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Abstract. We consider n observations from the GARCH-type model:
S = σ2Z, where σ2 and Z are independent random variables. We de-
velop a new wavelet linear estimator of the unknown density of σ2 under
four different dependence structures: the strong mixing case, the β-
mixing case, the pairwise positive quadrant case and the ρ-mixing case.
Its asymptotic mean integrated squared error properties are explored.
In each case, we prove that it attains a fast rate of convergence.
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1 Introduction

The following GARCH-type model is considered: let (Si)i∈Z be a strictly
stationary random sequence such that

Si = σ2
iZi, i ∈ Z, (1)

(Zi)i∈Z is a sequence of identically distributed random variables with
common known density fZ : [0, 1] → (0,∞) and (σ2

i )i∈Z is a sequence of
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2 Chesneau and Doosti

identically distributed random variables with common unknown density
fσ2 : [0, 1] → (0,∞). For any i ∈ Z, Zi and σ2

i are independent. We aim
to estimate fσ2 when only n random variables S1, . . . , Sn are observed
under various dependent structures. Financial applications related to
(1) can be found in [5].

In most of the papers, (1) is re-written via a logarithmic transforma-
tion: lnSi = lnσ2

i +lnZi, i ∈ Z. Since we have a sum of two independent
random variables, the density of lnσ2

1 becomes a convolution product.
The classical scheme consists in deconvolving and estimating this density
by using Fourier transform and nonparametric methods. For dependent
sequences, see e.g. [21], [10] and [31]. However, the estimation of fσ2

is not “direct” in the following sense: if we denote flnσ2 the density of
lnσ2

1 , we have fσ2(x) = (1/x)fln σ2(lnx), x ∈ (0, 1) and, for any esti-
mator f̂ of flnσ2 , the associated mean integrated squared error (MISE)
is

E

(∫ 0

−∞

(
f̂(x) − flnσ2(x)

)2
dx

)
= E

(∫ 1

0

(
1
x
f̂(lnx) − fσ2(x)

)2

xdx

)
.

Thus we obtain the MISE for (1/x)f̂ (lnx) of fσ2 but with respect to the
measure xdx, not dx. For this reason, the global estimation of fσ2 on
[0, 1] from lnS1, . . . , lnSn via the standard MISE (with respect to dx) is
not obvious. This point is also underlined in [10, 3.5]. Considering the
exponential strong mixing case, the “direct” estimation of fσ2 has been
recently investigated by [8].

In this paper, we complete this last study by estimating “directly”
fσ2 for other realistic and standard dependence conditions as the poly-
nomial strong mixing dependence (introduced by [26]), the β-mixing
dependence (introduced by [33]), the pairwise positive quadrant depen-
dence (PPQD) (introduced by [20]) and the ρ-mixing dependence (in-
troduced by [18]). For results, examples and references on the standard
density estimation problem under such dependence conditions, see e.g.
[19], [4], [32], [30], [11], [21], [25], [6] and [17].

Combining the approaches of [8] and [17], we construct an estimator
based on wavelet projections. We use wavelets because of their compu-
tational efficiency and asymptotic optimality properties. In particular,
wavelet estimators enjoy interesting MISE for functions having possible
complex singularities. We refer to [2] and [16] for a detailed coverage
of wavelet theory in statistics. The asymptotic performance of our es-
timator is evaluated by determining an upper bound of the MISE over
Besov balls. It is obtained as sharp as possible and coincides with the
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Wavelet Linear Density Estimation for a GARCH Model 3

one related to the standard i.i.d. framework.
The organization of the paper is as follows. Assumptions on the

model are presented in Section 2. Section 3 describes the wavelet basis
and the Besov balls. Section 4 is devoted to our linear wavelet estimator
and a general result. Applications are set in Section 5. Technical proofs
are collected in Section 6.

2 Assumptions

Set L
2([0, 1]) =

{
h : [0, 1] → R;

∫ 1
0 (h(x))2dx <∞

}
. We assume that

fσ2 ∈ L
2([0, 1]).

We suppose that there exists a positive integer ν such that, for any
i ∈ {1, . . . , n},

Zi =
ν∏

r=1

Ur,i, (2)

where U1,i, . . . , Uν,i are ν i.i.d. random variables having the common
uniform distribution on [0, 1]. Assumption (2) excludes the Gaussian
case but occurs in the study of some GARCH-type model as, for instance,
the generalized multiplicative censoring model (see e.g. [1]).

It follows from (2) that

• the density of Z1 is

fZ(x) =
1

(ν − 1)!
(− lnx)ν−1, x ∈ [0, 1].

• the density of S1 is

fS(x) =
∫ 1

x
fZ

(
x

y

)
fσ2(y)

1
y
dy

=
1

(ν − 1)!

ν−1∑
u=0

(
ν − 1
u

)
(− lnx)u

∫ 1

x
(ln y)ν−1−ufσ2(y)

1
y
dy,

x ∈ [0, 1]. (3)
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4 Chesneau and Doosti

3 Wavelets and Besov Balls

For the purposes of this paper, we use the compactly supported wavelet
bases on [0, 1] described below.

Let N be an integer such that N > ν + 1 (where ν is the one in
(2)), φ and ψ be the initial wavelets of the Daubechies wavelets db2N .
These functions have the particularity to be compactly supported and
to belong to the class Cν .

Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

With an appropriate treatment at the boundaries, there exists an integer
τ satisfying 2τ ≥ 2N such that the collection

B = {φτ,k(.), k ∈ {0, . . . , 2τ − 1};ψj,k(.);
j ∈ N − {0, . . . , τ − 1}, k ∈ {0, . . . , 2j − 1}},

is an orthonormal basis of L2([0, 1]). We refer to [9].
For any integer 	 ≥ τ , any h ∈ L

2([0, 1]) can be expanded on B as

h(x) =
2�−1∑
k=0

α�,kφ�,k(x) +
∞∑
j=�

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1],

where αj,k and βj,k are the wavelet coefficients of h defined by

αj,k =
∫ 1

0
h(x)φj,k(x)dx, βj,k =

∫ 1

0
h(x)ψj,k(x)dx. (4)

As is traditional in the wavelet estimation literature, we shall investi-
gate the performances of our estimator by assuming that fσ2 belongs to
Besov balls. Their definitions in terms of wavelet coefficients are given
below.

Let s > 0 and M > 0. A function h belongs to Bs
2,∞(M) if and

only if there exists a constant M∗ > 0 (depending on M) such that the
associated wavelet coefficients (4) satisfy

sup
j≥τ

22js
2j−1∑
k=0

β2
j,k ≤M∗.

The Besov balls capture a wide variety of smoothness features in a func-
tion. Further details can be found in [22].
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Wavelet Linear Density Estimation for a GARCH Model 5

4 Estimator and result

4.1 Linear wavelet estimator

We follow the methodology of [8, Lemma 1]. For any positive integer 	
and any h ∈ C�([0, 1]), set

T (h)(x) = (xh(x))′, T�(h)(x) = T (T�−1(h))(x), x ∈ [0, 1]. (5)

The definition of this operator is such that, for any h ∈ Cν([0, 1]), we
have ∫ 1

0
fσ2(x)h(x)dx =

∫ 1

0
fS(x)Tν(h)(x)dx. (6)

The proof of (6) is based on the two following steps:

Step 1. For any positive integer 	, setG(h)(x) = −xh′(x) andG�(h)(x) =
G(G�−1(h))(x). It follows from (3), derivations and the binomial
theorem that

fσ2(x) = −x(Gν−1(fS)(x))′ = Gν(fS)(x), x ∈ [0, 1]. (7)

Step 2. By (7) and ν integrations by parts, we have∫ 1

0
fσ2(x)h(x)dx =

∫ 1

0
Gν(fS)(x)h(x)dx

=
∫ 1

0
Gν−1(fS)(x)T (h)(x)dx

= . . . =
∫ 1

0
fS(x)Tν(h)(x)dx.

Note that, in the simplest case ν = 1, since fσ2(x) = −xf ′S(x), x ∈ [0, 1],
the proof is reduced to∫ 1

0
fσ2(x)h(x)dx = −

∫ 1

0
f ′S(x)xh(x)dx =

∫ 1

0
fS(x)(xh(x))′dx

=
∫ 1

0
fS(x)T (h)(x)dx.

Using the method of moments, for any integer j ≥ τ and any k ∈
{0, . . . , 2j − 1}, we estimate the unknown wavelet coefficient αj,k =∫ 1
0 fσ2(x)φj,k(x)dx by

α̂j,k =
1
n

n∑
i=1

Tν(φj,k)(Si),
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6 Chesneau and Doosti

(ν is the one in (2)).
Assuming that fσ2 ∈ Bs

2,∞(M), we define the linear estimator f̂ by

f̂(x) =
2j0−1∑
k=0

α̂j0,kφj0,k(x), x ∈ [0, 1], (8)

where j0 is an integer which will be chosen later (see Theorem 4.1 below).
Such an estimator is standard in nonparametric estimation via wavelets.

See e.g. [16, Section 10]. For a survey on wavelet linear estimators in
various density models, we refer to [7].

4.2 Result

Theorem 4.1. Consider (1) under the assumptions of Section 2. We
suppose that

• there exist three constants, γ ≥ 2ν, δ ∈ [0, 1) and C > 0, such
that, for any integer j ≥ τ ,

2j−1∑
k=0

n∑
m=1

|Cov (Tν(φj,k)(Sm), Tν(φj,k)(S0)) | ≤ C2j(γ+1)nδ, (9)

where Cov (., .) denotes the covariance function and Tν is (5).

• there exists a constant C∗ > 0 such that

sup
x∈[0,1]

fS(x) ≤ C∗, (10)

Suppose that fσ2 ∈ Bs
2,∞(M) with s > 0 and M > 0. Let f̂ be (8) with

j0 such that 2j0 = [n(1−δ)/(2s+γ+1) ] (where [a] denotes the integer part of
a). Then there exists a constant C > 0 such that

E

(∫ 1

0

(
f̂(x) − fσ2(x)

)2
dx

)
≤ Cn−2s(1−δ)/(2s+γ+1).

Naturally, the rate of convergence in Theorem 4.1 is obtained to be as
sharp as possible.

The assumption (9) measures the dependence between Sm and S0.
It is close to the Ξ-weak dependence introduced by [13, 14] but with the
operator Tν .
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Wavelet Linear Density Estimation for a GARCH Model 7

5 Applications

The four following subsections investigate separately the strong mixing
case, the β-mixing case, the PPQD case and the ρ-dependence case
which occur is a large variety of applications. We refer to [35], [27], [24]
and [3].

5.1 Application to the strong mixing dependence

Definition 5.1. Let (Yi)i∈Z be a strictly stationary random sequence.
For any m ∈ Z, we define the m-th strong mixing coefficient of (Yi)i∈Z

by
αm = sup

(A,B)∈FY
−∞,0×FY

m,∞
|P(A ∩B) − P(A)P(B)| ,

where FY−∞,0 is the σ-algebra generated by . . . , Y−1, Y0 and FY
m,∞ is the

σ-algebra generated by Ym, Ym+1, . . ..
We say that (Yi)i∈Z is strong mixing if and only if limm→∞ αm = 0.

Applications on strong mixing can be found in e.g. [34], [12] and [5]. In
the context of GARCH-type models as (1), see [15].

Proposition 5.1. Consider (1) under the assumptions of Section 2.
Suppose that

• (Si)i∈Z is strong mixing,

• there exist three constants, q ∈ (0, 1), δ ∈ [0, 1) and C > 0, such
that

n∑
m=1

mqαq
m ≤ Cnδ, (11)

• there exists a constant C∗ > 0 such that

sup
m∈{1,...,n}

sup
(x,y)∈[0,1]2

f(Sm,S0)(x, y) ≤ C∗, sup
x∈[0,1]

fS(x) ≤ C∗, (12)

where f(Sm,S0) is the density of (Sm, S0) and fS is (3).

Suppose that fσ2 ∈ Bs
2,∞(M) with s > 0 and M > 0. Let f̂ be (8) with

j0 such that 2j0 = [n(1−δ)/(2s+2ν+1)]. Then there exists a constant C > 0
such that

E

(∫ 1

0

(
f̂(x) − fσ2(x)

)2
dx

)
≤ Cn−2s(1−δ)/(2s+2ν+1).
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8 Chesneau and Doosti

Note that (11) includes strong mixing coefficients with a polynomial rate
of decay. For instance, if αm = 1/mp with p > 1, then (11) holds with
δ = 0 (by taking q ∈ (1/(p − 1), 1)).

The first inequality in (12) can be viewed as a “Castellana-Leadbetter”-
type condition. It is standard in nonparametric estimation via depen-
dent observations. Remark that, thanks to this assumption, Proposition
5.1 improves [8, Theorem1]: the obtained rate of convergence is faster;
the parameter q does not deteriorate the rate of convergence. However,
this condition seems difficult to check in some situations. An alternative
is explored in the next subsection.

5.2 Application to the β-mixing dependence

Definition 5.2. Let (Yi)i∈Z be a strictly stationary random sequence.
For any m ∈ Z, we define the m-th β-mixing coefficient of (Yi)i∈Z by

βm =
1
2

sup
((Ai)i∈I ,(Bi)i∈J )∈FY

−∞,0×FY
m,∞

∑
i∈I

∑
j∈J

|P(Ai ∩Bj) − P(Ai)P(Bj)| ,

where the supremum is taken over all finite partitions (Ai)i∈I and (Bj)j∈J

of Ω, which are respectively FY−∞,0 and FY
m,∞ measurable, FY−∞,0 is the

σ-algebra generated by . . . , Y−1, Y0 and FY
m,∞ is the one generated by

Ym, Ym+1, . . . .
We say that (Yi)i∈Z is β-mixing if and only if limm→∞ βm = 0.

Full details can be found in e.g. [12], [32], [5] and [3].

Proposition 5.2. Consider (1) under the assumptions of Section 2.
Suppose that

• (Si)i∈Z is β-mixing,

• there exists a constant C > 0 such that

∞∑
m=1

βm ≤ C, (13)

• there exists a constant C∗ > 0 such that

sup
x∈[0,1]

fS(x) ≤ C∗.

www.SID.ir



Arc
hive

 of
 S

ID
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Suppose that fσ2 ∈ Bs
2,∞(M) with s > 0 and M > 0. Let f̂ be (8) with

j0 such that 2j0 = [n1/(2s+2ν+1)]. Then there exists a constant C > 0
such that

E

(∫ 1

0

(
f̂(x) − fσ2(x)

)2
dx

)
≤ Cn−2s/(2s+2ν+1).

Since β-mixing implies strong mixing, Proposition 5.2 shows that
the rate of convergence n−2s/(2s+2ν+1) can be attained by f̂ for strong
mixing (Si)i∈Z without the constraint on f(Sm,S0) in (12).

5.3 Application to the PPQD

Definition 5.3. We say that n random variables S1, . . . , Sn are pair-
wise positive quadrant dependent (PPQD) if and only if, for any (	, v) ∈
{1, . . . , n}2 with 	 �= v and any (x, y) ∈ [0, 1]2,

P(S� > x,Sv > y) ≥ P(S� > x)P(Sv > y).

Further details on PPQD can be found in [20], [23] and [28].

Proposition 5.3. Consider (1) under the assumptions of Section 2.
Suppose that

• S1, . . . , Sn are PPQD,

• there exist two constants, δ ∈ [0, 1) and C > 0, such that

n∑
m=1

m3
Cov (Sm, S0) ≤ Cnδ, (14)

• (12) is satisfied.

Suppose that fσ2 ∈ Bs
2,∞(M) with s > 0 and M > 0. Let f̂ be (8) with

j0 such that 2j0 = [n(1−δ)/(2s+2ν+1)]. Then there exists a constant C > 0
such that

E

(∫ 1

0

(
f̂(x) − fσ2(x)

)2
dx

)
≤ Cn−2s(1−δ)/(2s+2ν+1).

Proposition 5.4 below investigates the MISE properties of f̂ in the
PPQD case without the constraint on f(Sm,S0) in (12).

Proposition 5.4. Consider (1) under the assumptions of Section 2.
Suppose that
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• S1, . . . , Sn are PPQD,

• there exist two constants, δ ∈ [0, 1) and C > 0, such that
n∑

m=1

Cov (Sm, S0) ≤ Cnδ, (15)

• there exists a constant C∗ > 0 such that

sup
x∈[0,1]

fS(x) ≤ C∗.

Suppose that fσ2 ∈ Bs
2,∞(M) with s > 0 and M > 0. Let f̂ be (8) with

j0 such that 2j0 = [n(1−δ)/(2s+2ν+4)]. Then there exists a constant C > 0
such that

E

(∫ 1

0

(
f̂(x) − fσ2(x)

)2
dx

)
≤ Cn−2s(1−δ)/(2s+2ν+4).

5.4 Application to the ρ-mixing dependence

Definition 5.4. Let (Yi)i∈Z be a strictly stationary random sequence.
For any m ∈ Z, we define the m-th maximal correlation coefficient of
(Yi)i∈Z by

ρm = sup
(U,V )∈L2(FY

−∞,0)×L2(FY
m,∞)

|Cov (U, V )|√
V(U)V(V )

,

where FY−∞,0 is the σ-algebra generated by . . . , Y−1, Y0, FY
m,∞ is the one

generated by Ym, Ym+1, . . . and, for any A ∈ {FY−∞,0,FY
m,∞}, L

2(A) ={
U ∈ A; E(U2) <∞}.

We say that (Yi)i∈Z is ρ-mixing if and only if limm→∞ ρm = 0.

For details on ρ-mixing, we refer to [18], [12], [29], [19] and [35].

Proposition 5.5. Consider (1) under the assumptions of Section 2.
Suppose that

• (Si)i∈Z is ρ-mixing,

• there exist two constants, δ ∈ [0, 1) and C > 0, such that
n∑

m=1

ρm ≤ Cnδ, (16)
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• there exists a constant C∗ > 0 such that

sup
x∈[0,1]

fS(x) ≤ C∗. (17)

Suppose that fσ2 ∈ Bs
2,∞(M) with s > 0 and M > 0. Let f̂ be (8) with

j0 such that 2j0 = [n(1−δ)/(2s+2ν+1)]. Then there exists a constant C > 0
such that

E

(∫ 1

0

(
f̂(x) − fσ2(x)

)2
dx

)
≤ Cn−2s(1−δ)/(2s+2ν+1).

General Remark. Note that, in Propositions 5.1, 5.3 and 5.5, if
δ = 0, the rate of convergence n−2s/(2s+2ν+1) becomes the one attained
by f̂ when S1, . . . , Sn are i.i.d.. Therefore, our results extend the good
asymptotic performances of f̂ in the standard i.i.d. case to the consid-
ered dependence structures.

Conclusions and Perspectives. We have constructed a new wavelet
estimator to estimate a density in a GARCH-type model under vari-
ous dependence structures. Its asymptotic MISE properties have been
investigated and fast rates of convergence have been established.

Due to its construction, f̂ is not adaptive with respect to s, ν and δ.
Adaptivity can perhaps be achieved by using another wavelet estimator
as the hard thresholding one. However, several important technical diffi-
culties arise due to the dependence conditions and it is not immediately
clear how to solve them. This aspect needs further investigations that
we leave for a future work.

6 Proofs

In this section, we consider (1) under the assumptions of Section 2.
Moreover, C denotes any constant that does not depend on j, k and n.
Its value may change from one term to another and may depends on φ.

Proof of Theorem 4.1. We expand the function fσ2 on B as

fσ2(x) =
2j0−1∑
k=0

αj0,kφj0,k(x) +
∞∑

j=j0

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1],

where αj0,k =
∫ 1
0 fσ2(x)φj0,k(x)dx and βj,k =

∫ 1
0 fσ2(x)ψj,k(x)dx.
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We have, for any x ∈ [0, 1],

f̂(x) − fσ2(x) =
2j0−1∑
k=0

(α̂j0,k − αj0,k)φj0,k(x) −
∞∑

j=j0

2j−1∑
k=0

βj,kψj,k(x).

Since B is an orthonormal basis of L
2([0, 1]), we have

E

(∫ 1

0

(
f̂(x) − fσ2(x)

)2
dx

)
=

2j0−1∑
k=0

E

(
(α̂j0,k − αj0,k)

2
)

+
∞∑

j=j0

2j−1∑
k=0

β2
j,k. (18)

Let us now bound these two terms in turn.
Using (6), we have

αj0,k =
∫ 1

0
fσ2(x)φj0,k(x)dx =

∫ 1

0
fS(x)Tν(φj0,k)(x)dx

= E(Tν(φj0,k)(S0)) = E(α̂j0,k).

So

E

(
(α̂j0,k − αj0,k)

2
)

= V (α̂j0,k) =
1
n2

V

(
n∑

i=1

Tν(φj0,k)(Si)

)
.(19)

We have

V

(
n∑

i=1

Tν(φj0,k)(Si)

)

=
n∑

v=1

n∑
�=1

Cov (Tν(φj0,k)(Sv), Tν(φj0,k)(S�))

= nV (Tν(φj0,k)(S0)) + 2
n∑

v=2

v−1∑
�=1

Cov (Tν(φj0,k)(Sv), Tν(φj0,k)(S�))

≤ nV (Tν(φj0,k)(S0)) + 2

∣∣∣∣∣
n∑

v=2

v−1∑
�=1

Cov (Tν(φj0,k)(Sv), Tν(φj0,k)(S�))

∣∣∣∣∣ .(20)
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The stationarity of (Si)i∈Z implies that∣∣∣∣∣
n∑

v=2

v−1∑
�=1

Cov (Tν(φj0,k)(Sv), Tν(φj0,k)(S�))

∣∣∣∣∣
=

∣∣∣∣∣
n∑

m=1

(n −m)Cov (Tν(φj0,k)(Sm), Tν(φj0,k)(S0))

∣∣∣∣∣
≤ n

n∑
m=1

|Cov (Tν(φj0,k)(Sm), Tν(φj0,k)(S0)) |. (21)

It follows from (19), (20) and (21) that

E

(
(α̂j0,k − αj0,k)

2
)

≤ C
1
n

(
V (Tν(φj0,k)(S0)) +

n∑
m=1

|Cov (Tν(φj0,k)(Sm), Tν(φj0,k)(S0)) |
)
.

Using [8, Proposition 1] i.e. thanks to (10), V (Tν(φj0,k)(S0)) ≤ C22νj0 ,
(9) and γ ≥ 2ν, we have

2j0−1∑
k=0

E

(
(α̂j0,k − αj0,k)

2
)

≤ C
1
n

(
2j022νj0 + 2j0(γ+1)nδ

)
≤ C2(γ+1)j0nδ−1

≤ Cn−2s(1−δ)/(2s+γ+1). (22)

Using fσ2 ∈ Bs
2,∞(M), we obtain

∞∑
j=j0

2j−1∑
k=0

β2
j,k ≤ C

∞∑
j=j0

2−2js ≤ C2−2j0s ≤ Cn−2s(1−δ)/(2s+γ+1). (23)

It follows from (18), (22) and (23) that

E

(∫ 1

0

(
f̂(x) − fσ2(x)

)2
dx

)
≤ Cn−2s(1−δ)/(2s+γ+1).

The proof of Theorem 4.1 is complete. �
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Proof of Proposition 5.1. Using a standard covariance equality and
(12), for any g ∈ L

1([0, 1]) and any m ∈ {1, . . . , n}, we have

|Cov (g(Sm), g(S0))|
=

∣∣∣∣∫ 1

0

∫ 1

0
(f(Sm,S0)(x, y) − fS(x)fS(y))g(x)g(y)dxdy

∣∣∣∣
≤

∫ 1

0

∫ 1

0
|f(Sm,S0)(x, y) − fS(x)fS(y)||g(x)||g(y)|dxdy

≤ 2C∗
∫ 1

0

∫ 1

0
|g(x)||g(y)|dxdy = 2C∗

(∫ 1

0
|g(x)|dx

)2

. (24)

Moreover, using (φj,k)(u)(x) = 2(2u+1)j/2φ(u)(2jx − k) and doing the
change of variables y = 2jx− k, we have∫ 1

0
|Tν(φj,k)(x)|dx ≤ ν!

ν∑
u=0

∫ 1

0
|xu(φj,k)(u)(x)|dx

≤ ν!
ν∑

u=0

∫ 1

0
|(φj,k)(u)(x)|dx = C2−j/2

ν∑
u=0

2uj

∫
|φ(u)(y)|dy

≤ C2νj2−j/2. (25)

It follows from (24) and (25) that

|Cov (Tν(φj,k)(Sm), Tν(φj,k)(S0)) | ≤ C22νj2−j. (26)

By [8, equation before eq. (20)], we have

|Cov (Tν(φj,k)(S0), Tν(φj,k)(Sm)) | ≤ C2(2ν+q)jαq
m.

Therefore

|Cov (Tν(φj,k)(S0), Tν(φj,k)(Sm)) | ≤ Cmin
(
22νj2−j , 2(2ν+q)jαq

m

)
.

Hence, by (11),
n∑

m=1

|Cov (Tν(φj,k)(S0), Tν(φj,k)(Sm)) |

≤ C

n∑
m=1

min
(
22νj2−j , 2(2ν+q)jαq

m

)

≤ C

⎛⎝2j−1∑
m=1

22νj2−j +
n∑

m=2j

2(2ν+q)jαq
m

⎞⎠
≤ C22νj

(
1 +

n∑
m=1

mqαq
m

)
≤ C22νj

(
1 + nδ

)
≤ C22νjnδ.
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Therefore

2j−1∑
k=0

n∑
m=1

|Cov (Tν(φj,k)(S0), Tν(φj,k)(Sm)) | ≤ C2(2ν+1)jnδ.

Proposition 5.1 follows from Theorem 4.1 with γ = 2ν. �

Proof of Proposition 5.2. Since (Si)i∈Z is β-mixing, for any bounded
function g, [32, equation line 12 p. 479 and Lemma 4.2. with p = 1]
imply that

n∑
m=0

|Cov (g(Sm), g(S0))| ≤ 2
∫ 1

0
b(x)g2(x)fS(x)dx, (27)

where b is a function such that, by (13),
∫ 1
0 b(x)fS(x)dx ≤∑∞

m=0 βm ≤
C.

We have (φj,k)(u)(x) = 2(2u+1)j/2φ(u)(2jx− k). Since φ is compactly
supported, we have supx∈[0,1]

∑2j−1
k=0 (φ(u)(2jx−k))2 ≤ C. Therefore, for

any integer j ≥ τ ,

2j−1∑
k=0

(Tν(φj,k)(x))2 ≤ ν(ν!)2
2j−1∑
k=0

ν∑
u=0

x2u((φj,k)(u)(x))2

≤ ν(ν!)2
2j−1∑
k=0

ν∑
u=0

((φj,k)(u)(x))2

≤ ν(ν!)22(2ν+1)j
ν∑

u=0

2j−1∑
k=0

(φ(u)(2jx− k))2

≤ C2(2ν+1)j . (28)

Putting (27) and (28) together, we obtain

2j−1∑
k=0

n∑
m=1

|Cov (Tν(φj,k)(S0), Tν(φj,k)(Sm)) |

≤ 2
∫ 1

0
b(x)fS(x)

2j−1∑
k=0

(Tν(φj,k))2(x)dx ≤ C2(2ν+1)j

∫ 1

0
b(x)fS(x)dx

≤ C2(2ν+1)j .

Proposition 5.2 follows from Theorem 4.1 with γ = 2ν. �
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Proof of Proposition 5.3. Since S1, . . . , Sn are PPQD, the Newman
inequality (see [23]) yields: for any m ∈ {1, . . . , n} and any g ∈ C1([0, 1]),

|Cov (g(Sm), g(S0))| ≤ ( sup
x∈[0,1]

|g′(x)|)2Cov (Sm, S0). (29)

Moreover, since (φj,k)(u)(x) = 2(2u+1)j/2φ(u)(2jx− k), we have

sup
x∈[0,1]

|T ′
ν(φj,k)(x)| ≤ (ν + 1)!

ν+1∑
u=0

sup
x∈[0,1]

|xu(φj,k)(u)(x)|

≤ C

ν+1∑
u=0

2(2u+1)j/2 sup
x∈[1−N,N ]

|φ(u)(x)|

≤ C2(2(ν+1)+1)j/2 = C2(2ν+3)j/2. (30)

Therefore, by (26) (which holds thanks to (12)), (29) and (30), we have

|Cov (Tν(φj,k)(Sm), Tν(φj,k)(S0)) | ≤ Cmin(22νj2−j , 2(2ν+3)j
Cov (Sm, S0)).

Hence, by (14),

n∑
m=1

|Cov (Tν(φj,k)(S0), Tν(φj,k)(Sm)) |

≤ C

n∑
m=1

min
(
22νj2−j , 2(2ν+3)j

Cov (Sm, S0)
)

≤ C

⎛⎝2j−1∑
m=1

22νj2−j +
n∑

m=2j

2(2ν+3)j
Cov (Sm, S0)

⎞⎠
≤ C22νj

(
1 +

n∑
m=1

m3
Cov (Sm, S0)

)
≤ C22νj

(
1 + nδ

)
≤ C22νjnδ.

Therefore

2j−1∑
k=0

n∑
m=1

|Cov (Tν(φj,k)(S0), Tν(φj,k)(Sm)) | ≤ C2(2ν+1)jnδ.

Proposition 5.3 follows from Theorem 4.1 with γ = 2ν. �

Proof of Proposition 5.4. Proceeding similarly to the proof of Propo-
sition 5.3, we have

|Cov (Tν(φj,k)(Sm), Tν(φj,k)(S0)) | ≤ C2(2ν+3)j
Cov (Sm, S0).
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Therefore, by (16),

2j−1∑
k=0

n∑
m=1

|Cov (Tν(φj,k)(S0), Tν(φj,k)(Sm)) | ≤ C2(2ν+4)jnδ.

Proposition 5.4 follows from Theorem 4.1 with γ = 2ν + 3. �

Proof of Proposition 5.5. A standard covariance inequality for ρ-
mixing gives: for any m ∈ {1, . . . , n} and any g ∈ L

2([0, 1], fS(x)dx),

|Cov (g(Sm), g(S0))| ≤ E((g(S0))2)ρm. (31)

See, for instance, [35, Lemma 1.2.7.].
Since S0(Ω) = [0, 1], for any integer j ≥ τ and any k ∈ {0, . . . , 2j−1},

we have

E((Tν(φj,k)(S0))2) ≤ ν(ν!)2
ν∑

u=0

E

(
S2u

0 ((φj,k)(u)(S0))2
)

≤ ν(ν!)2
ν∑

u=0

E

(
((φj,k)(u)(S0))2

)
. (32)

Using (17), (φj,k)(u)(x) = 2(2u+1)j/2φ(u)(2jx − k) and doing the change
of variables y = 2jx− k, we obtain

E

(
((φj,k)(u)(S0))2

)
=

∫ 1

0
((φj,k)(u)(x))2fS(x)dx

≤ C∗
∫ 1

0
((φj,k)(u)(x))2dx

≤ C∗22uj

∫
(φ(u)(y))2dy. (33)

Putting (32) and (33) together, we obtain

E((Tν(φj,k)(S0))2) ≤ C∗ν(ν!)2
ν∑

u=0

22uj

∫ N

1−N
(φ(u)(y))2dy ≤ C22νj . (34)

Hence, by (31), (34) and (16),

n∑
m=1

|Cov (Tν(φj,k)(S0), Tν(φj,k)(Sm)) | ≤ C22νj
n∑

m=1

ρm ≤ C22νjnδ.
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Therefore

2j−1∑
k=0

n∑
m=1

|Cov (Tν(φj,k)(S0), Tν(φj,k)(Sm)) | ≤ C2(2ν+1)jnδ.

Proposition 5.5 follows from Theorem 4.1 with γ = 2ν. �
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