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Abstract. We consider a representation of the probability density func-
tion of a weighted convolution of the gamma distribution, where a con-
fluent hypergeometric function describes how the differences between
the parameters of the components of scale lead to departures from a
density range. It is shown that the distributions can be characterized
as the product between a gamma density and a confluent hypergeo-
metric function. We give closed-form expressions for the cumulative,
survival and hazard rate function. The corresponding moment generat-
ing function(m.g.f) and cumulant generating function(c.g.f) have been
calculated and their properties'have bean discussed.
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1 Introduction

The distribution of a linear combination of random variables arises in
many applied problems, and has been extensively studied by different
researchers. The distribution of the linear combination of two indepen-
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dent random variables arises in many fields, see for example Ladekarl
et al. (1997), Amari and Misra (1997), Cigizoglu and Bayazit (2000),
Galambos and Simonelli (2005), Nadarjah and Kibria (2006a, 2006b).
Convolution of gamma distributions is interested in various fields of ap-
plication; input-output or storage models( Mathai, 1982) in problems
like waiting times in queueing theory stochastic processes( Sim, 1992),
modeling distribution of composite sampling(Di Salvo, Lovison, 1992),
in the evaluation of aggregate economic risk of portfolios( Hurlimann,
2001). Di Salvo(2008)developed a characterization of the distribution
of a weighted sum of gamma variables through multiple hypergeomet-
ric functions. This paper discusses the distributions of the linear com-
bination Z;, = Y%  w;X; and joint distribution (Z;, Z;) when Xs,
i = 1,...,k, are gamma random variables with shape «; , scale 8 and
w;’s are constant and positive. We have

k
:CO“ exp | -3 z; |, 1
Hz 1 Z 11_[1 p( ; ) ( )

for x;,3,a; > 0. The calculations in this paper involve several special
functions,including the Laurecilla function defined by
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The theory of Lauricella function-plays an important role in solving
problems concerning the exact distribution of the weighted convolution
of gamma variables. Erdelyi (1937) defines a confluent form of the fourth
Lauricella function, ,®, through the following limiting process.

The confluent form of the fourth Lauricella function defined as follows

i (01)iy - (bn)iy, @2 .in
. ' . ' .

(I)(bla-'-abn§a;m1>"'7xn) = (a) B 1102
11+...Fin st

i1 yeeyin=0
If n = 1 then confluent hypergeometric function defined by
b )

(a);

2%

19(b;a;2) = 1 F1(b; a; ) :Z
=0

where (e); = e(e+1)...(e + k — 1) denotes the ascending factorial. Also
we need to consider the following important lemma.
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Lemma 1.1. Let by, ..., b, be strictly positive numbers such that |b| < a,
and let x1, ..., xy be arbitrary real numbers (Erdely 1937).

n®(b1, ..., by ayitey, ... ita,) = limsloFD(s_l;bl, ey by ayitexy, ... itexy,),
where t is real number and 1 = \/—1.

Lemma 1.2.  [Equation(2.5.6.1) Prudnikov et al, 1986, volume 1]
For a,3 >0

a
/ 2 Ya — z)Pte PPdx = B(a, B)a* P Fi(os a + B; —ap).
0

The properties of the above special functions can be found in Prudnikov
et al.

2 Probability Density and Cumulative Distri-
bution Function

Suppose X;,i = 1,..., k are mutually independent where X; ~ G(«, 3)
(same (3). Let

Z1 = w1 X1, 2y = un X1 +weXo, ..., 2, =wrXq + ... + wip Xg,

where wi > 0. Therefore the joint distribution of (Z1, ..., Z) is a multi-
variate gamma with density function as follows

fZ1,...,Zk(21, ceny Zk) =

o k
W [IGi=zi-0)% texp <—5Z%($ - )> .(2)

W
[Tizy i =1 i=1 i i+l

here o* = Zle @, 0< 21 < oo < 2z, < 00, 29 = 0 and w1 = 0.
The joint density of Z1,..., Z;_1 is of the same form as the density of
Z1, ..., Z. This is also clear form as the definition of the Z;. [J

Lemma 2.1. If Z1, ..., Z} distributed according to Eq.(2) then
f(zh ceey Zj7 Zk)

* y k R
Be 221(22, _ Zi—l)aiil(zk _ zj)zi:ﬂlo” 1

[Timy wia 3:1 F(ai)F(Zi:jH ;)
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j—1
1 1 R
x o [ B (e - ) gy Ly
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k
X g @1, @, ey 1 Y UG, e Ug—1), (3)
i=j+1

where u; = (2, — 2;) B — w%)J =j+1,..,k—1

Wk

Proof. The prof is based on the mathematical induction. Assuming
that the Eq.(3) is established for j, we show that the Eq.(3) is estab-
lished for j —1 too. Without loss of generality, we consider only the case
of distinct weights and rearrange the components in the sum, so that
the kth weight wy is the smallest one among the weights:

2k
f(Zl,...,Zj_l,Zk) = / f(zl,...,Zj,Zk)de
Zj—1

B T (2 — 2i1) %!
k i j k
Hi:1 wia 321 F(ai)F(Zi:jJrl @;)

j—1
x e (—B(Z (M) - j—i))

=1

- i—1 K i—1
X / (2 — 2j—1) 8L (ag — 2g) =419
Zj—1

1

1
X eXP(—ﬁZj(w—j y 4 w—k)[k—j—u‘I’(Oéjer ey Q15

k
Z Oéi;’LLjJrl,...,uk_l))de, (4)

i=j+1
where u; = (zk—zj)ﬂ(wik—w%),l =j+1,...,k—1. By setting u = z; —2;_1

and using Lemma 1.2 'and definition ,,®, then for the integral part of the
Eq.(4) we have

® i1, 42 in
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Wheren:kz—j—landul:(zk—zj_l)ﬁ(w%c——)l—j—l—l Jk— 1.
By simplification, we obtain

ﬁa* Hg;ll(z’b - zi—l)aiil(zk — Z)Zfzj a;—1
k i j—1 k
Hi:1 wia ngl F(aZ)F(ZZ —; az)

f(Zl, veey Zj_l, Zk) =

12 1 1. =
X exp ( ;zz ol ’wz+1) - zj_1(wj_1 - w—k) - w—k)]>
1 1
X[k_j]@(aj,ajJrl, ooy Q13 Z:ai;uj, ...,uk._l)ﬂ(w—k — w_]))7
where u; = (2 — zj_l)ﬁ(wik — E) l =3j,...k — 1. Thus, the Eq.(3) is

correct and the proof is completed. [J

Lemma 2.2. If Zy,..., Zy distributed according to Eq.(2) then

a* .O‘Tfl . L \as—1
fr0 (o) = B kzz ai(Z] *ZZ) .
Hi 1 W, F(%)F(az)

exw (~u( ~ 2 By )

X
wi j
[ifl]q)(ab ey Q13 a17 Ui, .- uz—l)
. Ak
X [mie) R( Wi 1ge, G —13 OG5 Vit 1, o, V1), (5)

there is af = Z;Zl oy b= Z{:Hl ap, @< j, u = %(1 = L) for
l=1,..,i—1 andvr:%(l—g—i) forr=i+1,..,j—1

Proof. Without loss of generality, we consider f(z;,zr). Thus, ac-
cording to definition, we have

7.2, (zi,21) = / / / f(#15 e, 2y 2)d2i—1 ... d2zod2y

(e — z) !
H1:1 wzal Hl:l (a)I(a3)
exp (=B~ 7 - )
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X [k—i—l}@(al?kla Q25 ey O 1505 Vit 15 -1y vk—l)

X



28 Almasi et al.
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According to the process of Lemma 2.1, for the integral part of the
Eq.(6) we have

*_1 .
Zial H?:l INE)
[T w'T ()T (o)

i ®(ar, a2, ., 1Al g, e uim1),  (7)
[i—1]

where u; = z“g 1—%)]=1,..7—1. Combining Eq.(6) and Eq.(7),
w;
ends the proof U

Theorem 2.1. If Zy,..., Z}, distributed according to-Eq.(2) then

*

fa) = =B e

P
[Tiz; wi"T'(e*)

X €xXp <_w£kzk> [kfl]q)(alam:ak—l;a*;aula--'aukfl)v (8)

where u; = %(1 — w’“) 1=1,..,k—1,Vi,wp < w; and o = Zle ;.

Proof. Now by setting : = 1,7 = k' in Eq.(5) we have

BT (2 — 1) i i

Tens) = [ om0, o)
X exp <—ﬂ(z1(wi1 - wik) - kaik)o

X (k21 P(a2, a3, . p—1;

a 11
Zaz‘; (26 — 21)B(— — )5 -
i=2

Wk WE—1

2k — 21)B(— — —)), (9)

W %

then by integration on z; and using Lemma 1.2, the proof is com-
pleted. O
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In particular for £ = 2 from Eq.(8) the density of Z is

f(z) = (%)alwza*—l exp <—wﬁlz> Py <a1;a*; u%z(l - %)>

w1 I'(a*) w1
(10)
Also, the asymptotic expansion of 1 F} turns out to be useful:
T'(b
FA(0,b.5) = [ ohest (1L ol ) (1)
By combining Eq.(10) and Eq.(11), we have
e (&) (e
_ wq wq 2 M w2 _1/2
f(z) Ty (1 w1) <1+0|w22(1 w1)| ) .
(12)

O

Corollary 2.1.  If number r < k of weights w/are equal,we suppose
w; = w, fori=1,2,....,r then

Zy = w(X1 + Xo, ...,Xr) + w1 Xp 41 + -+ wp X
= w X} + w1 Xp41 + oo+ wpXp

where z ~ G(Y "1, @, ), X; ~ G(ay, B)t =14 1,..., k then

B o = B

T
X [k—’r‘]q)(za’har+17°'°7ak—1;a*;7u1“7"'7uk—1)7 (13)
i=1

where u; = %(1 - Z—’j) fori=mr,....k—1 and Vi,wy, < w;. O

Lemma 2.3..  Cumulative distribution function(C.D.F) Eq.(8) is

*

Fr(t) = — B i (a1)iy - (Qk—1)if_,

M, i), &, (@

k—1 ij
X 1—11 <71 _ Z’:/wj> y(a® 43", ﬁt) (14)
j=

Wk
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where y(a, z) = [t exp(—t)dt is incomplete gamma and o = Zle Q.
Proof. By using the definition C.D.F, we have

t
Fy () = /0 F2.(2)dz
go’

t
= k—/ 7 lexp <_£2k>
[Timy wi*T(a*) Jo W

*
X [k—l]q)(alv"'aakfl;a ;aulv"'aukfl)d:"’?

where ui:M 1—-2)45=1,..,k—1,Vi,w, < w; and o* = ]-c: ;.
W w; i=1

* o0

B Z (al)ir"(ak‘—l)ikq

() Hle wi ' T'(a*) — 0 (a*)iqlin!.. ig_q!
x (1= 2Ry - kg
wy Wg—1
t

x| 2T exp(——2) () dz 15
/ (~=A(2) (15)

where * = Zf;ll z‘j by setting u%z — v then

t 26, A
/ ZO(*-i-z*—l exp(_ﬂz)(ﬁ)z*dz _ k vq*-{-z —1 eXp(—U)d’U

0 W W 0

= ’y(a*+i*,£t). (16)
W

By combining Eq.(15) and Eq.(16), ends the proof. [J

Similarly the survival function-and the hazard rate function are given,
respectively,

S(t) = /toofzk(z)dz
_ ﬂa* i (al)il.--(akfl)ik—l

k i .
[T wiT(e®) ;, 4~ (%)

k—1 ij
x q(%) Plo* +i*, Do) (17)
i
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*1 . .
te exp (—u%t) k_lcl)(oq, ceey X135 Oz*, , U, ...,uk_l)

Gq eee —1)i — — i & .
Zf,...,ik,lzo O or ey H?:ll (71 w’.“./wJ) 7F(a* +i*, 1)

(a*) % XN Wk

where u; = fu—ﬂ(l—ﬂ),z‘ =1,.,k—1land D(a,x) = [°t* T exp(—t)dt,

k w;g
is complementary incomplete gamma function.
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Figure 1: The p.d.f. (left) and the c.d.f (right) computed for a =
(1.3,2.8,3.5), @ = (0.5,0.8,0.3),(points) and & = (3.5,2.5,5.5) @ =
(1.5,2.8,0.2),(dashed lines).

Figure left(points) illustrates possible shapes of the pdfs Eq.(8) for
selected values of (o, o, a3) = (1.3,2.8,3.5), (w1, w2, ws) = (0.5,0.8,0.3)
and common scale parameter § =2 and also Figure left(dashed lines) il-
lustrates possible shapes of the pdfs Eq.(8) for selected values of (aq, v,
a3) = (3.5,2.5,5.5), (w1, ws, w3) = (1:5,2.8,0.2) and common scale pa-
rameter § = 2. Also in Figures right their C.D.Fs are provided.

3 Entropy

An entropy of a random variable is a measure of variation of the uncer-
tainty. Entropy has been used in various situations in science and engi-
neering. The simplest known entropy is the Shannon entropy (Shannon,
1948) defined by

E[~log fz(2)] = — / log (=) £2(2)d=. (19)
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Consider calculating this when Z has the pdf described in Theorem 2.1.
If Z distributed by Eq.(8) then we have

k
E[-log fz(2)] = Z a;logw; +logT (™) — a*log B — (™ — 1)E[log Z]
i=1
Lk
+ oo > wiai + Ellog 1 ()], (20)
i=1

where E[log Z] denotes by

wl?* S (a1)iy-(Q—1)iy_,
Ellog 2] = ) TTF Z e i o]
F(Oé ) H’L:l wzr(az) i1, in_1=0 2t !
k—1 i
x (1 - %) (o +i) —n ),
. ’U)] Wy,
7j=1
and

E[lOg [k*l}q)()] = / log [k*l}é(alv ey O —13 Ct*; y ULy ooy uk#l)fzk (Z)d,T/,”
0

’

where ¢(z) = I'(x)/I'(z), is the digamma function.

Unfortunately, this integral cannot be reduced to a closed form even in
the simplest case k = 2. Thus, we propose investigation will have to be
performed numerically. One could also consider other more advanced
measures of entropy such as the Renyi entropy defined by

1

In(r) =5

log] /m f(2)dz) (21)

, forr > 0and r #1 (Renyi 1961). But, for the above mentioned reasons,
one cannot obtain closed form expressions for these and investigation will
have to be performed numerically.

4 "Moments and Cumulants

Several properties of the distribution can be obtained from the definition,
while others will follow from the moment generation function (m.g.f).
The m.g.f of Z1, ..., Zy is

M(ty, ..., t) = E(ehZit-+ili)
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k k
= E[exp(z tjlel + thngQ... + tkkak)]

j=1 j=2
k k k e & o

= [T e =1 (1-5X4] e
i=1 j=i i=1 j=i

where My, (t) = (1—t/B)"*" and the m.g.f exists if [t;+ti41+... 4tk < G
for i = 1,...,k. The cumulant generating function (c.g.f) of Z is the
logarithm of the m.g.f in Eq.(22) and is given by

k k
ko(t) =l M, (t) = — Y i ln(1 — %Zt,) (23)
=1 =i

From the definition directly or from the m.g.f and c.g.f above we obtain
the following properties:

Corollary 3.1.  The m-th cumulant of Z; is given by
am (m—1)! / a;w™
K™ (1) = k() = e (24)
dtj p ; (1- % > )™

Note that k1 = E(Z), ks = Var(Z), ks = p3 and ky = j14 — 3p3.

Corollary 3.2. The (n,m)-th product cumulant of Z; and Z; is given
by

drdm — 1) < men
Kt 1) = ke (t) = U 67 Uy . L -
i 0ty B = (L= F 2 htt)
(25)
where 7 = min(i, j).
Corollary 3.3. The M.g.f Z}, are given by
k w \ —%
My (t)=1] <1 — —’t> . (26)
i=1 B
Corollary 3.4. Z; and Z; are correlated. For i < j we have
COU(ZZ', Zj) = COU(ZZ', Zi+wit1 Xip1 + ... + ’u)ij)
i 2
oW
= Var(Z) =k (t))l=0 =Y le - (27)
=1
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Then

Corr(z,zj) =

Clearly, the correlation is always positive. Now, we derive the mo-
ments of Z; when distributed according to Eq.(2) in the following the-
orem.

Theorem 3.1. If Z;, distributed according to Eq.(5) then,

Bz - Y (mk)lf[(%)m) (28)

r1,72,...,7x=0

Proof. Considering

E(Z]T) = E(w1X1 + ...+ kak)m
m
m
= > ( >E (w1 X1)"™ . (we X3)™)
T1,725+-, Tk

T1,72,...,7=0

S 0N G N ) I

11,7240, =0
Since X is gamma distribution, substituting Mx(t) = (1 —t/38)™% we
have E(X]") = % and the proof of the theorem is complete. [
Theorem 3.2. If Z;, Z; distributed according to Eq.(4) and if i < j,

nomy 1 " "
E(ZZ- Zj ) = Frtm Z Z <?”1,?”2,---,7”i>< j)

51,825 ..-y S
r1,72,...,77=0 51,82,...,5;=0

[T wi ™ ()t H W (), (29)
=1

l=i+1

X
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Proof. Considering

E(ZZanm) = F ((w1X1 + ...+ wiXi)"(lel + ...+ ijj)m)

> s (0"

r1,...,73=0 81,...,8;=0

E ((lel)TlJrsl (wZXZ)TZJrsZ (wi+1Xi+1)Si+1 ...(’u)ij)Sj) .

X

Since X is gamma distribution by using My (t) = (1—t/3)™“ and setting

the E(X]") = (Ogr)i” the proof of the theorem is completed. OJ

5 Conclusion

This paper is devoted to the general formulas for the P.D.F, C.D.F,
M.G.F and C.G.F of sum of gamma variables. We have shown distribu-
tion of sum weighted of gamma variables as product between a gamma
density and a confluent form of the fourth Lauricella function. Also
the distribution, the covariance and correlation of two partial weighted
sums have been derived. Their distribution is very similar to product
between two gamma densities and two confluent forms of the fourth
Lauriella function. Additional formulas for the moments of these distri-
butions, survival and hazard function and Shannon entropy have been
derived as well.
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