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Abstract. Variable (feature) selection has attracted much attention in
contemporary statistical learning and recent scientific research. This is
mainly due to the rapid advancement in modern technology that allows
scientists to collect data of unprecedented size and complexity. One type
of statistical problem in such applications is concerned with modeling
an output variable as a function of a small subset of a large number of
features. In certain applications, the data samples may even be com-
ing from multiple subpopulations. In these cases, selecting the correct
predictive features (variables) for each subpopulation is crucial. The
classical best subset selection methods are computationally too expen-
sive for many modern statistical applications. New variable selection
methods have been successfully developed over the last decade to deal
with large numbers of variables. They have been designed for simulta-
neously selecting important variables and estimating their effects in a
statistical model. In this article, we present an overview of the recent
developments in theory, methods, and implementations for the variable
selection problem in finite mixture of regression models.
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1 Introduction

Feature selection has become a ubiquitous statistical activity in regres-
sion modeling in recent years. Rapid advancement in modern technology
has led to many types of high-throughput data. In genome-wide associ-
ation studies, geneticists nowadays routinely genotype half of a million
single nucleotide polymorphisms (snps) over the whole genome in hope
of identifying a handful of snps that play a major role in the genetic vari-
ation of a quantitative trait or a disease status (Chanock and Hunter,
2008). In functional genomics, one of the aims is to find a subset of the
candidate motifs, out of hundreds or thousands, that highly contributes
to the gene expression variations (Conlon et al., 2003 and Zhong et al.,
2005). Other examples of high-throughput data include high-resolution
images, high-frequency financial data, functional and longitudinal data,
among others. In such applications, variable (feature) selection is the
key statistical issue. Since the number of candidate variables, say p,
is large classical variable selection methods such as the Akaike infor-
mation criterion (aic; Akaike 1973), the Bayesian information criterion
(bic; Schwarz 1978) or the Mallows’ Cp (Mallows 1973) become compu-
tationally intractable and not possible to use in practice. As a result,
new methods need to be developed.

The problem is one of the most actively researched topics in recent
statistical literature. There have been many recent advances on the vari-
able selection problem for linear and generalized linear regression mod-
els. The Least Absolute Shrinkage and Selection Operator (lasso) by
Tibshirani (1996), and the Smoothly Clipped Absolute Deviation (scad)
method by Fan and Li (2001, 2002, 2004) are the new regularization or
penalty methods proposed for variable selection with many interesting
properties. For example, lasso has the soft-thresholding property and
scad has an oracle property as discussed in Fan and Li (2001). Un-
like classical variable selection methods, lasso and scad can be used
in reasonably high dimensional problems. Efron et al. (2004) devel-
oped a revolutionary algorithm, called Least Angle Regression (lars),
that allows fast execution of lasso, and Zou and Li (2008) proposed
a fast one-step algorithm for scad. What distinguishes the new meth-
ods from the classical variable selection methods is the nature of their
penalty functions. New methods incorporate penalty functions which
are continuous functions of the regression coefficients, while the penalty
functions in the classical methods are functions of the number of vari-
ables included in a submodel. In what follows, we give a summary of
the new variable selection methods in multiple linear regression models.
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Let (x1, y1), (x2, y2), . . . , (xn, yn) be a sample of observations gov-
erned by the multiple linear regression model

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + εi,

for some additive error εi with E(εi) = 0 and V ar(εi) = σ2. Suppose
that βj = 0, for some j; the goal is to identify these coefficients. In
lasso, the regression coefficients are estimated through the minimiza-
tion problem

min
β0,β1,...,βp

{ n∑
i=1

(yi − β0 − β�xi)2 + n

p∑
j=1

λn|βj |
}

, (1)

where λn is a tuning parameter that controls the amount of shrinkage
of each regression coefficient βj . In (1), the first term is the regular
residual sum of squares (rss), a measure of goodness-of-fit, and the
second term is proportional to the L1-norm of the vector β, and is to
control the complexity of the model. Since the L1-norm in (1) spikes at
βj = 0, the solution β̂(λn) has some of its elements equal to zero when
the shrinkage parameter λn is large enough. Thus, the goal of variable
selection is achieved without fitting all possible submodels, which in turn
reduces the computational burden of the problem significantly.

Figure 1 shows the contours of the rss and the L1-norm for the case
p = 2. The solution to (1) is the first point where the elliptical contours
of rss hit those of the L1-norm. Since the contour of L1 has corners,
if the solution occurs at a corner, then it has one parameter estimator
β̂j(λn) equal to zero for some j. The choice of λn is thus important.
The lars algorithm of Efron et al. (2004) provides the entire solution
path {β̂(λn);λn > 0} to the lasso minimization problem (1). The lars
algorithm is implemented as an R package named lars which is very easy
to use. See also Rosset and Zhu (2007) on the piecewise linear solutions
path of the new regularization methods.

It is worth noting that the L1-norm penalty in (1) belongs to the
family of so-called bridge functions

p∑
j=1

λn|βj |κ, κ > 0. (2)

The solution to the minimization problem (1) has the variable se-
lection property using the penalty (2) for any 0 < κ ≤ 1. However,
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Figure 1: The black ellipses are the contours of the rss and the red
diamond is one level of the contours of |β1| + |β2|.

when 0 < κ < 1, the function becomes nonconvex and this makes the
optimization problem more difficult. The case κ = 1 (lasso) is thus
desirable. Note that if κ = 0, then the penalty in (2) reduces to the
number of non-zero elements of the vector β, and thus by the choice
λn = 2 or λn = log n we will have the aic or bic penalty. The case
κ = 2 corresponds to the well-known ridge penalty proposed by Hoerl
and Kennard (1970), and it is a well-known fact that it does not have
the variable selection property. Figure 2 shows one level of the contours
of the bridge function for κ = 0.5, 1.0, 2.0 for the case p = 2. For a
more in-depth discussion of the bridge function see Hastie, Tibshirani
and Friedman (2009).

Fan and Li (2001) proposed the scad penalty which leads to estima-
tors with desirable statistical properties. Consider the general penalized
residual sum of squares

n∑
i=1

(yi − β0 − β�xi)2 +
p∑

j=1

pn(βj ;λn). (3)

As discussed in Antoniadis and Fan (2001), a good penalty function in
(3) should result in estimators β̂(λn) with three properties:

∗ Unbiasedness: the estimator is (approximately) unbiased when the
true unknown parameter is large. This property avoids modeling
bias when it is unnecessary.
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Figure 2: Solid curve: ridge penalty; Dashed-line: L1-norm; Dashed-
dotted line: bridge with a = 0.5.

∗ Sparsity : the estimator will automatically set small estimates β̂j(λn)
to zero in order to give a parsimonious model.

∗ Continuity : the estimator is continuous in the data to avoid insta-
bility (Breiman, 1996) in the model selection.

Designing a penalty function which results in estimators with the
aforementioned properties is a challenging task. The bridge penalties
(2) result in estimators that have some of the properties 1-3. The ridge
estimators are continuous in data but do not have properties 1-2. For
0 < κ ≤ 1, the estimators are continuous and also have the sparsity
property, but they introduce unnecessary bias in the estimators.

The scad penalty of Fan and Li (2001) results in estimators with all
three properties. The penalty function is

pn(βj ;λn)/n =

⎧⎨
⎩

λn|βj | , |βj | ≤ λn

−(β2
j − 2aλn|βj | + λ2

n)/[2(a − 1)] , λn < |βj | ≤ aλn

λ2
n(a + 1)/2 , |βj | > aλn

for some constant a > 2. Through a Bayesian risk analysis, Fan and Li
(2001) showed that the value a = 3.7 minimizes a Bayes risk criterion
for βj , and they argued that this choice of a gives good practical perfor-
mance in various variable selection problems. We have used the scad
penalty with a = 3.7, and it worked well in our simulation study.
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Figure 3: L1-norm (solid line); scad (dash-dotted line); hard (dashed
line).

Figure 3 shows the plot pn(βj ;λn) versus βj for three penalty func-
tions lasso, scad, and hard (Antoniadis, 1997) which is given by

pn(βj ;λn)/n = λ2
n − (|βj | − λn)2I{|βj |<λn}.

lasso is convex and thus beneficial for numerical computation. It tends
to reduce all effects by similar amounts until the estimated effect is set
to zero. When the penalty increases, scad reduces smaller effects faster
than larger effects, which is also the case in hard.

Fan and Li (2001) showed that, under standard regularity conditions,
the scad estimator β̂(λn) has what is called the oracle property, which
means the estimator performs similarly to the estimator when the true
submodel is known in advance. Their results have been extended to a
broad class of models, including generalized linear models, Cox’s pro-
portional hazard models, frailty models, and semi-parametric modeling
in longitudinal data analysis.

When the number of observations n is less than the potential num-
ber of variables, p, consistent estimation of all regression coefficients is
impossible unless the model has what is called the sparsity property.
That is, either the number of non-zero regression coefficients, or the
sum of the absolute value of the regression coefficients remains finite
as the sample size increases. There has been a lot of research done
on sparse linear and generalized linear regression models. Meinshausen
and Bühlmann (2006), Huang, Ma and Zhang (2009), Meinshausen and
Yu (2009), Zhang and Huang (2008), and others studied properties of
lasso and adaptive lasso in high-dimensional sparse linear regression
models. Kim, Choi and Oh (2008), and Xie and Huang (2009) studied
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scad in high-dimensional linear and partial linear models. Van de Geer
(2008) investigated lasso in high dimensional generalized linear mod-
els. Fan and Lv (2010) provides a comprehensive review of the recent
developments in theory, methods, and implementations for the variable
selection problem in linear and generalized linear regression models in
high-dimensional feature spaces.

A complicating factor in some of the aforementioned applications is
the underlying heterogeneity of the population from which the data are
obtained. Such problems may be approached by finite mixture mod-
els. In general, finite mixture models are used to model data that arise
from a heterogeneous population. When a response variable Y with
a finite mixture distribution depends on certain covariates (features),
a finite mixture of regression (fmr) model is obtained. In particu-
lar, an fmr model segments the population into subpopulations and
models each subpopulation by a distinct linear or generalized linear re-
gression model. For instance, in market segmentation studies (Wedel
and Kamakura, 2000), fmr models allow researchers to investigate the
phenomenon that different features of a certain product may appeal to
different consumers. Identifying these subsets together with the num-
ber of segmentations (or submarkets) provides information on which
products are likely to be successful before being introduced to the mar-
ket. In medicine, different groups of patients with Parkinson’s disease
may show different trajectories of their disease progress depending on
their economical, social and family situations. In motif gene expres-
sion research, the set of regulating motifs varies from one subpopulation
to another. Such genetic phenomena can be well captured by an fmr
model. See McLachlan and Peel (2000), Skrondal and Rabe-Hesketh
(2004), and Frühwirth-Schnatter (2006) for more examples.

Variable selection in fmr models is a challenging task since the con-
tributions of the covariates toward the response variable may vary from
one component (or subpopultation) to another of these models. To en-
hance the predictability and to provide a more parsimonious model, it is
then logical to only include the most significant variables in the model in
a component-wise manner. This variable selection problem has received
much attention recently. All-subset selection methods such as aic, bic
and their modifications have been studied in the context of fmr models.
However, even for fmr models with moderate numbers of components
and covariates, all-subset selection methods are computationally inten-
sive. Despite the many recent advances on the variable selection problem
for linear and generalized linear models, the research on this problem
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in fmr models is still in its early stages of development. In this paper,
we provide an overview of the recent advances on the variable selection
problem in fmr models.

The rest of the paper is organized as follows. The definition of fmr
models and their identifiability are provided in Section 2. In Section
3, the variable selection problem in fmr models is outlined, followed
by a short review of the classical all-subset selection methods and their
associated drawbacks. New variable selection methods and their nu-
merical implementations are discussed in Sections 4 and 5. Statistical
properties of these methods are provided in Section 6. In Section 7,
we discuss model-based prediction in fmr models. Some simulation re-
sults on the performance of the new variable selection methods in fmr
models are provided in Section 8. Variable selection in fmr models in
high-dimensional feature spaces is then discussed in Section 9. Section
10 concerns a generalization of fmr models, called mixture-of-experts
(moe). Finally, in Section 11, we conclude with an emphasis on the is-
sues in variable selection problems of fmr and moe models that remain
to be addressed in future research.

2 Finite Mixture of Regression Models

2.1 Definition

Consider a response variable Y with possible values in Y ⊂ R, and a
p-dimensional vector x = (x1, x2, . . . , xp) ∈ X ⊂ R

p of covariates (fea-
tures) that may affect Y . Let F = {h(y; θ, φ); (θ, φ) ∈ Θ × (0,∞),Θ ⊂
R} be a parametric family of density functions with respect to a σ-
finite measure. In the ordinary regression context, a universal linear or
nonlinear regression model h(y; θ(x), φ), with a known real-valued link
function θ(x) = L(β0 + x�β) and a dispersion parameter φ, is used to
describe the relationship between Y and x across all members of a popu-
lation. However, in some applications the relationship between Y and x
may differ across different parts or members of a population. Finite mix-
ture of regression (fmr) models provide a natural way of modelling such
unobserved heterogeneous relationships. More formally, in a population
made up of K subpopulations, the conditional density (or probability)
function of Y given x is postulated to be

f(y;x,Ψ) =
K∑

k=1

πk h(y; θk(x), φk), (4)
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where θk(x) = L(β0k + x�βk) and πk, β0k,βk, φk, k = 1, 2, . . . ,K, such
that

∑K
k=1 πk = 1, are unknown parameters. One may use a common

dispersion parameter φ1 = φ2 = . . . = φK = φ across all the K compo-
nents of the model. The master vector of all parameters is given by

Ψ = (β01,β1, β02,β2, . . . , β0K ,βK , φ1, φ2, . . . , φK , π1, π2, . . . , πK)�

The h(y; θk(x), φk) are referred to as component density functions that
belong to a parametric family. The most popular fmr models are based
on well-known families such as normal, Poisson, and Binomial distribu-
tions. The 0 < πk < 1 are called the mixing probabilities and can be
viewed as the proportion or contribution of the k-th subpopulation in a
population that is made up of K subpopulations.

In some applications of fmr models, the number of components K
(or the order of the model) is known a priori, while in others it needs to
be estimated based on the data.

Example. For illustrative purposes, consider the fmr model

f(y;x) = 0.5 φ(y;x − 1, 1) + 0.5 φ(y; 2 + 2x, 1), (5)

where φ(y;μ, σ2) stands for the normal density function with mean μ and
variance σ2; that is, a mixture of two simple normal linear regression
models. Figure 4 shows a scatter plot of 600 random pairs (xi, Yi),
where given xi, each Yi is randomly generated from model (5). The xi’s
were randomly generated from the standard normal distribution N(0, 1).
From the scatter plot, there seems to be two groups of points. Ignoring
this fact, and fitting a simple linear regression model to the (xi, Yi) leads
to the poor least squares fit that is shown by the solid line in Figure 4.
The dashed-line and the dashed-dotted line are the least squares fits
to each of the two groups of the points. It can be seen that fitting an
fmr model provides a much better fit than the ordinary simple linear
regression fit.

2.2 Identifiability of an fmr Model

In using fmr models in data analysis, one needs be careful about a
potential inferential problem about identifiability or uniqueness of the
parameters of the model. In some families of mixture models it is pos-
sible to find two sets of parameter values that give the same density
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Figure 4: Scatter plot of a random sample from model (5). Solid-line:
simple linear least squares fit. Dashed- and dashed-dotted lines: group-
wise least squares fits.

function in (4), which is then called a non-identifiable model; McLach-
lan and Peel (2000). Identifiability is necessary for a valid statistical
inference. Formally, an fmr model is called identifiable if, for a given
design matrix (x1,x2, . . . ,xn),

f(y;xi,Ψ1) = f(y;xi,Ψ2) , i = 1, 2, . . . , n

for all values of y ∈ Y, implies that K1 = K2 and Ψ1 = Ψ2, up to a
permutation.

In general, identifiability of an fmr model depends on the family
f(y; θ, φ), the order K, and the design matrix (x1,x2, . . . ,xn). It is im-
portant to note that identifiability of a classical finite mixture model does
not necessarily indicate identifiability of the corresponding fmr model,
as falsely claimed in DeSarbo and Cron (1988). For example, the mix-
ture of normal distributions

∑K
k=1 πk φ(y;μk, σ2

k) is identifiable, but this
is not necessarily true when the mean parameters μk’s are functions of
x. This was first noticed by Hennig (2000) who studied identifiability of
mixture of normal linear regression models and pointed out that, unlike
ordinary regression models, a full rank design matrix does not guarantee
identifiability of an fmr model. He showed that for fixed designs, a suf-
ficient condition for identifiability is that the design points do not fall in
the union of any K linear subspaces of p-dimension. Loosely speaking,
an fmr model may not be identifiable if covariates show little variability;
for example, if the covariates are dummy variables or categorical with
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few levels. In the rest of this paper, we assume that the fmr models
under study are identifiable.

3 The Variable Selection Problem in fmr

Models

Let S = {1, 2, . . . , p} be the index set representing all the p covariates,
and let s be any subset of S. We denote x[s] and β[s] as the subvectors
of x and β, respectively, where βj = 0 if j /∈ s.

For any K subsets s1, s2, . . . , sK , an fmr submodel is given by

f(y;x,Ψ, s1, s2, . . . , sK) =
K∑

j=1

πk h(y; θk(x[sk]), φk) (6)

with θk(x[sk]) = L(β0k + x[sk]�βk[sk]) and βk[sk] is a subvector of βk.
Let (x1, y1), (x2, y2), . . . , (xn, yn) be a sample of observations gov-

erned by the fmr model (4) or its submodel (6). The (conditional)
log-likelihood function of the parameter Ψ is given by

ln(Ψ; s1, s2, . . . , sK) =
n∑

i=1

log f(yi;xi,Ψ, s1, s2, . . . , sK) (7)

The variable selection problem aims at selecting the subsets s1, s2, . . . ,
sK such that the resulting fmr submodel best balances the model com-
plexity and the goodness-of-fit to the data. In general, increasing the size
of each sk (i.e. adding more and more covariates to the model) will lead
to an increase in the value of the log-likelihood function ln(Ψ; s1, s2, . . . ,
sK). As in any model selection problem, the log-likelihood function is
thus not a good criterion for model selection purposes since the more
complex the model, the larger the value of ln(Ψ; s1, s2, . . . , sK). This
is obviously a complex combinatorial optimization problem which be-
comes computationally more extensive as K and p increase. Penaliza-
tion or regularization (Bickel and Li, 2006) methods are used for such
model selection problems. In these methods, as the name indicates, the
log-likelihood function, or any other measure of the goodness-of-fit, is
combined with a penalty function that controls the complexity of the
model, and is used to select a parsimonious model that also provides a
good fit to the data. What follows is a review of these methods.
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3.1 Classical Variable Selection Methods in fmr Models

The information theoretic approaches such aic and bic and their mod-
ifications have been used for model selection purposes in fmr models.
This has been particularly the case in marketing (Wedel and Kamakura,
2000) and biostatistical applications (Wang, Puterman, Cockburn and
Le, 1996) of fmr models. See also Skrondal and Rabe-Hesketh (2004)
and Frühwirth-Schnatter (2006) for more applications.

Given a random sample of observations (x1, y1), (x2, y2), . . . , (xn, yn)
from the fmr model (4), an information-based criterion is

gic(Ψ̂mle; s1, s2, . . . , sK)
= −2ln(Ψ̂mle; s1, s2, . . . , sK) + cn DF(s1, s2, . . . , sK),

where given the index sets s1, s2, . . . , sK , Ψ̂mle is the maximum likeli-
hood estimate of the parameters of the corresponding fmr submodel,
cn is called a penalty parameter, and DF(s1, s2, . . . , sK) represents the
complexity (degrees of freedom) of the fmr submodel which is equal
to the total number of parameters included in the submodel. The
gic(s1, s2, . . . , sK) selects the best submodel out of a pool of possible
fmr submodels. The most popular choices of the penalty parameter cn

are cn = 2 in aic and cn = log n in bic. However, despite the popular-
ity of these criteria, there does not exist a rigorous mathematical proof
about potential optimal statistical properties of these criteria in an fmr
model context. Most of the existing literature on properties of gic in
the context of the fmr model is mainly based on simulation studies.
Cross-validation, d-fold cross-validation and generalized cross validation
are also used for model selection problems.

For small or moderate values of p and also K, gic is computationally
manageable. Based on our experience in such cases, bic often selects the
best submodel. However, in an application with, say p = 20 potential
covariates, for an fmr model with K = 3, there are about 220×220×220

possible submodels that need to be examined by the gic in order to
select the best submodel. This is a computationally complex combina-
torial optimization problem. Furthermore, for higher order problems it
may not even be possible to perform the computations. There are two
main challenges. First, as previously mentioned, it is computationally
impractical to examine all possible fmr submodels. Second, as pointed
out by Chen and Chen (2008), and Khalili, Chen and Lin (2011), even
if the computation is feasible, the classical all-subset selection methods
are too liberal. They select a model with more spurious features than
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warranted. This motivates the use of the new regularization techniques
such as lasso and scad for such complex problems.

4 New Variable Selection Approaches in fmr

Models

Consider the fmr model (4). Let (x1, Y1), (x2, Y2), . . . , (xn, Yn) be a
random sample of observations from the model with given order K.
The (conditional) log-likelihood function of Ψ based on the full fmr
model containing all the covariates is

ln(Ψ) =
n∑

i=1

log
{ K∑

k=1

πk h(yi; θk(xi), φk)
}

.

Khalili and Chen (2007) proposed to estimate Ψ by maximizing the
penalized log-likelihood function

pln(Ψ) = ln(Ψ) −
K∑

k=1

πk

p∑
j=1

pn(βkj ;λnk), (8)

where pn(βkj ;λnk) could be one of the penalty functions discussed in the
introduction, with the component-wise tuning parameters λnk. Let Ψ̂n

be the maximizer of pln(Ψ). The hope is that by the proper choice of the
penalty function pn(βkj ;λnk), if some of the regression coefficients βkj

are zero, then their corresponding estimators β̂kj are also zero. This is
the sparsity property. On the other hand, we would like the estimators
of the true non-zero regression coefficients to perform similarly to their
regular maximum likelihood estimators when the true model is known in
advance. Thus, unlike the all-subset selection methods, the new method
combines the variable selection and estimation into one step and reduces
the computational burden substantially. Statistical properties of the
estimator Ψ̂n are further discussed later on in this paper.

It is worth noting that the amount of penalty on each regression co-
efficient βkj in the k-th component of the mixture model is proportional
to the mixing probability πk, which is a common practice in relating the
amount of penalty to the sample size. In the mixture model setting,
the virtual sample size from the k-th component of the model is propor-
tional to πk. This enhances the power of the method, especially in finite
sample situations.
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5 Numerical Computations and Tuning

Parameter Selection

5.1 Maximization Algorithm

It is challenging to maximize the penalized log-likelihood function pln(Ψ)
in (8). Clearly, the problem does not have a closed-form solution, and
we must resort to numerical methods. The expectation-maximization
(em) algorithm of Dempster, Laird and Rubin (1977), combined with
the Newton-Raphson algorithm, is very popular and convenient for pa-
rameter estimation in mixture models. However, in the current set-
ting, the em-Newton-Raphson cannot be used directly due to the non-
differentiability of the penalty function pn(βkj ;λnk) at βkj = 0, a prop-
erty that is required for the variable selection property of the method.
There have been a number of suggestions to deal with this issue. Fan
and Li (2001) suggested the following locally quadratic approximation
(lqa) to the penalty function:

pn(β;λ) ≈ p∗n(β;λ) = pn(β0;λ)+
p′n(β0;λ)

2β0
(β2−β2

0) , for β ≈ β0. (9)

Hunter and Li (2005) studied convergence properties of the lqa approx-
imation. Zou and Li (2008) used a locally linear approximation (lla) of
the penalty, which results in a penalty function similar to the adaptive
lasso. In the current review, we focus on the lqa approximation.

Applying the lqa to the penalty function in (8) results in a ridge-
type penalty function, which in turn allows the use of the em-Newton-
Raphson algorithm. Note that the coefficient p′n(β0;λ)/2β0 in (9) distin-
guishes the lqa from the regular ridge penalty. The parameter Ψ is then
estimated by maximizing the (approximated) penalized log-likelihood
function

pl∗n(Ψ) = ln(Ψ) −
K∑

k=1

πk

p∑
j=1

p∗n(βkj;λnk)

The em algorithm is used to approximate the maximizer of pl∗n(Ψ).
The algorithm uses the complete data (xi,zi, yi), i = 1, 2, . . . , n, where
zi = (zi1, zi2, . . . , ziK) is the vector of missing binary labels zik which
shows the component membership of the ith observation in the mixture
model and

∑K
k=1 zik = 1 for each i. The complete log-likelihood function

constructed based on the complete data is then

lcn(Ψ) =
K∑

k=1

n∑
i=1

zik

[
log πk + log h(yi; θk(xi), φk)

]
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In the ordinary em algorithm, the function lcn(Ψ) is maximized, which
also leads to the maximization of the main objective function ln(Ψ).
This is the well-known property of the em; Wu (1983). In the current
setting, the em works with the penalized complete log-likelihood function

plc∗n (Ψ) = lcn(Ψ) −
K∑

k=1

πk

p∑
j=1

p∗n(βkj ;λnk).

Often, the penalized log-likelihood function also increases after each em
iteration (Green, 1990) and the algorithm converges as quickly as the
algorithm applied to the unpenalized log-likelihood. The algorithm max-
imizes plc∗n (Ψ) iteratively in two steps:
E-Step: Let Ψ(m) be the current estimate of the parameters. In this
step, the algorithm computes the conditional expectation of plc∗n (Ψ)
with respect to zik, given the observed data (xi, yi) and Ψ(m). The
expectation is

Q(Ψ;Ψ(m)) =
K∑

k=1

n∑
i=1

ω
(m)
ik

[
log πk + log h(yi; θk(xi), φk)

]

−
K∑

k=1

πk

p∑
j=1

p∗n(βkj;λnk)

where

ω
(m)
ik = E(zik|data,Ψm) =

π
(m)
k h(yi; θ

(m)
k (xi), φ

(m)
k )

f(yi;xi,Ψ(m))
. (10)

This step in fact comes down to the computation of the weights ω
(m)
ik .

M-Step: Given the weights, the function Q(Ψ;Ψ(m)) is maximized with
respect to the parameters (βk, φk, πk) of the model. One may need to
use, for example, the Newton-Raphson algorithm to perform the maxi-
mization. The maximization of Q(Ψ;Ψ(m)) with respect to the mixing
probabilities πk is particularly difficult so to avoid computational issues,
we suggest the use of the updated estimates

π
(m+1)
k =

1
n

n∑
i=1

ω
(m)
ik , k = 1, 2, . . . ,K,

which are the maximizers of the leading term in Q(Ψ;Ψ(m)). Simulation
studies in Khalili and Chen (2007) and Khalili, Chen and Lin (2011) have
shown that this suggestion works well in applications.
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The updated estimates β
(m+1)
kj of the regression coefficients βkj are

obtained by solving the equations

n∑
i=1

ω
(m)
ik

∂ log h(yi; θk(xi), φk)
∂βkj

− πk × ∂p∗n(βkj ;λnk)
∂βkj

= 0,

for j = 1, 2, . . . , p and k = 1, 2, . . . ,K.
The dispersion parameters φk are updated by solving the equations

n∑
i=1

ω
(m)
ik

∂ log h(yi; θk(xi), φk)
∂φk

= 0 , k = 1, 2, . . . ,K.

Starting from an initial value Ψ(0), the algorithm iterates between
the E- and M-steps until, for example, ‖Ψ(m) −Ψ(m+1)‖ ≤ δ, for a pre-
specified value δ. When the em converges, a coefficient βkj is declared
zero if its corresponding estimate |β̂kj | is smaller than a threshold value,
taken as 10−5 in our simulations. To avoid numerical instability of the
algorithm due to very small values of some of the β̂kj ’s in the denomi-
nator of the approximation (9), as suggested by Hunter and Li (2005),
we replace β0 by β0 + ε for a given small value ε > 0.

It is well known that the success of an EM-type algorithm depends
heavily on suitable starting values, especially when the likelihood sur-
face is of multimodality, as is the case in our setting. To increase the
chance of finding the global maximum or at least a good local one, it
is often recommended that multiple (random) starting points be used
(McLachlan and Peel, 2000). More computational details are provided
in Khalili and Chen (2007), and Khalili, Chen and Lin (2011).

5.2 Tuning Parameter Selection

The choice of the tuning parameters λnk is important in the penalized
likelihood approach. Large values of the λnk tend to select a simpler
model whose parameter estimates have smaller variances, whereas small
values of the tuning parameters lead to more complex models which
means smaller modeling biases. The trade-off between the biases and
variances yields an optimal choice of λnk.

In general, the most popular criteria used for tuning parameter selec-
tion in penalized likelihood approaches are d-fold cross validation (d-cv)
and generalized cross validation (gcv). See Tibshirani (1996) and Fan
and Li (2001). Khalili and Chen (2007) proposed deviance-based gcv
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criteria for component-wise selection of the tuning parameters in fmr
models as follows.

Let Ψ̃n be the ordinary mle of the parameter Ψ which maximizes
ln(Ψ) under the full model. Under the standard regularity conditions,
we have ‖Ψ̃n − Ψ0‖ = Op(n−1/2). Let ω̃ik be the estimated posterior
probabilities in (10) evaluated at the mle Ψ̃n, and nk =

∑n
i=1 ω̃ik be

the expected number of observations generated from the kth component
of the fmr model, which remain fixed throughout the tuning parameter
selection process. For a given value of λnk, let (β̂k, φ̂k) be the maximizer
of the Q-function in the M-step of the em algorithm. We definte the
component-wise likelihood-based deviance statistics as

Dk(β̂k, φ̂k) =
n∑

i=1

ω̃ik{log h(yi; yi, φ̂k) − log h(yi; η̂k(xi), φ̂k)}.

and the component-wise gcv

gcvk(λnk) =
Dk(β̂k, φ̂k)

nk(1 − DFk/nk)2
, k = 1, 2, . . . ,K,

where DFk is the number of nonzero elements of the vector β̂k. The
tuning parameters λnk, k = 1, 2, . . . ,K, are chosen one at a time by
minimizing gcvk(λnk) over a plausible range of λnk values.

A recent study by Wang, Li and Tsai (2007) for multiple linear re-
gression models has shown that the model corresponding to the tuning
parameter selected by gcv for the scad penalty may contain some unim-
portant variables among the set of significant covariates. They suggested
the use of bic for tuning parameter selection, while they also showed that
the model selected by using bic achieves the model selection consistency.
In Khalili and Lin (2011), we proposed a component-wise bic for selec-
tion of the tuning parameters λnk. The component-wise bic for the kth
component of the fmr model is defined as

bick(λnk) = 2Dk(β̂k, φ̂k) + log nk × DFk. (11)

The tuning parameters λnk, k = 1, 2, . . . ,K, are chosen one at a time by
minimizing bick(λnk) over a plausible range of λnk values. If the factor
log nk in (11) is replaced by 2, then the aic-type criterion

aick(λnk) = 2Dk(β̂k, φ̂k) + 2 × DFk

is obtained.
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At the moment, theoretical properties of the λnk chosen by the above
criteria is unknown, but the simulation studies show that the proposed
criteria performs reasonably well in selecting appropriate values of the
tuning parameters, though bick outperforms the other two criteria in
selecting the correct model. A comprehensive study on statistical prop-
erties of aic, gcv and bic in a linear regression context is provided in
Shao (1997). The recent work by Zhang, Li and Tsai (2010) introduces
a generalized information criterion gic for tuning parameter selection in
new variable selection methods for generalized linear models.

6 Statistical Properties of the Penalized

Likelihood Estimators in fmr Models

There is a considerable amount of research done over the last decade
on the asymptotic properties of the penalized least squares estimators
β̂n resulting from solving the minimization problem in (3) for different
choices of the penalty pn(βj ;λn), such as lasso and scad. See Fan and
Lv (2010) and the references within. The two important properties of
β̂n that are studied most often are: (1)

√
n-consistency and asymptotic

normality of the estimators β̂j of the true nonzero regression coefficients
βj 
= 0; (2) sparsity or consistency in the variable selection property of
β̂n, implying that coefficients whose true values are zero in the model
(i.e. βj = 0) have corresponding estimators that are also zero (i.e.
β̂j = 0) with probability tending to one as n → ∞. The estimator β̂n

with properties (1)-(2) is referred to as the oracle estimator as discussed
in Fan and Li (2001).

Khalili and Chen (2007) studied conditions under which the max-
imizer Ψ̂n of the penalized likelihood function pln(Ψ) in (8) has the
oracle property as discussed below.

Consider the partitioning βk = (βk1,βk2) of βk, where βk2 = 0 is
the vector of zero regression coefficients in the k-th component of the
mixture model. The master vector of parameters Ψ = (Ψ1,Ψ2) is also
partitioned such that Ψ2 contains all the zero vectors βk2 = 0 across
all K components of the mixture model. Let Ψ0 be the true vector of
parameters in the true fmr model underlying the data. Under standard
regularity conditions as well as certain conditions on the penalty func-
tion, Khalili and Chen (2007) showed that as n → ∞, the estimator Ψ̂n

has the following two properties:

(a) Sparsity : P (β̂k2 = 0) → 1, for k = 1, 2, . . . ,K.
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(b) Asymptotic normality :

√
n

{[
I(Ψ01) − p′′(Ψ01)

n

]
(Ψ̂n1 − Ψ01) +

p′(Ψ01)
n

}
→d N(0, I(Ψ01))

where p′(·) and p′′(·) are the first and second derivatives of the
penalty function pn(Ψ) =

∑K
k=1 πk

∑p
j=1 pn(βkj;λnk) with respect

to βkj ’s, and I(Ψ01) is the Fisher information matrix under the
true model with all zero effects removed.

By proper choices of the penalty function, the derivatives of the
penalty in Part (b) will be negligible asymptotically, and we have that

√
n(Ψ̂n1 − Ψ01) →d N(0, I−1(Ψ01)).

This is similar to the ordinary mle of the parameter Ψ01 when we know
in advance which βkj is zero in the model.

It is important to mention that in the above discussion it is assumed
that the true order K of the model is known. In applications, one may
use the bic or the scientific background to select K. Keribin (2000)
showed that under certain regularity conditions, the number of compo-
nents of a finite mixture model can be estimated consistently by using
penalized-likelihood approaches such as bic. However, blind use of a
consistent estimator of K, regardless of the sample size n, should be
discouraged. More general discussions and references related to the or-
der estimation of a mixture model can be found in McLachlan and Peel
(2000) and Chen and Khalili (2008).

Simulation studies in Khalili and Chen (2007) showed that when the
number of potential covariates p is small and the mixture model is bal-
anced, bic is highly reliable for choosing the correct order K of the fmr
model. The order estimation is performed by fitting full fmr models
(which include all covariates) of different orders K = 1, 2, . . . , to the
data and then selecting K based on bic. However, when the number of
covariates p is large, fitting full fmr models is not an easy task. Gupta
and Ibrahim (2007) proposed a Bayesian approach for this problem. At
the moment, there is no satisfactory non-Bayesian solution available to
the problem of simultaneous order and variable selection in fmr mod-
els, especially when p is large. In these situations, one may fit fmr
models with different orders K = 1, 2, . . ., through the penalized likeli-
hood approach outlined in Section 4, and using the extended Bayesian
information criterion (ebic) of Chen and Chen (2008) to select the final
model. This is a problem requiring future investigation.
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7 Model-Based Prediction

The ultimate goal of variable selection in most of the regression prob-
lems is to identify a submodel with a good predictive value. In linear
regression models, after variable selection, for a given value x0 of the
vector of selected covariates, the predicted response is

Ŷ0 = x�
0 β̂;

i.e. the mean or expected value of the response variable, where β̂ is the
vector of estimated coefficients of the selected covariates based on the
current data. However, in fmr models the expected value of the response
variable is not appropriate for prediction purposes since it ignores any
information provided by the shape of the fmr distribution. For instance,
if the density function of the fmr model is multimodal then clearly
the expectation will not be a good representation of the distribution.
A more reasonable prediction approach in fmr models is the so-called
predictive distribution, which is also very common in a nonlinear time
series context; see Wong and Li (2000). After selecting the final fmr
model through the methodology outlined in Section 4, given a value x0

of the vector of selected covariates, the predictive density function of the
future observation Y0 is defined as

f(y;x0, Ψ̂n) =
K∑

k=1

π̂k h(y; θ̂k(x0), φ̂k),

where Ψ̂n is the maximum penalized likelihood estimator of the param-
eters based on the current data (xi,yi), i = 1, 2, . . . , n. In Khalili and
Chen (2007) the predictive power of the selected fmr models by scad,
lasso and bic are compared through the predictive distribution by ex-
tensive simulation studies. It turns out that the new variable selection
methods, such as lasso and scad, outperform the classical all-subset
selection methods, such as bic, when it comes to prediction.

8 Simulation Study

In this section we show the performance of the new penalized likelihood
approach in fmr models with some simulations. The component-wise
bick in (11) is used for tuning parameter selection. We also tried the
gcvk and aick for tuning parameter selection and noticed that the bick
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performs somewhat better and so we only report the simulation results
based on the bick.

The vector x = (x1, x2, . . . , xp)� is generated from a multivariate
normal distribution with mean zero and the pairwise correlation be-
tween the covariates is corr(xi, xj) = ρ|i−j|, for i 
= j and ρ = 0.5, 0.75.
For a given sample size n, the covariate vectors x1,x2, . . . ,xn are gen-
erated and form a design matrix which will remain unchanged in 1000
replications.

For a given design matrix, the response variable Y is generated from
the two-component normal fmr model

π φ(y; 1 + x�β1, σ
2) + (1 − π)φ(y; 2 + x�β2, σ

2)

with the parameter values π = .15, .30, .50, σ = 1, and

β�
1 = (1.5, 2.5, 0, 0, 1.7, 0, 0, 0), β�

2 = (−1.8, 0, 2.0,−1.5, 0, 0, 0, 0)� .

In this case, if one wants to use the all-subset selection methods, such as
bic, for variable selection, there are 216 = 65536 potential fmr submod-
els to be examined in order to select the best submodel, which obviously
involves a lot of computations. Thus, the new methods such as lasso
and scad are particularly advantageous in such situations. We call the
penalty function in (8) constructed from lasso and scad the mixlasso
and mixscad penalties.

The simulation results are reported as the proportions of: correctly
estimated zero coefficients (specificity ; S1), and correctly estimated non-
zero coefficients (sensitivity ; S2). Ideally, the specificity and sensitivity
values should be 1. The results in Table 1 are based on 1000 data sets
with sample sizes n = 100, 150 generated from the normal fmr model.

From Table 1, we can see that overall the new method performs rea-
sonably well. mixlasso selects less-sparse models compared to mixs-
cad. Variable selection becomes more difficult as the correlation be-
tween the xj’s increases. As the sample size increases, the method im-
proves, as expected.

Extensive simulation studies can be found in the cited papers by
Khalili et al.

9 Variable Selection in High-Dimensional
Feature Spaces

Modern scientific research in biology, engineering, medicine, economics,
finance and machine learning often require the analysis of high dimen-
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Table 1: Specificity (S1) and Sensitivity (S2) summaries. (σ = 1).

Setting Mixture π = .15 π = .30 π = .5

Method n p ρ Components S1 S2 S1 S2 S1 S2

mixscad 100 8 .50 Com1 .921 .922 .975 .985 .993 .998
.75 .811 .860 .898 .954 .948 .972
.50 Com2 .989 .977 .999 .996 .993 .981
.75 .951 .910 .981 .960 .967 .941

mixlasso .50 Com1 .808 .880 .920 .990 .967 1.00
.75 .705 .835 .799 .984 .880 .999
.50 Com2 .986 .972 .997 .990 .984 .947
.75 .969 .970 .981 .972 .954 .903

mixscad 150 8 .50 Com1 .960 .947 .991 .990 .999 .999
.75 .890 .943 .954 .982 .977 .987
.50 Com2 .999 .997 1.00 .996 .999 .980
.75 .994 .964 .996 .971 .985 .964

mixlasso .50 Com1 .823 .902 .924 .994 .979 1.00
.75 .766 .970 .886 .999 .944 1.00
.50 Com2 .993 .978 .999 .945 .995 .835
.75 .993 .996 .986 .994 .961 .958

sional data. For instance, geneticists nowadays routinely genotype half
of a million single nucleotide polymorphisms (snps) over the whole
genome. The goal is to establish which snps are influential in the genetic
diversity of a quantitative trait or a disease status. From a statistical
modeling point of view, simultaneous variable selection and parameter
estimation play a central role in such investigations.

A major advantage of the new regularization techniques, such as
lasso and scad, is their applicability to high-dimensional problems
when there is a large number of features x1, x2, . . . , xp in the data. The
number of features p is sometimes comparable or even larger than the
sample size n; we refer to these problems as large-p-small-n problems,
which have been extensively studied by many researchers in the recent
literature. See for example Meinshausen and Bühlmann (2006), Kim,
Choi and Oh (2008), and Wasserman and Roeder (2008), among many
other papers cited in Fan and Lv (2010).

However, for the variable selection problem in ultra-high dimensional
situations, when p >> n, even the new regularization methods are not
computationally efficient. Fan and Lv (2008) suggested the use of a so
called sure screening procedure to first reduce the number of potential
features from a large or huge scale to a relatively large scale by a fast,
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reliable, and efficient method, so that well-developed variable selection
techniques, such as lasso and scad, can be applied to the reduced
feature space. This provides a powerful tool for variable selection in
ultra-high dimensional feature space. In multiple linear regression mod-
els, the screening is based on the magnitude of the marginal correlation
of each covariate xj with the response variable Y , and in generalized
linear models the screening is based on the marginal likelihood function
as discussed in Fan and Song (2010). See also Fan, Samworth and Wu
(2009). Under certain regularity conditions, it is shown that the vari-
able screening procedure has a sure screening property, meaning that it
retains all the important variables with probability tending to one. The
method is very effective in ultra-high dimensional problems.

9.1 High Dimensionality in fmr Models

Some of the applications of fmr models involve high dimensional data
analysis. For example, in functional genomics, hundreds or even thou-
sands of candidate motifs may be examined to find a small subset that
highly contributes to gene expression variations. The set of regulating
motifs may vary from one group of genes (or subpopulation) to another.
Such genetic phenomena can be well captured by an fmr model. Vari-
able selection is the key statistical issue in these kinds of applications.
The problem compared to linear or generalized linear models becomes
even more complex since out of possibly hundreds or thousands of po-
tential covariates, different (small) subsets of the covariates may be sig-
nificant between different regression components of an fmr model.

Almost all the existing literature on variable selection problems for
high dimensional data is in the context of linear and generalized lin-
ear models (Van de Geer, 2008) and mixed effect models (Schelldorfer,
Bühlmann and Van de Geer, 2011). The two recent papers by Städler,
Bühlmann and Van de Geer (2010) and Khalili and Lin (2011) consider
feature selection in fmr models where the dimension p is considered as
a function of the sample size n, say pn, and allowed to increase with n
in a polynomial order.

The variable selection problem under fmr models poses serious sta-
tistical and computational challenges when p is comparable to the sample
size n or when n < p in the more extreme situation. The modified em
algorithm of Khalili and Chen (2007) in high dimensions is too compu-
tationally intensive and should be avoided. In fact, in an application
when the number of potential features is comparable to or larger than
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the sample size, it is not even clear how to fit an fmr model by direct
use of their method. The key issues are numerical instability and the
uncertainty of being able to find the global maximizer (or even just a
reasonable local one) as the penalized log-likelihood surface is likely to
be extremely flat given the huge number of predictors. Even if hundreds
or thousands of initial starting values are tried, the high dimensionality
makes it difficult to find a proper maximizer. It is a well-known fact that
even in a relatively low dimensional parameter space, maximization of
a likelihood function of a mixture model is challenging (McLachlan and
Peel, 2000).

To overcome computational difficulties and large false discovery rates
caused by the large dimensionality, Khalili, Chen and Lin (2011) pro-
posed a 2-stage procedure for variable selection in finite mixture of sparse
normal linear (fmsl) models. First, to deal with the curse of dimension-
ality, a likelihood-based boosting (Bühlmann and Yu, 2003) is designed
to effectively reduce the number of candidate features. This is the key
thrust of the new method. Such a screening method, which selects vari-
ables without simultaneously fitting the final model, is known as a fil-
tering method in machine learning applications. The greatly reduced
set of features is then subjected to a sparsity-inducing procedure via
the penalized likelihood approach outlined in Section 4. This second
stage procedure is a so-called wrapper method in machine learning ter-
minology. The screening algorithm is briefly outlined in the following
section.

9.2 Feature Screening in fmsl Models in Large p-small-n
Situations

The screening is based on the idea of boosting in ordinary regression,
where it starts with a weak learner (or fit) and improves the fit in
a sequential manner by considering the addition of one variable at a
time, albeit with a mixture of regressions rather than a single regres-
sion. This “screening stage” will identify a set of variables that is po-
tentially important in the final model. The focus of the following algo-
rithm is the fmr model (4) with the normal component density functions
φ(y;β0k +x�βk, σ

2
k), componentwise mean β0k +x�βk and variance σ2

k.
It is a well-known fact that the likelihood function of a mixture

of normal distributions with unequal component variances σ2
k is un-

bounded. To avoid the unboundedness of the likelihood, instead of
working with the log-likelihood function in (7), we work with the ad-
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justed log-likelihood function

l̃n(Ψ; s1, s2, . . . , sK) = ln(Ψ; s1, s2, . . . , sK) −
K∑

k=1

an(σk), (12)

where an(·) is a non-negative penalty function. Chen et al. (2008) sug-
gested

an(σk) = c

{
S2

n

σ2
k

− log(
S2

n

σ2
k

)
}

,

for some positive value c > 0, and S2
n is the sample variance of yi’s. It is

seen that since an(σk) → ∞ as σ2
k → 0, the maximizer of l̃n(Ψ; s1, s2, . . . ,

sK) does not have estimates of σ2
k close to zero.

A summary of the screening procedure developed in Khalili, Chen
and Lin (2011) is as follows:

1. Initialization. Fit the submodel (6) with the active sets s = s1 =
· · · = sK being empty. That is, we the find the adjusted maximum
likelihood estimate (amle) of Ψ under the classical normal mixture
model

∑K
k=1 πk φ(y;β0k, σ2

k), by maximizing the adjusted log-likelihood

l̃n(·) in (12). We denote the empty active set by s(0). Let Ψ̂
(0)

be the
vector of amles of πk, β0k, σ2

k, for k = 1, . . . ,K.
Let μ̂

(0)
k = (β̂0k, β̂0k, . . . , β̂0k)�, for k = 1, . . . ,K, be an n× 1 vector.

In what follows μ̂
(m)
k,i refers to the ith element of the vector μ̂

(m)
k in the

mth iteration.

2. Boosting. Given the active set s(m) obtained from the last iteration
or from the initialization, together with the corresponding Ψ̂

(m)
and

μ̂
(m)
k , the fit is updated as follows. For each j = 1, 2, . . . , p, we fit

single-variable normal mixture regression models through the adjusted
log-likelihood function

l̃n(π, β0, β, σ2; j) =
n∑

i=1

log

{
K∑

k=1

πk φ(yi;μk,i[j], σ2
k)

}
−

K∑
k=1

an(σk),

with
μk,i[j] = μ̂

(m)
k,i + β0k + βkxi[j],

and π, β0, β, σ2 are vectors of length K.
Let ln(j) = sup{l̃n(π, β0, β, σ2; j) : α, β0, β, σ2}. Suppose j0 satisfies

ln(j0) = maxj ln(j). The active set is then updated by s(m+1) = s(m) ∪
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{j0}, and we boost the fit by

μ̂
(m+1)
k,i = μ̂

(m)
k,i + ν (β̂0k + β̂k xi[j0]), k = 1, . . . ,K, (13)

where β̂0k and β̂k are the adjusted maximum likelihood estimates corre-
sponding to ln(j0), and 0 < ν ≤ 1 is a pre-specified stepsize (or shrink-
age) parameter, as discussed further below.

3. Iteration: The boosting procedure is repeated with a pre-determined
number of iterations M , or until, for example, the condition: |s(M)| <
n/K is violated, where |s(M)| denotes the size of the active set and K
is the order of the fmsl model. The iteration stops when the afore-
mentioned condition is violated or when the maximum number of pre-
determined iterations is reached, whichever happens first.

The step size parameter ν in (13) controls the contribution of a
selected variable in every update of the fit so that other potentially
important variables are also given a chance to be selected in subsequent
iterations. As mentioned in the literature (Bühlmann, 2006), the choice
of ν is less crucial as long as its value is small, for example ν = 0.1.

The outcome of the above algorithm is the final active set s(M). It
contains at most M or n/K variables and it is the same for all com-
ponents of the fmsl model. This facilitates the optimization problem
involved in the second stage, which fits a model by maximizing the pe-
nalized likelihood (8) and using the variables in s(M) in order to select
the final sparse fmr model.

Extensive simulation studies have shown that the above algorithm
is very effective in greatly screening out a large number of potential
features in the data while also retaining the important features in the
active set s(M). This is a property that is referred to as sure screening
in Fan and Lv (2008). Our hope is to be able to investigate conditions
under which the algorithm has the sure screening property.

10 Future Directions and Extensions

A generalization of the fmr models are called mixture-of-experts (moe)
models in which both the mixing probabilities and the mixture com-
ponents are functions of the covariates x1, x2, . . . , xp. The moe models
were first introduced by Jacob et al. (1991) in machine learning ap-
plications. They have often been applied in a problem decomposition
context, where a complex problem is divided into a set of simpler sub-
problems, based on a divide-and-conquer principle, and then one or more
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specialized problem-solving tools or experts are assigned to each of the
subproblems. Statistically, moe models provide a rich class of regres-
sion models. They have have been extensively used in statistics, health
sciences, bioinformatics, and many other disciplines; see Khalili (2010)
and references within.

In a moe model with K components, the conditional density function
of Y given x = (x1, x2, . . . , xp)� is given by

f(y;x,Ψ) =
K∑

k=1

πk(x;α) h(y; θk(x), φk), (14)

where θk(x) are the same as in the fmr model (4), and the mixing
probabilities πk(x;α) are modeled in the multinomial logistic regression
fashion

log
{

πk(x;α)
πK(x;α)

}
= α0k + x�αk, k = 1, 2, . . . ,K − 1. (15)

Let αk = (αk1, αk2, . . . , αkp), then the vector of regression coefficients in
the mixing probabilities is α = (α01,α1, α02,α2, . . . , α0,K−1,αK−1).

In moe literature, the component density functions h(y; θk(x), φk)
are called experts and the mixing probabilities πk(x;α) are called the
gating network.

Figure 5 shows the architecture of a moe model with K = 4 experts.
In this model, based on the input variables x, the gating network assigns
an incoming task with probability πk(x) to experts k, for k = 1, 2, 3, 4.
The output of each expert is represented by μk(x), which, in this exam-
ple, is the conditional expectation E(Y |x, k). The overall output of the
moe model is then given by E(Y |x) = μ(x) =

∑
k πk(x)μk(x).

Due to (15), the moe models provide a great deal of flexibility from
a statistical modeling point of view. Jordan and Jacobs (1994), Peng,
Jacobs and Tanner (1996), and Jiang and Tanner (1999) studied statisti-
cal inference and numerical computations in (hierarchical) moe models.
Carvalho and Tanner (2005), and Ge and Jiang (2006) studied these
models in time series and classification problems.

Like any regression model, it is also natural to consider the feature
selection problem in moe models. The problem in moe models becomes
even more complex when subsets of significant features vary between the
experts and also the gating network. Evidently, including all the features
produces an undesirably large and complex moe model. In applications
such as market segmentation (Wedel and Kamakura, 2000), usually sub-
sets of features are included in the mixture components. Siegmund et al.

www.SID.ir



Arc
hive

 of
 S

ID

228 Khalili

Figure 5: A moe model with K = 4 experts.

(2006) used a moe model to estimate the association between exposure
and latent disease subtype measured by DNA methylation profiles; only
the mixing probabilities were modeled as a function of the p potential
exposures. Similarly, in a climatological application, Jeffries and Pfeiffer
(2001) used such a model in estimating the distribution of rain rate. In
machine learning applications (Jacobs, Peng and Tanner, 1997), different
subsets of the features are included in both the mixing probabilities and
the mixture components. However, a unified data-dependent approach
that can automatically identify significant features in different parts of
a moe architecture is still lacking. Due to the intrinsic computational
complexity, few statistical papers have addressed this problem. Jacobs,
Peng and Tanner (1997) and the recent paper by Chung and Dunson
(2009) proposed Bayesian approaches for model selection in moe mod-
els. The Akaike information criterion (Akaike, 1973) and the Bayes
information criterion (Schwarz, 1978) become computationally intensive
for feature selection in moe models even for moderate numbers of mix-
ture components and features. It is also difficult to study the statistical
properties of the final selected moe model.

The recent work of Khalili (2010) studied the feature selection prob-
lem in moe models using an extension of the penalized likelihood ap-
proach outlined in Section 4. The performance of the method is studied
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both theoretically and by simulations, and it is shown that the method
is very promising in a moe context. It is worth mentioning that the
proposed methodology is also applicable for feature selection problems
in moe models for high dimensional data. However, the study of the
statistical properties of the method in high-dimensional situations re-
quires more advanced theoretical developments which is the subject of
future research.

11 Concluding Remarks

The current state of the research on variable selection problems in mix-
ture of regression (fmr) and mixture-of-experts (moe) models indicates
that the story is far from complete, particularly for the high-dimensional
problems. Statistical techniques for high-dimensional data analysis are
developed to address the challenges emerging in many scientific disci-
plines. Due to the complex nature of the new data, a single linear or
generalized linear model may not be appropriate for modelling the data
under study. The usage of fmr and moe models thus continues to grow
due to their flexibility in modeling, and new innovative techniques are
needed for fitting these models to the data. Issues which remain to be
addressed include the characterization of optimality properties, the se-
lection of data-driven penalty functions and parameters, the confidence
in selected models and estimated parameters, inference after model se-
lection, the incorporation of information on covariates, and development
of robust and user-friendly algorithms and software.
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