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Abstract. A common study to investigate gene-environment interac-
tion is designed to be longitudinal and population-based. Data arising
from longitudinal association studies often contain missing responses.
Naive analysis without taking missingness into account may produce
invalid inference, especially when the missing data mechanism depends
on the response process. To address this issue in the analysis concern-
ing gene-environment interaction effects, in this paper, we adopt an in-
verse probability weighted generalized estimating equations (IPWGEE)
approach to conduct statistical inference. This approach is attractive
because it does not require full model specification yet it can provide
consistent estimates under the missing at random (MAR) mechanism.
We utilize this method to analyze data arising from a cardiovascular
disease study.
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1 Introduction

Many complex human traits are outcomes of interplay of genetic and en-
vironmental factors, and individual genetic contributions to these traits
and disorders are unlikely to be large. A recent review of several com-
pleted genome wide association studies indicates that nine confirmed
loci for type 2 diabetes only account for 3% of the genetic variation, and
14 loci identified for Crohn diseases only account for less than 10% of the
genetic variation (Estivill and Armengol, 2007). These loci are usually
identified via large-scale case-control studies, exemplified by the Well-
come trust case control consortium (WTCCC, 2007), similar attempts
to identify new associations likely yield similar results. Understanding
the influences of environmental factors and the interactions of gene and
environment (G×E) would then become important to unravel the mech-
anism of complex human traits. Environmental factors usually refer to
the total influences of non-genetic factors, including gender, physical,
psychological, and cultural factors. It is well known that quantitative
traits (QTs), such as fasting serum glucose, total plasma cholesterol and
high density lipoprotein, are heavily influenced by non-genetic factors
such as diet and physical exercise. Incorporation of G × E in either
linkage or association studies of QTs would certainly be useful.

To investigate gene-environment interaction effects on binary trait
of disease status, retrospective designs, including case-control and case-
only designs are commonly adopted, and logistic regression is usually in-
voked for analysis (e.g., Kraft et al., 2007). Large longitudinal population-
based cohort studies, with extensive clinical information and ongoing
follow-up, for example, the Framingham Heart Study (www.framingham-
heartstudy.org) and the UK Biobank (www.ukbiobank.ac.uk), provide
useful sources to study the effects of non-genetic factors and G × E
interactions on QTs. A common feature of longitudinal studies is that
phenotypes of interest are repeatedly measured for a subject over time,
yielding correlated measurements. To accommodate various association
structures, marginal methods based on generalized estimation equations
(GEE) are widely used in practice (Liang and Zeger, 1986).

Missing observations occur frequently in longitudinal studies. Prob-
lems arise if the mechanism leading to the missing data is related to
the response process. Little and Rubin (2002) and Laird (1988) pre-
sented a general treatment of statistical analysis of missing data mech-
anisms. A missing-data mechanism is called missing completely at ran-
dom (MCAR) if the missing data process is independent of responses,
and missing at random (MAR) if the missing data process does not
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depend on unobserved responses. In contrast, data are called missing
not at random (MNAR) or nonignorable if the missing data process is
related to the unobserved responses.

Likelihood methods and marginal methods such as GEE are two pow-
erful tools that have been developed to accommodate missing data for
longitudinal data analysis (e.g., Chen, Yi and Cook, 2009; Chen, Yi and
Cook, 2010a; Liang and Zeger, 1986; Chen, Yi and Cook, 2010b). Un-
der MCAR or MAR, a valid analysis can be obtained based on available
data when using a likelihood-based approach. Difficulties often associ-
ated with likelihood-based methods are that they require specification
of the joint distributions of longitudinal responses. Inference based on
GEE is attractive because it does not require full model specification for
longitudinal response processes. Under the MCAR mechanism, the GEE
approach yields consistent estimates for regression parameters. Robins,
Rotnitzky and Zhao (1994, 1995) developed a class of estimators based
on inverse probability weighted generalized estimating equations (IP-
WGEE) in a regression setting when incomplete data are MAR. This
approach involves modeling the missing data process and weighting the
estimating equations by the inverse of a probability that is calculated
based on the models for the missing data process. If the models for
both the marginal mean of the response and the missing data process
are correctly formulated, the IPWGEE approach gives consistent esti-
mates under the MAR mechanism.

Methods concerning missing data have mainly focused on monotone
missing data patterns (e.g., Fitzmaurice, Molenberghs and Lipsitz, 1995;
Fitzmaurice et al., 2001; Yi, Cook and Chen, 2010), but relatively lit-
tle work has been done for intermittently missing data with marginal
methods. In this paper we explore a marginal method that handles
longitudinal data with intermittently missing responses, and we apply
this method to analyze data arising from a population-based genetic
association study of quantitative traits.

The remainder of this paper is organized as follows. In Section 2,
we describe a weighted estimating equation to address the missing data
problem. In Section 3, we discuss modeling of the missing data process.
Details on estimation and inference are given in Section 4. Data arising
from a cardiovascular disease study are analyzed in Section 5. Section 6
includes the concluding remarks.
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2 Weighted Estimating Equation

Let Yi = (Yi1, Yi2, . . . , YiJ)′ be a response vector of subject i observed
at time points t1, t2, . . . , tJ , and Xij be the covariate vector recorded for
subject i at the jth time point, j = 1, . . . , J , i = 1, . . . , n. Let Xi =
(X ′

i1,X
′
i2, . . . ,X

′
iJ )′. Define μij = E(Yij |Xi), and let μi = (μi1, . . . , μiJ)′.

Provided that the mean structure of Yij depends on the covariate vector
for subject i at time j (e.g., Pepe and Anderson, 1994; Robins, Greenland
and Hu, 1999), i.e., E(Yij |Xi) = E(Yij |Xij), we consider generalized
linear regression models

g(μij) = Xij
′β, j = 1, . . . , J,

where g(·) is a monotone differentiable link function, and β is a vector
of regression parameters.

Here we only consider the missing response problem, and assume all
the covariates are observed. Define the indicator random variable Rij ,
which equals 1 if response Yij is observed and 0 if Yij is missing. Let
Ri = (Ri1, Ri2, . . . , RiJ )′, and ri = (ri1, ri2, . . . , riJ)′ be a realization of
Ri. For ease of exposition, we write yi = (y(o)

i , y
(m)
i ), where y

(o)
i and

y
(m)
i denote the observed data and missing data parts of yi, a realization

of Yi. Note that arbitrary, nonmonotone patterns of missing data in yi

are considered.
With missing data, a common method of estimation is the naive

data analysis estimate, β̂∗, obtained as the solution to the generalized
estimating equations (Liang and Zeger, 1986) for the available data,
U∗(β̂∗) = 0, where

U∗(β) =
n∑

i=1

DiΔ∗
i V

−1
i (Yi − μi), (1)

Di = ∂μ′
i/∂β, Δ∗

i = diag(rij , j = 1, . . . , J), and Vi is the covariance
matrix for the response Yi. In actual implementation, a “working” co-
variance matrix is used to replace Vi, which is often decomposed as

Vi = a(φ)A1/2
i Gi(ρ)A1/2

i ,

where a(·) is a known function, φ is a scaled parameter, Ai is a J × J
diagonal matrix with elements vij = V ar(Yij), Gi(ρ) is a J×J “working”
correlation matrix that is fully specified by a vector of parameters ρ.
Note that only data with rij = 1 contribute to (1). When data are
missing completely at random, (1) has expectation 0 when β = βtrue.
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However, when data are missing at random or missing not at random, (1)
no longer has expectation 0 at β = βtrue, hence, the resulting parameter
estimates may be inconsistent.

Robins, Rotnitzky and Zhao (1995) replace rij in the naive analysis
with rij/πij , where πij = P (Rij = 1|Y (o)

i ,Xi). Specifically, we solve

n∑
i=1

Ui(β) = 0, (2)

where Ui(β) = DiΔiV
−1
i (Yi − μi), and Δi = diag(rij/πij , j = 1, . . . , J).

The estimating equation given by (2) is unbiased for 0 at the true β
because

E[Ui(β)] = E(Ri,Yi,Xi)[DiΔiV
−1
i (Yi − μi)]

= EXiE(Yi|Xi)E(Ri|Yi,Xi)[DiΔiV
−1
i (Yi − μi)]

= EXi [DiV
−1
i {E(Yi|Xi)(Yi − μi)}]

= 0,

where a key component in the derivation above is that E(Ri|Yi,Xi)[rij/πij ]
= 1. An intuitive explanation of this method is that the weight has elim-
inated the bias, by “reconstructing” the full population by upweighting
the data from subjects who have a small chance of being observed.

If πij is either known or consistently estimated, then a consistent
estimate of β can be obtained as the solution to

∑n
i=1 Ui(β) = 0. How-

ever, in practice, πij is unknown and we often estimate it by modeling
the missing data process, and this is discussed in the next section.

3 Modeling the Missing Data Process

In this paper, we consider the case that missing data follow a MAR
mechanism satisfying

P (Rij = 1|Yi,Xi,H
r
ij) = P (Rij = 1|Y (o)

i ,Xi,H
r
ij),

where Hr
ij = {ri1, ri2, . . . , ri,j−1}. Let λij = P (Rij = 1|Yi,Xi,H

r
ij) be

the probability that the response is observed at the jth time point. In
practice, a logistic regression model is commonly employed with

logit(λij) = Z ′
ijα, (3)
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where Zij is a vector featuring various missingness, which may include a
function of {Hr

ij , Yi,Xi} or their interactions, and α is the corresponding
parameter vector. Different specifications of Zij may facilitate different
missing data models. In particular, here we consider

logit(λij) = α0 + α1 · ri,j−1 + α2 · ri,j−1yi,j−1 + α3 · rijyij + α′
x · Xij .

To estimate α, one may employ the maximum likelihood method.
That is, consider the log-likelihood for the parameter α

	(α) =
n∑

i=1

	i(α) =
n∑

i=1

J∑
j=2

λ
rij

ij (1 − λij)1−rij , (4)

then maximizing (4) with respect to α yields the maximum likelihood
estimate, say α̂, of α. Consequently, the marginal probability πij of
missingness can be estimated by πij(α̂), where πij(α) is given by

πij(α) =
∑

ri1,...,ri,j−1

P (Ri1 = ri1, . . . , Ri,j−1 = ri,j−1, Rij = 1|Y (o)
i ,Xi)

=
∑

ri1,...,ri,j−1

{
P (Rij = 1|Hr

ij, Y
(o)
i ,Xi)

×
j−1∏
�=2

P (Ri� = ri�|Hr
i�, Y

(o)
i ,Xi) · P (Ri1 = ri1|Y (o)

i ,Xi)
}

=
∑

ri1,...,ri,j−1

{
λij ·

j−1∏
�=1

(λi�)ri�(1 − λi�)1−ri�

}
,

where λi1 = P (Ri1 = 1|Y (o)
i ,Xi), and the dependence of λi� on α is

suppressed in the notation.

4 Estimation and Inference

Our primary interest lies in estimating the parameter β. Using the
Fisher-scoring algorithm, we solve for β from (2) with πij replaced by
πij(α̂). Let

M(β, α̂) = −
n∑

i=1

DiV
−1
i · Δi(α̂) · D′

i.
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For an initial value β = β(0), update β by the iterative equations

β(t) = β(t−1) − [M(β(t−1), α̂)]
−1 ·

n∑
i=1

Ui(β(t−1), α̂), , t = 1, 2, . . .

until β(t) converges to β̂, say.
We conclude this section with a discussion on the asymptotic distri-

bution of the estimator β̂. Let U(β, α) = n−1/2
∑n

i=1 Ui(β, α). When
α is specified to be α0, under standard regularity conditions for esti-
mating functions, U(β, α0) is asymptotically normal with mean 0 and
covariance matrix E(Ui(β, α0)U ′

i(β, α0)) and

n1/2(β̂ − β) d→ N(0,Γ−1
0 E(Ui(β, α0)U ′

i(β, α0))[Γ−1
0 ]′), n → ∞,

where Γ0 = E(∂Ui(β, α0)/∂β′). When α is unkown and estimated, the
variation in the estimator α̂ must be taken into account. Under the reg-
ularity conditions stated by Robins, Rotnitzky and Zhao (1995), U(β, α̂)
and n1/2(β̂−β) are asymptotically normal with mean 0 and asymptotic
variance Σ and Γ−1Σ[Γ−1]′, respectively, where

Γ = E[∂Ui(β, α)/∂β′],
Σ = E[Qi(β, α)Q′

i(β, α)],
Qi(β, α) = Ui(β, α) − E(∂Ui(β, α)/∂α′) · [E(∂Si(α)/∂α′)]−1 · Si(α),

and Si(α) = ∂	i(α)/∂α′.
Furthermore, this asymptotic covariance matrix can be consistently

estimated by Γ̂−1Σ̂Γ̂−1′ with

Γ̂ = n−1
n∑

i=1

{
∂Ui(β̂, α̂)

∂β′

}
,

Σ̂ = n−1
n∑

i=1

Q̂i(β̂, α̂)Q̂′
i(β̂, α̂),

where Q̂i(β̂, α̂) = Ui(β̂, α̂)−∑n
i=1 ∂Ui(β̂, α̂)/∂α′ · [∑n

i=1 ∂Si(α̂)/∂α′]−1 ·
Si(α̂). Inference about β is conducted by replacing Σ and Γ with these
consistent estimates in the expression of the asymptotic covariance ma-
trix.
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5 Application to a Cardiovascular Disease Study

Cardiovascular disease is a common cause of death in Canada. Levels
of high-density lipoprotein (HDL) and low-density lipoprotein (LDL)
are two important risk factors of cardiovascular disease; that is, low
level of HDL cholesterol and high level of LDL cause the increasing
of risk. In order to reduce the level of LDL cholesterol and increase
the level of HDL cholesterol, dietary recommendations are made on the
consumption of different types of fat. They include reducing the intake of
saturated fatty acids (SFA) and increasing the intake of polyunsaturated
fatty acids (PUFA). The presence of tumour necrosis factor-α (TNF-α)
represented by a single nuclear polymorphism (SNP) whit two alleles
of G and A, a chemical called inflammatory cytokines, may modify the
concentrations of HDL.

Apolipoprotein-A1, denoted as apo-A1, is a major protein compo-
nent of HDL in plasma. A longitudinal clinical trial was carried out to
examine (1) the effect of randomly assigned dietary changes on HDL and
apo-A1, and (2) whether the diet-cholesterol relationship differs among
the polymorphisms associated with the gene for TNF-α (Fontaine-Bisson
et al., 2007; Wolever et al., 2008). Patients with type 2 diabetes were
assigned to one of three diets that differed in the types and amounts of
carbohydrates and fat. Patients were followed on their dietary treatment
for one year, and cholesterol measurements were taken at six time points:
0, 4, 12, 26, 39 and 52 weeks. The responses are HDL level and apo-A1;
covariates include: Age, Gender, BMI, Weeks, Centre, Statins (1–the
subject was on cholesterol lowering medication; 0–the subject was not
on cholesterol lowering medication ), PUFA intake (during trial), TNF-
α-238 (dominant effect for A), TNF-α-308 (dominant effect for A). How-
ever, the collected measurements for the response HDL and apo-A1 are
incomplete. Genotype data were available for 112 subjects, but complete
data for HDL and apo-A1 were only available for 79 of them.

We first conducted some exploratory analyses for the two genetic
loci. The results are reported in Table 1. The frequency of the minor
allele A, defined as fA = 1/2 ∗P (GA) + P (AA), is estimated to be 14%
at TNF-α-238 and 18% at TNF-α-308, where P (GA) and P (AA) are
the population relative frequencies, i.e., marginal distributions, of the
genotypes GA and AA. The Fisher’s exact test shows no significant de-
parture from Hardy-Weinberg equilibrium (HWE) at both TNF-α-238
and TNF-α-308 (p-values = 0.70 and 0.36, respectively), indicating that
the sampling of subjects from the population was independent of geno-
types. No linkage disequilibrium (LD) is found between TNF-α-238 and
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TNF-α-308, suggesting that the two loci can be treated as independent.
We also conducted analysis of variance and found no significant differ-
ence in baseline characteristics (age, BMI, HDL, apo-A1 and PUFA)
among the three genotype groups at both TNF-α-238 and TNF-α-308.

Now we apply the method discussed in the preceding sections to
analyze this data set with missingness accommodated. Let Yij denote
the response (e.g., the HDL level), and Xij be the covariate vector listed
above. We are interested in modeling the mean of the response

μij = E(Yij |Xij) = X ′
ijβ.

For the missing data models, we model λij = P (Rij = 1|Ri,j−1,Xi, Y
(o)
i )

through a logistic regression

logit(λij) = Z ′
ijα,

where Zij is a vector that may include the previous observed response,
ri,j−1, Age, BMI, Center, Statins, TNF-α-238, TNF-α-308, PUFA, inter-
action between TNF-α-238 and PUFA, interaction between TNF-α-308
and PUFA, and Week.

Fitting the missing data model, we see that, without reporting the
results here, the coefficients of previous observed response, Gender, Age,
BMI, Center, Statins, TNF-α-308, PUFA, Week, and the interaction
between TNF-α-308 and PUFA are statistically significant, suggesting
that a MAR mechanism may be reasonable, thus the IPWGEE method
may be applicable.

Table 2 reports the results, where we report the naive analysis and
the IPWGEE estimates. It is seen that both methods produce close
results, which might particularly be attributed to the small missing pro-
portion (about 10%). For the response of HDL, gender is statistically
significant, indicating that male patients are easier to reduce the HDL
level compared with female; BMI is significant in the naive analysis
but moderately significant from the proposed method, indicating that
patients with high BMI are more likely to reduce the HDL level; TNF-
α-308 is significant, indicating that it has a positive effect on increasing
HDL; the interaction of TNF-α-308 and PUFA is moderately significant,
indicating that it has a moderately negative effect on increasing HDL
level; for the time covariates, Week26 and Week39 are significant, indi-
cating that the HDL level changes as the time changes; other covariates
are not statistically significant. For the response of apo-A1, only the
gender and Week39 are significant.
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Table 1: Baseline characteristics and dietary intake by TNF-α genotypes

TNF-α-238 TNF-α-308

GG GA AA p-value GG GA AA p-value

# of men/ # of women 36/47 14/12 2/1 0.50 36/40 13/16 2/3 0.93

Age (y) 60.0 58.2 69.3 0.07 59.3 61.3 65.2 0.14

BMI (kg/m2) 30.97 30.35 30.27 0.80 31.23 29.38 33.18 0.07

HDL (mmol/L) 1.18 1.18 0.97 0.39 1.16 1.23 1.23 0.39

apo-A1 (g/L) 1.57 1.58 1.36 0.36 1.54 1.61 1.65 0.33

PUFA (% of energy) 6.17 5.60 6.41 0.26 5.95 6.19 6.81 0.43

Except for the first row, the entries under “GG”, “GA” and “AA” record the

mean of the baseline measurements; the p-values are obtained from testing for

their difference across genotype groups.

6 Discussion

In this paper, we discuss a marginal method for a population-based ge-
netic association study of the quantitative trait with incomplete observa-
tions. Under the missing at random mechanism, the IPWGEE method
can provide consistent estimators for the model parameters when the
missing data model and the marginal model for the response are cor-
rectly specified. Applications to the cardiovascular disease demonstrate
that TNF-α-308 interacts with PUFA intake to affect HDL level; the
presence of allele A at TNF-α-238 has no significant effects on the rela-
tionship between PUFA intake and HDL (or apo-A1) level; in contrast,
the presence of allele A at TNF-α-308 has a negative effect on the rela-
tionship between PUFA intake and HDL level. In this analysis here, we
employ separate modeling for the HDL and apo-A1 variables. A more
comprehensive strategy is to incorporate possible association between
them in analysis, and an addition model for the association structure is
typically required.

As is known, the IPWGEE method is sensitive to the misspecifica-
tion of the missing data model. So, use of model diagnostics for the
missing data process, perhaps most easily carried out in the MAR set-
ting through model expansion, is warranted. The appealing feature of
inverse weighting is that the models for the missing data processes can be
made as elaborative as necessary by introducing a considerable amount
of information on previous responses or covariates. Empirical evidence
shows that there is often little price to pay for introducing additional
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Table 2: Analysis results for the cardiovascular disease data
HDL

Naive Analysis IPWGEE
Parameter Estimate SE p-value Estimate SE p-value
Intercept 0.345 0.225 0.125 0.348 0.232 0.134
GenderM -0.150 0.042 <.001 -0.161 0.044 <.001
Age 0.002 0.002 0.343 0.002 0.002 0.317
BMI -0.009 0.004 0.037 -0.009 0.005 0.072
Center2 -0.040 0.057 0.479 -0.063 0.058 0.277
Center3 -0.002 0.052 0.972 -0.022 0.054 0.684
Center4 0.045 0.094 0.630 0.056 0.098 0.568
Center5 -0.019 0.048 0.696 -0.058 0.050 0.246
Statins -0.044 0.041 0.279 -0.027 0.042 0.520
TNF-α-238 0.068 0.170 0.688 0.083 0.174 0.633
TNF-α-308 0.343 0.163 0.035 0.361 0.168 0.032
PUFA 0.005 0.015 0.759 0.005 0.015 0.739
TNF-α-238 : PUFA -0.005 0.028 0.856 -0.007 0.028 0.803
TNF-α-308 : PUFA -0.044 0.023 0.055 -0.044 0.024 0.067
Week4 0.015 0.012 0.202 0.015 0.013 0.249
Week12 0.008 0.012 0.525 0.008 0.013 0.538
Week26 0.029 0.014 0.038 0.030 0.015 0.046
Week39 0.039 0.012 0.002 0.038 0.014 0.007
Week52 0.019 0.014 0.155 0.019 0.015 0.205

Table 2-Continued.
apo-A1

Naive Analysis IPWGEE
Parameter Estimate SE p-value Estimate SE p-value
Intercept 0.490 0.148 0.001 0.501 0.150 0.031
GenderM -0.121 0.030 <.001 -0.120 0.030 0.006
Age 0.002 0.002 0.320 0.002 0.002 0.317
BMI -0.002 0.003 0.404 -0.003 0.003 0.549
Center2 -0.010 0.037 0.780 -0.019 0.037 0.743
Center3 0.048 0.034 0.156 0.045 0.035 0.405
Center4 -0.016 0.056 0.772 -0.009 0.057 0.927
Center5 -0.000 0.027 0.990 -0.003 0.028 0.952
Statins -0.011 0.024 0.643 -0.013 0.025 0.757
TNF-α-238 -0.023 0.118 0.846 -0.027 0.119 0.877
TNF-α-308 0.165 0.103 0.108 0.162 0.105 0.335
PUFA -0.004 0.011 0.677 -0.004 0.011 0.790
TNF-α-238 : PUFA 0.006 0.020 0.751 0.007 0.020 0.803
TNF-α-308 : PUFA -0.022 0.015 0.147 -0.021 0.015 0.382
Week4 0.021 0.009 0.023 0.021 0.010 0.106
Week12 0.011 0.011 0.289 0.011 0.013 0.397
Week26 0.018 0.012 0.115 0.019 0.013 0.205
Week39 0.040 0.010 <.001 0.040 0.011 0.004
Week52 0.011 0.009 0.221 0.011 0.009 0.463
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covariates into the missing data regression models.
The IPWGEE method is valid when data are missing at random.

Actually, it is generally not possible to check formally for the presence
of a MNAR mechanism from a MAR mechanism, so sensitivity analysis
is required if this is a serious concern. Scharfstein, Rotnitzky and Robins
(1999), Scharfstein and Irizarry (2003), Robins, Rotnitzky and Scharf-
stein (2000), and Robins and Rotnitzky (2001) each discuss strategies for
conducting sensitivity analyses for marginal semiparametric methods for
incomplete data. For other approaches, several authors have proposed
the use of global and local influence tools to do sensitivity analyses in
missing data contexts (e.g., Verbeke et al., 2001; Molenberghs, Kenward
and Goetghebeur, 2001).
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