..., J . The weighted density func-
tion is fw(y|θ, τ) = b(y)k(θ∗)exp[

∑J
j=1 θ∗j Tj(y)]. Hence, the MLE of

θ∗j exists, unique and is denoted by θ̂∗j (y1, y2, ..., yn) j = 1, 2, ..., J .
The MLE of θj ’s and τ are obtained by solving the equations:

θ̂∗j (y1, y2, ..., yn) = θj + Cj(θ, τ), j = 1, 2, ..., J (2.3)

Equations (2.3) do not have unique solution and both θ and τ are
unidentifiable.

3 The GMLE for the weighted distributions

When the MLEs are unidentifiable, the extra information about the
parameters of the weighted distribution is required to achieve the
parameter identifiablity. Let Y w be the weighted version of Y with
density function fw(y|θ, τ) = w(y|τ)f(y|θ)

W (θ,τ) where w(y|τ) is the weight
function. Once the prior function h(θ, τ) is chosen, the posterior
function (or the generalized likelihood function) is computed as

GL(θ, τ) = Π(θ, τ |y)
= fw(y|θ, τ)h(θ, τ)m−1(y)
= L(θ, τ |y)h(θ, τ)m−1(y)

where m(y) =
∫ ∫

fw(y|θ, τ)h(θ, τ)dτdθ. Thus ln[GL(θ, τ)] equals
ln[L(θ, τ)] plus ln[h(θ, τ)] − ln[m(y)]. This extra information helps
to identify the parameters. The GMLE of θ and τ can be obtained
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by maximizing the generalized log-likelihood function, which corre-
sponds to mode of the Bayesian posterior distribution of the param-
eters (Berger, 1985).

Theorem 3.1. Let fw(y|θ, τ) = f(y|θ∗), θ∗ = g(θ, τ) be the
weighted version of the density function f(y|θ) with a conjugate weight
function w(y|τ). The parameters of weighted distribution are identi-
fied if the prior function h(θ, τ) factors as h(θ, τ) = h0(θ∗, τ∗)h1(θ, τ)
where the function h1(θ, τ) is non-constant function of θ and τ , does
not involve θ∗ and τ∗, and the function h0(θ∗, τ∗) is nonnegative
which depends only on θ∗ and τ∗.

Proof. The generalized likelihood function is given by

GL(θ, τ) = fw(y|θ, τ)h(θ, τ)m−1(y)
= f(y|θ∗, τ∗)h0(θ∗, τ∗)h1(θ, τ)m−1(y)

ln[GL(θ, τ)] = ln[f(y|θ∗, τ∗)h0(θ∗, τ∗)] + ln[h1(θ, τ)]− ln[m(y)]

where m(y) =
∫ ∫

fw(y|θ, τ)h(θ, τ)dτdθ. The unique and consistence
GMLEs of θ and τ are obtained by solving the equations

∂ ln[GL(θ, τ)]
∂θ

=
∂ ln[f(y|θ∗, τ∗)h0(θ∗, τ∗)]

∂θ
+

∂ ln[h1(θ, τ)]
∂θ

= 0 (3.1)

∂ ln[GL(θ, τ)]
∂τ

=
∂ ln[f(y|θ∗, τ∗)h0(θ∗, τ∗)]

∂τ
+

∂ ln[h1(θ, τ)]
∂τ

= 0 (3.2)

when the regular conditions are satisfied. The extra information
about θ and τ in the second statements of equations (3.1) and (3.2)
provides the unique solution for θ and τ which has resulted in the
identifiabilty of θ and τ .

In general, GMLEs will have the desired asymptotic optimal prop-
erties if both the likelihood and the prior satisfy a few regularity
conditions, and they may even have these properties in other cases
(Lemann and Casella, 1998).

3.1 The GMLE in the conjugate weighted for exponen-
tial family

Let Y1, Y2, ..., Yn be a random sample form one parameter exponen-
tial family with density function, f(y|θ) = a(θ)b(y)exp[C(θ)T (y)].
Let Y ∗

1 , Y ∗
2 , ..., Y ∗

n be the weighted version of Y’s with the conjugate
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weight function, w(y|τ, θ) = exp[Q(θ, τ)T (y)]. The weighted den-
sity function is given by fw(y|θ, τ) = b(y)k(θ∗)exp[θ∗T (y)], where
θ∗ = Q(θ, τ) + C(θ). The generalized likelihood function for prior
function h(θ, τ) is

GL(θ, τ) = L(θ, τ |y)h(θ, τ)m−1(y) = L(θ∗|y)h(θ, τ)m−1(y)
ln[GL(θ, τ)] = ln[L(θ∗|y)] + ln[h(θ, τ)]− ln[m(y)]

If h(θ, τ) provides extra information about θ and τ , according to the-
orem 3.1, the unique GMLEs of θ and τ are obtained by solving the
equations ∂ ln[GL(θ,τ)]

∂θ = 0 and ∂ ln[GL(θ,τ)]
∂τ = 0.

Example 3.1. Suppose the random variables Y1, Y2, ..., Yn are
i.i.d from f(y|θ) = θe−θy, θ > 0 with the weight function, w(y|τ) =
exp(τy), τ > 0. The weighted density function can be written as
fw(y|θ, τ) = f(y|θ∗) = θ∗exp(−θ∗y) where θ∗ = (θ − τ). Let the
prior function be h(θ, τ) = h1(θ|τ)h2(τ) = τe−θτe−τ , θ > 0 and
τ > 0. The generalized likelihood function is

GL(θ, τ) = (θ − τ)nexp[−(θ − τ)T (y)]τexp[−(θ + 1)τ ]m−1(y)

where T (y) =
∑n

i=1 yi and

m(y) =
∫ ∫

(θ − τ)nτexp[−(θ − τ)T (y)− (θ + 1)τ ]dτdθ.

ln[GL(θ, τ)] = nln[(θ − τ)]− (θ − τ)T (y) + ln[τ ]
−(θ + 1)τ − ln[m(y)]

∂ ln[GL(θ, τ)]
∂θ

=
n

(θ − τ)
− T (y)− τ = 0 ⇒ θ̂ = τ̂ +

n

T (y) + τ̂

∂ ln[GL(θ, τ)]
∂τ

= − n

(θ − τ)
+ T (y) + τ−1 − (θ + 1) = 0

⇒ 2τ3 + [2T (y) + 1]τ2 + [T (y) + n− 1]τ − T (y) = 0.

The function g(τ) = 2τ3 + [2T (y) + 1]τ2 + [T (y) + n − 1]τ − T (y)
is continuous over the real line, g(0) = −T (y) < 0 and g(1) =
2[T (y) + 1] + n > 0. We also have g′(τ) = ∂ g(τ)

∂τ = 6τ2 + 2[2T (y) +
1]τ + (T (y) + n − 1) > 0, τ > 0, then g(τ) is a strictly increas-
ing function over interval (0, 1) and consequently the unique solution
τ̂ = (d

6 − 6cd−1 − T (y)
3 − 1

6) ∈ (0, 1) exists and both parameters
θ and τ are identifiable. The calculation of τ̂ is done by option
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(Solve, linear) in software Maple 7, where d = [a + 3b0.5]
1
3 , a =

6[T (y)]2 +39[T (y)]+18n[T (y)]+9n−10−8[T (y)]3, b = −54[T (y)]+
81[T (y)]2 +24n3 +10[T (y)]3 +78n− 18n[T (y)]− 108[T (y)]4− 75n2 +
288n[T (y)]2 + 60n2[T (y)] − 24n[T (y)]3 − 12n2[T (y)]2 − 27 and c =
T (y)
18 + n

6 −
7
36 −

[T (y)]2

9 . Then, θ̂ and τ̂ are the unique GMLE of θ and
τ , respectively.

Example 3.2. Consider a random sample, Y1, Y2, ..., Yn, of N(θ, σ2)
where σ2 > 0 known, with weight function w(y|τ) = exp(−τy). Then
Y w

i ∼ N(θ∗, σ2), i = 1, 2, ..., n where θ∗ = (θ − τσ2) and both pa-
rameters θ and τ are unidentifiable. When one chooses the prior,
h(θ, τ) = h1(θ|τ)h2(τ), where θ|τ ∼ N(τ, δ2) and τ ∼ N(η, γ2), then

GL(θ, τ) = (2πσ2)−
n
2 (2π)−1exp[− 1

2σ2

n∑
i=1

[yi − (θ − τσ2)]2

−0.5[(θ − τ)2 + τ2]]m−1(y)

where, for simplicity we assume δ2 = γ2 = 1, η = 0, and

m(y) =
∫ ∫

(2πσ2)−
n
2 (2π)−1exp[− 1

2σ2

n∑
i=1

[yi − (θ − τσ2)]2

−0.5[(θ − τ)2 + τ2]]dτdθ.

Then

∂ ln[GL(θ, τ)]
∂θ

= 0 ⇒ θ̂ =
n∑

i=1

yi − n(θ − τσ2)− σ2(θ − τ) = 0

∂ ln[GL(θ, τ)]
∂τ

= 0 ⇒ θ̂ =
n∑

i=1

yi − n(θ − τσ2)− (2τ − θ) = 0

and the unique GMLEs of θ and τ are θ̂ = σ2+2
2n−σ2(σ2−1)

∑n
i=1 yi and

τ̂ = (σ2+1)
(σ2+2)

θ̂ = (σ2+1)
2n−σ2(σ2−1)

∑n
i=1 yi, respectively. Therefore, the extra

information about θ and τ , from prior function h(θ, τ), results in the
identifiability of θ and τ .

Example 3.3. Let random variables Y1, Y2, ..., Yn be i.i.d from
f(y|θ) = e−θθy

y! , θ > 0 with the weight function, w(y|τ) = τy,
τ > 0. The weighted density function can be written as fw(y|θ, τ) =

f(y|θ∗) = e−θ∗ (θ∗)y

y! where θ∗ = θτ and both parameters θ and τ are
unidentifiable. Now consider the prior function h(θ, τ) = h1(θ|τ)h2(τ)

Archive of SID

www.SID.ir

http://www.nitropdf.com/


82 Zadkarami

= e−θe−τ , θ > 0 and τ > 0. The generalized likelihood function is
given by

GL(θ, τ) = exp(−nθτ)(θτ)T (y)exp[−(θ + τ)]m−1(y)

where T (y) =
∑n

i=1 yi and

m(y) =
∫ ∫

(θτ)T (y)exp[−τ(nθ + 1)− θ)]dτdθ.

ln[GL(θ, τ)] = −τ(nθ + 1)− θ + T (y)ln[θ] + T (y)ln[τ ]− ln[m(y)]
∂ ln[GL(θ, τ)]

∂θ
= −nτ − 1 +

T (y)
θ

= 0 ⇒ θ̂ =
T (y)

nτ̂ + 1
∂ ln[GL(θ, τ)]

∂τ
= −(nθ + 1) +

T (y)
τ

= 0

⇒ g(τ) = nτ2 + τ − T (y) = 0.

The unique positive solution of g(τ) is τ̂ =
√

1+4nT (y)−1

2n . The unique
GMLEs of θ and τ are θ̂ and τ̂ , respectively and, both θ and τ are
identifiable.

Remark 3.1. The conjugate property is an essential condition
for non-identifiably whether the weight function is free from θ or
not. Consider negative exponential distribution with weight func-
tion w(y|τ) = exp( τy

θ ). The weighted density function is given by
fw(y|θ, τ) = (θ − τ

θ )exp(−(θ − τ
θ )y), θ2 ≥ τ . Hence, the parameters

θ and τ are unidentifiable because we have no unique solution for
equation θ̂∗(y1, y2, ..., yn) = n∑n

i=1
yi

= (θ − τ
θ ).

4 Conclusion

Based on the above discussion, it is found that if the conjugate weight
function is used, the MLEs of weighted distribution are unidentifi-
able. However, when the extra information is available, for example
the convenient prior function, the identifiablity of parameters is pos-
sible through the GMLEs. An advantage of GMLEs is that they can
efficiently employ historical information. The cases with historical
information are not as easily or as adequately addressed by MLEs
(Jin and Stedinger, 1989).
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