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Abstract. Welch & Peers (1963) used a root-information prior to ob-
tain posterior probabilities for a scalar parameter exponential model
and showed that these Bayes probabilities had the confidence property
to second order asymptotically. An important undercurrent of this in-
dicates that the constant information reparameterization provides loca-
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tial model for obtaining approximate probabilities and approximate con-
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1 Introduction

For assessing the value of a scalar parameter θ the departure of an
estimate say ȳ from the parameter value of interest can often be stan-
dardized t = (ȳ−θ)/sȳ and then examined against the standard Normal
approximation suggested by the Central Limit Theorem. This then gives
an approximation for the %-age position of the data relative to the pa-
rameter value, otherwise known as the p-value. We thus obtain the
approximation p(θ) = Φ(t) where Φ is the standard Normal distribu-
tion function. Such an observed p-value function p(θ) makes available of
course all confidence intervals that respect direction on the range for the
parameter, thus making the p-value function p(θ) the central expression
of statistical inference. For this, the Normal distribution is providing a
very useful approximation, an approximation for the distribution of a
sum or average or other asymptotic variable, and as indicated then leads
to approximate p-values, the key summary in statistical inference. But
the Normal however as a tool has just two free parameters to facilitate
the appropriate fitting to approximate a distribution.

So now we consider an exponential model with a scalar parameter θ
which can be written as

g(s;ϕ) = exp{ϕs− κ(ϕ)}h(s) (1)

where ϕ = ϕ(θ) is called the canonical parameterization, and often an
antecedent data variable y with s = s(y) is part of the background with
the factor h(s) frequently not easily available. By contrast to the Nor-
mal however this exponential has much greater flexibility, with perhaps
eight free mathematical parameters hidden in the functions h(s) or κ(ϕ),
as examined to third order O(n−3/2). Thus we might reasonably have
hope that it can make available more accurate approximations and thus
more accurate p-values. But this raises two concerns: How to fit the
exponential model; And how to obtain the needed distribution function
for that exponential model. Some answers to these questions are now
evolving from saddlepoint analysis and higher-order likelihood analysis.
We briefly review these directions and then address extensions for the
related Welch-Peers large sample theory for the exponential model.
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2 Approximating the Distribution Function of

an Exponential Model

Let’s start with the second concern mentioned in the Introduction: how
to obtain the distribution function say H(s0;ϕ) for a scalar exponential
model at an observed data value s0 = s(y0). If the variable s is stochas-
tically increasing in ϕ the observed distribution function H(s0;ϕ) is the
p-value: the p(ϕ) of focal interest for assessing a parameter value ϕ and
the primitive for a wealth of one sided and two-sided modifications that
might be considered in various contexts. Stochastically increasing means
that if a parameter value is increased then the distribution shifts to the
right, meaning probability left of a data value as given by the observed
distribution function decreases. In such cases we can think loosely of an
observed data value as estimating the parameter, and correspondingly
think of a distribution function value as giving the statistical or %-age
position of the data value here s relative to the parameter value ϕ on
the scale of that parameter. And for convenience here we assume that
ϕ(θ) is increasing in θ; this avoids rethinking direction when considering
how data position relates to a reparameterized value θ, and thus what
%-age position means when we speak of left of a data value. The highly
accurate distribution function approximation is

p(θ) = Φ{r − r−1 log(r/q)} = Φ{r∗} (2)

where r is a signed likelihood root departure, q is a maximum likelihood
departure calculated from the observed log-likelihood function �(ϕ) =
log f(s0;ϕ) and r∗ is implicitly defined. For this let ϕ̂ be the value that
maximizes �(ϕ) and let ĵ be the corresponding curvature of �(ϕ) as given
by the negative second derivative ĵϕϕ = −�ϕϕ(ϕ̂) = −(∂2/∂ϕ∂ϕ)�(ϕ)|ϕ̂
at that maximum value; these can be viewed as being very fundamental
characteristics of an available likelihood function. We then have the
definitions

r = r(ϕ; s0) = sign(ϕ̂− ϕ)[2{�(ϕ̂) − �(ϕ)}]1/2,

q = q(ϕ; s0) = sign(ϕ̂− ϕ)ĵ1/2
ϕϕ |ϕ̂− ϕ|. (3)

which in themselves provide two ways of measuring departure of ob-
served data from the parameter value ϕ.

Thus if we have an exponential model and want its distribution func-
tion value for given data at some parameter value of interest we can in
effect just directly calculate it using (2); this formula (2) can give incredi-
ble accuracy. These results come from a density function approximation
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(Daniels, 1954), a distribution function approximation (Lugannani &
Rice, 1980), a modification of the preceding (Barndorff-Nielsen, 1986),
and an extension in Fraser & Reid (1993), all with an overview in Bédard,
Fraser & Wong (2008). A minor computational anomaly can occur with
(2) close to the maximum likelihood value where r and q are equal to 0;
but such a p-value at the center of the statistical range for a parameter
is rarely of direct interest, unless some resulting computationally-bad
p-values are ignored in related simulations.

3 Deriving the Distribution Function
Approximation

The distribution function approximation can be obtained of course by
integrating the density function (1), but this means that the ingredi-
ent h(s) must be available and accessible; and often it isn’t, when an
underlying variable y is the primary observational variable. To access
h(s) we employ a third-order equivalent for the marginal density for
s(y) which is available by the saddlepoint of Daniels (1954), or by the
p∗ of Barndorff-Nielsen (1980) which is discussed in the next section. In
several forms, all subject to a normalizing constant k/n, these provide

g(s;ϕ)ds = exp(k/n)(2π)−1/2 exp{�(ϕ; s) − �(ϕ̂; s)}ĵ−1/2
ϕϕ ds

= exp(k/n)(2π)−1/2 exp{−r2/2}ĵ−1/2
ϕϕ ds

= exp(k/n)φ(r)ĵ−1/2
ϕϕ ds; (4)

where φ(r) is the standard Normal density function and −r2/2 is im-
plicitly defined and corresponds r in (3). Of course this approxima-
tion in comparison with (1) clearly has the correct likelihood L(ϕ; s) =
exp{�(ϕ; s)} = exp{ϕ(θ)s−κ(ϕ)} at each data point s; and the remain-
der of the approximation involving h(s) is clarified in the next section.
First we take the differential of r2/2 relative to s noting that ϕ̂ itself is
also function of s:

dr2/2 = rdr = d{�(ϕ̂; s) − �(ϕ; s)}
= �ϕ(ϕ̂; s)dϕ̂ + {�;s(ϕ̂; s) − �;s(ϕ; s)}ds
= 0dϕ̂+ (ϕ̂− ϕ)ds

where the subscript ;s denotes differentiation with respect to the second
variable s gives ϕ, and the differentiation with respect to ϕ at the max-
imum likelihood ϕ̂ gives 0. We can then write ds = {r/(ϕ̂ − ϕ)}dr and
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then combine (ϕ̂− ϕ) and ĵ1/2 in (4) to obtain q defined at (3), giving

g̃(s;ϕ)ds = exp(k/n)φ(r)(
r

q
)dr. (5)

We then take r/q to the exponent of the Normal density as log(r/q) and
force a completion of the square in the exponent:

−r2/2 + log(r/q) = −{r − r−1 log(r/q)}2/2 = −(r∗)2/2,

where it can be shown that r/q = 1 to first order and {r−1 log(r/q)}2 is
constant c/n to second order. With minor details this shows that r∗ is
standard Normal to third order and verifies the p-value at (2).

A simple example. Consider a very simple model g(s; θ) = θ−1 exp(−s/θ)
on (0,∞) with data s0 = 1. The parameter θ is the expectation param-
eter of the model, which is the mean life E(s; θ) = θ and the vari-
able s is easily seen to be stochastically increasing in θ. The corre-
sponding p-value p(θ) thus becomes the observed value of the distri-
bution function, and is easily calculated exactly: pEx(θ) = F (1; θ) =∫ 1
0 θ

−1 exp(−s/θ)ds = 1 − exp(−1/θ).
The approximate value as described before the example is expressed

in terms of ϕ, which for this example can conveniently be taken as the
rate parameter ϕ(θ) = θ−1, provided we view it to be the coefficient of
−s. This does involve a reversal of direction of parameter change, as
this choice of ϕ is monotone decreasing in θ; accordingly we use the sign
of θ̂−θ in the formulas of r and q. We then have L(θ) = θ−1 exp{−θ−1}
and �(θ) = logϕ−ϕ for the observed s0 = 1 with θ̂0 = 1, ϕ̂0 = 1, ĵ0 = 1.
This leads to

r2/2 = �(θ̂) − �(θ) = log ϕ̂− ϕ̂− logϕ+ ϕ = ϕ− 1 − logϕ
r = sign(1 − θ)[2{�(θ̂) − �(θ)}]1/2 = sign(1 − θ){2(ϕ− 1 − logϕ)}1/2

q = sign(1 − θ)ĵ1/2|1 − ϕ| = ϕ− 1.

We record the exact p-value pEx and the corresponding r, q, r∗ with the
resulting approximate p-value pApp(θ) = Φ(r∗) for a few values of the
interest parameter θ.
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θ 2 5 10 20
ϕ(θ) 0.5 0.2 0.1 0.05
pEx(θ) 39.35% 18.13% 9.52% 4.88%
r -0.6215 -1.2724 -1.6749 -2.0227
q -0.50 -0.80 -0.90 -0.95
r∗ -0.2715 -0.9077 -1.3041 -1.6491
pApp(θ) = Φ(r∗) 39.30% 18.20% 9.61% 4.96%

The third order approximate p-values are very close to the exact values;
this happens in quite wide generality. And just to see what the values
would be without the use of the exponential model as the primary ap-
proximation tool we record the values from the Normal approximation
applied to the likelihood ratio r and the maximum likelihood value q:

θ 2 5 10 20
Φ(r) 26.71% 10.16% 4.70% 2.16%
Φ(q) 30.85% 21.19% 18.41% 17.11%
pEx(θ) 39.35% 18.13% 9.52% 4.88%
pApp(θ) = Φ(r∗) 39.30% 18.20% 9.61% 4.96%

Clearly the familiar Normal approximations can be extremely aberrant
relative to the exact, and the exponential model approximation can be
very close to the exact.

We have examined the case of a scalar variable and scalar full param-
eter of interest. For the more general case of a scalar interest parameter
ψ with p-dimensional full parameter (ψ, λ) and n-dimensional variable y
preceding the canonical variable s(y) some minor extras are needed such
as the Laplace elimination of nuisance parameter effect and a directional
derivative on the {y}-space to obtain the canonical parameter ϕ(θ); for
a recent survey see Bédard, Fraser & Wong (2008).

4 Saddlepoint and p∗ Approximate Densities

Now consider the first concern: How to find the exponential model that
approximates some given model. Consider the statistical model f(y; θ)
and an observed data y0 value. We want to approximate this model
near observed data y0 by making use of recent asymptotic theory. The
method is simple and is a matter of just determining the change in the
log-likelihood under small change in the data at the observed data y0;
in other words it is to use the derivative of the log-likelihood at the ob-
served data point y0. It is as if one examined the log-likelihood at the
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data and then at a nearby point and just took the difference, in itself
a trivial calculation, just a subtraction! This immediately gives us the
canonical parameter ϕ(θ) of the approximating exponential model; and
this then with the observed log-likelihood presents the full approximat-
ing exponential model.

For the exponential model (1) with an antecedent variable y tra-
ditional statistics would appeal to sufficiency and focus for statistical
inference on just the marginal model for s as recorded (1). Of course
sufficiency is an ”easy-out” for a Normal model or for an exponential.
But it only works for such specialized models (for example, Fraser,
2004) while directional conditioning now being described works triv-
ially in such preceding nice cases and but also works widely and rou-
tinely. What is needed (Fraser, Fraser & Staicu, 2010) is to write the
full model in quantile form y = y(θ;u) where u is the randomness de-
fined by the coordinate distribution functions, and then determine the
directions V = (v1, ..., vp) = ∂y/∂θ|y0;θ̂0 in which θ affects y at the ob-

served data y0 and corresponding maximum likelihood value θ̂0; for this
p as used here is just the dimension of the parameter.

Then, if you want accuracy going far beyond the first-order Normal
approximation, this extra difference or derivative step is relatively minor,
painless, and fruitful, and does provide incredible results relative to say
Bayes, Bootstrap and McMC (Bédard, Fraser & 2008). The third order
approximating exponential model (Reid & Fraser, 2010) is obtained by
differentiating the log-model in the directions V ,

ϕ(θ) =
∂

∂s
�(θ; y0 + V s)|s=0, (6)

and then by using this as the canonical parameter ϕ(θ) of the exponential
model (1). This works for vector as well as scalar parameters; see Fraser,
Wong & Sun (2009) for some interesting examples.

The approximating model can then be written to third order accu-
racy in the saddlepoint form

g̃(s;ϕ)ds =
exp(k/n)
(2π)p/2

exp{�(ϕ) + ϕ′s}|ĵϕϕ(s)|−1/2ds, (7)

where ĵϕϕ(s) is the information matrix calculated from the log-likelihood
�(ϕ)+ϕ′s and s = s0 = 0 is the observed data value. This was developed
in Fraser & Reid (1993, 1995) and Reid & Fraser (2010), and called the
Tangent Exponential Model.

A related saddlepoint-type approximation called p∗ for general mod-
els f(y; θ) with asymptotic properties was developed by Barndorff-Nielsen
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(1980) and has the parametrization invariant form

p∗(θ̂; θ)dθ̂ =
ek/n

(2π)p/2
exp{�(θ; y) − �(θ̂; y)}|ĵθθ(y)|1/2dθ̂ (8)

along a contour of an ancillary, which is a statistic with distribution
free of the parameter θ. This approximation can be verified by Laplace
integration. Take a general data point say y0 on the particular ancillary
contour and do Laplace integration with respect to θ̂ using the param-
eter value θ = θ̂(y0) = θ̂0. This determines the density function at the
maximum giving | − �θ̂θ̂(y0)|1/2 rather than the quoted root-information
in (8). But the two root informations differ by a factor 1 + k/n, as
established for the location parameter choice in Cakmak, Fraser & Reid
(1994) and Cakmak, Fraser, McDunnough, Reid & Yuan (1998). This
can then be repeated for other data and corresponding maximum likeli-
hood values, which thus verifies (8) to third order.

For the special exponential model (7) case there is a minor change
of variable relative to expression (8). With the exponential model, the
log-density can be written �(ϕ) + ϕ′s where �(ϕ) is the log-density at
some particular data value and ϕ and s are then taken to be departures
from reference values provided by that particular data value. In this
notation the maximum likelihood value ϕ̂ is the solution of the score
equation �ϕ(ϕ̂) + s = 0. Thus differentiating with respect to s gives
�ϕϕ(ϕ̂)dϕ̂+ ds = 0 or dϕ̂ = ĵ−1

ϕϕds. This gives the change from (8) to (7)
when the parameter ϕ is used in the information.

5 Welch-Peers Analysis

Welch-Peers (1963) used a root-information prior with an exponential
model (1) and showed that resulting posterior intervals were approx-
imate confidence intervals to second order. This was a fundamental
contribution then to the Bayes-frequentist dialogue, and has provided
clear downstream influences in some current procedures for determining
default priors (Fraser, Reid, Marras & Yi, 2010). Perhaps, however,
there is yet deeper significance in the Welch-Peers derivation, that it
effectively shows that a scalar exponential model is a location model to
second order. At the time of the Welch-Peers result it was well known
that location models with default Bayes priors gave intervals with the
confidence property. Indeed Lindley (1958) had shown this as part of a
critique of the confidence procedure; but as a deeply committed Bayesian
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he had somehow treated the result as a criticism of confidence, despite
wide recognition that confidence had full repetition reliability (Neyman,
1937).

Consider the scalar parameter exponential model (1) with maximum
likelihood ϕ̂ and information ĵ

1/2
ϕϕ , both from data s. We define what is

called the constant information parameterization β(ϕ):

β = β(ϕ) =
∫ ϕ

ϕ0

ĵ1/2
ϕϕ (ϕ)dϕ (9)

where ϕ0 is some convenient origin or reference value, and we use the
argument ϕ in place of the usual ϕ̂. We then use dϕ = ĵ

−1/2
ϕϕ (ϕ)dβ

to calculate the information function in the new parameterization and
obtain

ĵββ = −�ββ(ϕ̂) = ĵ−1/2
ϕϕ {−�ϕϕ(ϕ̂)}ĵ−1/2

ϕϕ = ĵ−1/2
ϕϕ ĵϕϕĵ

−1/2
ϕϕ = 1

with some technicalities. Thus β has constant information.
Now consider a scalar parameter regular statistical model f(y; θ)

with asymptotic properties; we can approximate the log-model in a
neighborhood of (y0, θ̂0) = (y0, θ̂(y0)) by a Taylor series expansion. Cak-
mak, Fraser, McDunnough, Reid & Yuan (1998) examined this expan-
sion using departures standardized by observed information and found
that it can be expressed to second order equally in location model form
or in exponential model form, and also to the third order but with a
technicality that for statistical inference is inconsequential; this provides
theoretical background for the third order inference results mentioned
in Section 3. But for such a location model the constant information
reparameterization (9) is precisely the location parameterization; thus
we have a direct connection between exponential model form and loca-
tion model form and the constant reparameterization (9) provides the
direct link; there is a similar linkage for the vector parameter case as
initiated in Cakmak, Fraser & Reid (1994), with further aspects to be
discussed in the concluding Section 6.

For the scalar parameter case the linkage says that z = β(ϕ̂)− β(ϕ)
has a fixed distribution to second order, and thus the expansion gives

g(z) = (2π)−
1
2 exp{−1

2
z2 − a3

12n1/2
z3},

where the third derivative a3/n
1/2 is written with dependence on the

nominal sample size n made explicit. The total differential relation-
ship dz = dβ̂ − dβ thus gives the transfer of probability g(z)dz to the
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variable y as probability g(z)dβ̂ for given β, and the transfer of prob-
ability g(z)dz to β as the confidence g(z)dβ, which makes explicit the
confidence calculation implicit in the Welch-Peers analysis.

6 The Exponential-Location Connection by
Taylor

The Welch-Peers analysis provides a simple link between a scalar ex-
ponential model and a scalar location model. Towards extending this
to vector parameter models we first exhibit the link in terms of the
Taylor series expansions used at the end of the preceding section. For
this we follow Cakmak, Fraser, McDunnough, Reid & Yuan (1998) but
drop terms of order O(n−1) and thus work just to second order. A
scalar asymptotic log-model can be centered at a point (y0, θ̂0) using
departures standardized by observed information and can then have the
variable and parameter reexpressed giving the second order asymptotic
exponential form

fE(s;ϕ)=
1

(2π)1/2
exp{−1

2
(s − ϕ)2 − α

6n1/2
ϕ3 +

α

6n1/2
s3 − α

2n1/2
s},(10)

where the Normal quadratic comes from the limiting Normal distribution
of the standardized departure, the coefficients of the two cubic terms are
equal because of density determination, and other cubic terms are absent
due to the reexpression in the exponential model form. In a related way
the scalar asymptotic log-model can be centered at a point (y0, θ̂0) using
departures standardized by observed information and can then have the
variable and parameter reexpressed giving the second order asymptotic
location form

fL(ỹ; θ̃) =
1

(2π)1/2
exp{−1

2
(ỹ − θ̃)2 +

a

6n1/2
(ỹ − θ̃)3}. (11)

If the two standardized models, fE(s;ϕ) and fL(ỹ; θ̃) represent the
same underlying statistical model as indicated above then the two vari-
ables are different and the two parameterizations are different, although
of course agreeing to first derivative at the expansion point. If we ex-
amine the cross terms in (11) and identify them with the same in (10)
we obtain

ỹθ̃ − a

2n1/2
ỹ2θ̃ +

a

2n1/2
ỹθ̃2 = ϕs,
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and can then solve for ϕ and s to second order:

ϕ = θ̃ + aθ̃2/2n1/2 θ̃ = ϕ− aϕ2/2n1/2 (12)
s = ỹ − aỹ2/2n1/2 ỹ = s+ as2/2n1/2.

Also we can look at the log-likelihood at the expansion point in (11)
after substituting θ̃ = ϕ− aϕ2/2n1/2 and obtain

−1
2
θ̃2 − a

6n1/2
θ̃3 = −1

2
ϕ2 +

a

2n1/2
ϕ3 − a

6n1/2
ϕ3 = −1

2
ϕ2 +

2a
6n1/2

ϕ3

which implies that α = −2a, which is in agreement with Cakmak et
al (1998). We can also calculate the observed information from (10)
and obtain jϕϕ(s) = 1 + αs/n1/2 giving j1/2

ϕϕ (s) = 1 + αs/2n1/2 = 1 −
as/n1/2, and thus the Welch-Peers probability differential is j1/2

ϕϕ dϕ =
(1 − aϕ/n1/2)dϕ. We can then integrate j1/2

ϕϕ dϕ = (1 − aϕ/n1/2)dϕ and
obtain ϕ − aϕ2/2n1/2, in agreement with the location parameter θ̃ in
(12).

7 Discussion

We have examined the exponential model as a rich tool for approximat-
ing probabilities in a wide segment of inference contexts and we have
discussed the Welch-Peers root information adjustment as a devise to
obtain confidence intervals calculated by a Bayesian procedure. These
uses of the exponential model can begin with a multivariate exponential
but for the actual calculation are focussed on scalar exponential models.
Our prime concern is to develop methods and techniques for the multi-
variate and multiparameter context. Accordingly our development here
has been to survey and assemble the methods and theory in the scalar
case to provide a basis for the broader examination of the vector case.

Acknowledgement

This research was supported by the Natural Sciences and Engineering
Research Council of Canada. Much appreciation and thanks go to the
participants in a research seminar at the University of Toronto in 2011
discussing the asymptotics of the vector exponential model and of the
related Welch-Peers phenomena: U. Hoang, K. Ji, V. Krakovna, L. Li,

www.SID.ir



Arc
hive

 of
 S

ID

106 Fraser et al.

X. Li, W. Lin, J. Su, W. Xin, K. Xue, W. Zeng. And very special thanks
to a careful and insightful referee for many positive recommendations.

References

Barndorff-Nielsen, O. E. (1980), Conditionality resolutions. Journal of
Royal Statistical Society, Series. B, 67, 293-310.

Barndorff-Nielsen, O. E. (1986), Inference on full or partial parameters
based on the standardised signed log likelihood ratio. Biometrika,
73, 307-22.

Bédard, M., Fraser, D. A. S., and Wong, A. (2008), Higher accuracy for
Bayesian and frequentist inference: Large sample theory for small
sample likelihood. Statistical Science, 22, 301-321.

Cakmak, S., Fraser, D. A. S., McDunnough, P., Reid, N., and Yuan,
X. (1998), Likelihood centered asymptotic model exponential and
location model versions. J. Statist. Planning and Inference, 66,
211-222.

Cakmak, S., Fraser, D. A. S., and Reid, N. (1994), Multivariate asymp-
totic model: exponential and location approximations. Utilitas
Mathematica, 46, 21-31.

Daniels, H. E. (1954), Saddlepoint approximations in statistics. Annals
Math. Statist., 25, 631-50.

Fraser, D. A. S. (2004), Ancillaries and conditional inference. Statisti-
cal Science, 19, 333-369.

Fraser, A. M., Fraser, D. A. S., and Staicu, A.-M. (2010), Second order
ancillary: A differential view with continuity. Bernoulli, 16, 1208-
1223.

Fraser, D. A. S., Reid, N., Marras, E., and Yi, G. Y. (2010), Default
priors for Bayesian and frequentist inference. Journal of Royal
Statistical Society, Series. B, 75, 631-654.

Fraser, D. A. S., and Reid, N. (1993), Third Order Asymptotic Mod-
els: Likelihood functions leading to accurate approximations for
distribution functions. Statist. Sinica, 3, 67-82.

www.SID.ir



Arc
hive

 of
 S

ID

Exponential Models: Approximations for Probabilities 107

Fraser, D. A. S., and Reid, N. (1995), Ancillaries and third order sig-
nificance. Utilitas Mathematica, 47, 33-53.

Fraser, D. A. S., Wong, A. and Sun, Ye (2009), Three enigmatic exam-
ples and inference from likelihood. Canadian Journal of Statistics,
37, 161-181.

Lindley, D. V. (1958), Fiducial distributions and Bayes’ theorem. J.
Roy. Statist. Soc., B, 20, 102-107.

Lugannani, R. and Rice, S. (1980), Saddle point approximation for
the distribution of the sum of independent variables. Adv. Appl.
Prob., 12, 475-90.

Neyman, J. (1937), Outline of a theory of statistical estimation based
on the classical theory of probability. Phil. Trans. Roy. Soc., A,
237, 333-380.

Reid, N, and Fraser, D. A. S. (2010), Mean likelihood and higher order
approximations Biometrika, 97, 159-170.

Welch, B. L. and Peers, H. W. (1963), On formulae for confidence
points based on intervals of weighted likelihoods. J. Roy. Statist.
Soc., B, 25, 318–329.

www.SID.ir


