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Abstract. In this paper an approximation for entropy rate of an ergodic
Markov chain via sample path simulation is calculated. Although there
is an explicit form of the entropy rate here, the exact computational
method is laborious to apply. It is demonstrated that the estimated
entropy rate of Markov chain via sample path not only converges to the
correct entropy rate but also does it exponentially fast.
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1 Introduction

In probability theory, entropy is introduced by Shannon (1948). The
entropy of a distribution P taking values from a finite set E is defined
by him as

H(P ) = −
∑
i∈E

Pi log Pi, (1)

with the convention 0 log 0 = 0. This definition can be obviously ex-
tended to any other countable set. Consider a Markov chain with a
state set X and a state transition probability matrix P. The probability
of a transition from the state x ∈ X to the state y ∈ X is denoted as
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Pxy. The Shannon entropy rate of the Markov chain is

H(X ) = lim
n→∞

H(X1,X2, ...,Xn)
n

, (2)

where Xt is a random variable demonstrating the state at time t, and
H(X1,X2, ...,Xn) is the joint entropy of (X1,X2, ...,Xn) with the joint
distribution P (x1, x2, ..., xn) where

H(X1,X2, ...,Xn)

= −
∑

x1∈X

∑
x2∈X

...
∑

xn∈X

P (x1, x2, ..., xn) log P (x1, x2, ..., xn)

= −EX1,X2,...,Xn log P (X1,X2, ...,Xn).

(3)

Shannon (1948) proved the convergence in probability bf − 1
n log P (x1, x2,

..., xn) to H(X ). The convergence in mean for any stationary ergodic
process with a finite state space is illustrated by McMillan (1953). In
sequence, the extension to a countable state set was made by Carleson
(1958) for the convergence in mean and by Chung (1961) for the almost
sure convergence.
Courbage and Saberi Fathi (2008) have computed the entropy function-
als for non-stationary distributions of particles of Lorentz gas and hard
disks.
Based on our best knowledge, the entropy rate of Markov chain with
infinite state space has not been achieved yet. In this paper we have
succeeded in obtaining entropy rate of Markov chain by conditioning on
its probability transition matrix. The achieved entropy rate is very close
to the real one. Our study concentrates on the estimation of the entropy
rate of the Markov chain. This paper is organized as follows: section
2 includes some required preliminaries, and considers two assumptions.
Section 3 is the most important section and the theorem is proved there.
In section 4 the entropy rate of a birth and death chain as a Markov
chain is included.

2 Preliminaries

In this paper an ergodic Markov chain with countable state set X is
analyzed where the weakest ergodicity of condition for the finite Markov
chains is:
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Assumption 2.1. There exists a positive number α < 1 such that

sup
x,x′∈X

∑
y∈X

|Pxy − Px′y| ≤ 2α. (4)

This assumption implies that there exists a unique stationary distribu-
tion ρ over X. Also, for a countable Markov chain to be an ergodic
chain, we need another assumption :

Assumption 2.2. For any x ∈ X

|{y|Pxy �= 0}| < ∞. (5)

Suppose that a given Markov chain is not ergodic. For finite state set X,
we can add an artificial state x̂ to X such that x̂ is reachable from any
state x with a probability very close to zero. Hence, we can transform the
given Markov chain into a new Markov chain, and an optimal solution
for the new Markov chain can also approximate an optimal solution for
the original Markov chain very closely.
For an ergodic stochastic process X, Cover (2006) proved that

H(X ) = lim
n→∞H(Xn|Xn−1, ...,X1), (6)

and for the homogeneous ergodic Markov chain one can show

H(X ) = H(X2|X1), (7)

so we can conclude easily

H(X ) =
∑
x∈X

ρ(x)S(x), (8)

where
S(x) = −

∑
y∈X

Pxy log Pxy, (9)

and ρ(x) is the unique stationary distribution of state x ∈ X.
To obtain H(X ) computing the stationary distribution ρ is essential.
Unfortunately, obtaining exactly the stationary distribution ρ is dif-
ficult where X is large. In general, direct method extracted from the
standard Gaussian elimination often suffers from fill-in phenomenon and
iterative method from a slow convergence that one can see in Gambin
and Pokarowski (2001). If the given Markov chain has geometric er-
godicity (e.g., Assumption 2.1), the convergence rate to the stationary
distribution from the iterative multiplication of P is fast or geometric
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(refer to Meyn and Tweedie (1993)). With an approximation of the sta-
tionary distribution ρ, H(X ) by a simple summation can be estimated.
A sample path simulation with relatively sparse P is considered.

3 Main Result

Consider a set of {x1, x2, ..., xn} as a sample path where xi ∈ X for any
1 ≤ i ≤ n. Let

Nn(i) :=
n∑

t=1

1{xt=xi}, (10)

where 1{xt=xi} =

{
1 xt = xi

0 xt �= xi
. 1

nNn(i) is an estimator for ρ(i).

Define

Ĥn(x) =
∑
i∈X

Nn(i)
n

S(i), X0 = x, (11)

as an estimator for the entropy rate of Markov chain via sample path
simulation.

Theorem 3.1. Assume that Assumption 2.1 and Assumption 2.2 are
held. Let C = 2M/(1 − α) where M = log supx∈X |{y|Pxy �= 0}|. For
a given ε > 0 and for any fixed x ∈ X, if N > 2C/ε, then there exists
β > 0 such that

Pr{|ĤN (x) − H(X )| > ε} ≤ exp(−βN). (12)

Proof. The proof of here is adapted from the proof of Theorem 2.1 in
Chang (2004). Let ρn(y|x) denote the probability that state y is reached
from state x in n-steps and ρ be the unique stationary distribution of
the Markov chain. Then

|
∑
y∈X

S(y)(ρn(y|x) − ρ(y))| ≤
∑
y∈X

|S(y)||(ρn(y|x) − ρ(y))|

≤ M.(
∑
y∈X

|ρn(y|x) − ρ(y)|) ≤ 2Mαn,

(13)
where the last inequality follows from Lemma 3.3 in Hernandez-Lerma
(1989).
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Let

ξ(x) :=
∞∑

n=0

∑
y∈X

S(y)(ρn(y|x) − ρ(y)). (14)

The property of
∑

y∈X ρ(y)S(y) = H(X ), ξ satisfies that

ξ(y) + H(X ) = S(y) +
∑
z∈X

Pyzξ(z). (15)

Define Mn := ξ(Xn) − E[ξ(Xn)|X0, ...,Xn−1] with X0 = x.
From (15)

ξ(Xn) + H(X ) = S(Xn) + E[ξ(Xn+1)|Xn, ...,X0]. (16)

By some algebraic manipulation on (15), we have
N∑

n=1

Mn + ξ(X0) − ξ(XN ) =
N∑

n=1

S(Xn) − NH(X )

=
∞∑
i=1

NN (i)S(i) − NH(X )

= N(ĤN (x) − H(X )) X0 = x.

(17)

It follows by

E[exp(N(ĤN (x) − H(X )))]

≤ exp(2‖ξ‖)E[exp(
N−1∑
n=1

Mn)]E[exp(MN )|X0, ...,XN−1]

≤ exp(2‖ξ‖)E[exp(
N−1∑
n=1

Mn)] exp(Φ(2‖ξ‖)σ2),

(18)

where σ2 ≥ E[M2
N |X0, ...,XN−1] and Φ(a) = (ea − a − 1)/a2 if a �= 0

and 0.5 otherwise. In Appendix A, the last inequality is proved.
By recursive applications we have

E[exp(N(ĤN (x) − H(X )))] ≤ exp(2‖ξ‖ + NΦ(2‖ξ‖)σ2), (19)

and by Markov’s inequality

Pr{exp(N(ĤN (x) − H(X ))) ≥ exp(Nε)}

≤ exp(2‖ξ‖ + NΦ(2‖ξ‖)σ2)/ exp(Nε),
(20)
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so

Pr{ĤN (x) − H(X ) ≥ ε} ≤ exp(2‖ξ‖ + NΦ(2‖ξ‖)σ2 − Nε)

= exp(2‖ξ‖ − Nε + Nσ2 e2‖ξ‖−2‖ξ‖−1
4‖ξ‖2 ).

(21)
Let σ2 = 4‖ξ‖2

Pr{ĤN(x) − H(X ) ≥ ε} ≤ exp(2‖ξ‖ − Nε + N(e2‖ξ‖ − 2‖ξ‖ − 1))

= exp(−N(−2‖ξ‖
N − e2‖ξ‖ + 2‖ξ‖ + 1 + ε))

= exp(−βN),
(22)

where β = −2‖ξ‖
N − e2‖ξ‖ + 2‖ξ‖ + 1 + ε > 0 if N > 2C/ε. Note that

‖ξ‖ ≤ C = 2M
1−α .

For the proof of other tail, let

ξ(x) :=
∞∑

n=0

∑
y∈X

S(y)(ρ(y) − ρn(y|x)). (23)

then we have

N∑
n=1

Mn + ξ(X0) − ξ(XN ) = N(H(X ) − ĤN (x)) X0 = x. (24)

Now with the similar reasoning, Pr{H(X ) − ĤN (x) > ε} ≤ exp(−βN)
can be proved

4 Numerical example

Consider a birth and death chain with one reflecting barrier over X =
{0, 1, 2, ...} with following parameters

Px x+1 =
x + 2

(x + 3)2
, Px x−1 =

1
x + 1

, Px x = 1 − px − qx, (25)

where x ≥ 1 and p0 = 1. We get px := Px x+1, qx := Px x−1

and rx := Px x. In this paper a Markov chain that satisfies Assumption
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2.1 and Assumption 2.2 is required. This birth and death chain satisfies
Assumption 2.2 with M = 3. We use Lemma 4.1 from Bermaud (1998)
to satisfy Assumption 2.1.

Lemma 4.1. A birth and death chain with parameters px, qx and rx,
has unique stationary distribution if and only if

∞∑
i=2

p1...pi−1

q1q2...qi
< ∞. (26)

One can obtain the unique stationary distribution of this chain from⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ(1) = ρ(0) 1
q1

ρ(i) = ρ(0)p1...pi−1

q1q2...qi
i ≥ 2

∑∞
i=0 ρ(i) = 1

(27)

Also consider a birth and death chain with two reflecting barriers over
X = {0, 1, 2, ..., k} with following parameters px, qx and rx (25),where
x ∈ {1, 2, ..., k − 1} and p0 = qk = 1.
This chain satisfies Assumption 2.1 and Assumption 2.2. The unique
stationary distribution of this chain was obtained from⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ(1) = ρ(0) 1
q1

ρ(i) = ρ(0)p1...pi−1

q1q2...qi
2 ≤ i ≤ k

∑k
i=0 ρ(i) = 1

(28)

So we can compute the entropy rate of these chains directly. The entropy
rate of the birth and death chain with one reflecting barrier chain is

H := H(X ) = −
∞∑
i=0

ρ(i)S(i).

Calculating the above series follows

−
∞∑
i=0

ρ(i)S(i) = 0.6924620 + ε, for ε ≤ 10−6, (29)

More details are mentioned in Appendix B. Note that in this section we
obtain results 7-decimally and due to the noncontrollable calculations,
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there are some errors. Now we try to estimate H(X ) with samples in
table 1 and table 2.

Table 1: ĤN for |X| = 10
|X| 10
H 0.7813217
N 104 105 106 107

0.7859416 0.7836277 0.7815468 0.7814328
0.7749093 0.7815980 0.7805482 0.7814196
0.7838243 0.7815555 0.7811086 0.7810723
0.7798157 0.7806728 0.7807021 0.7812658

ĤN 0.7855056 0.7839759 0.7808171 0.7814986
0.7822891 0.7813946 0.7817993 0.7814496
0.7828118 0.7800310 0.7812329 0.7814329
0.7781985 0.7828447 0.7803726 0.7811364
0.7798441 0.7813342 0.7813246 0.7812238
0.7852608 0.7803726 0.7810109 0.7813408

Ĥ∗
N 0.7818401 0.7817407 0.7810463 0.7813273

Table 2: ĤN for |X| = 100 and |X| = 1000

|X| 100 1000
H 0.7165776 0.6939823
N 105 106 107 105 106 107

0.7272087 0.7327888 0.7167925 0.7129858 0.7030381 0.6962057
0.7175089 0.6909413 0.7155904 0.7026311 0.6959066 0.6885889
0.7335587 0.7302528 0.7187245 0.7288800 0.7038811 0.7076252
0.7423985 0.7281338 0.7071163 0.7083498 0.6970961 0.6931346

ĤN 0.7338309 0.7006550 0.7181671 0.7285714 0.6843995 0.7049802
0.7450219 0.7249378 0.7028489 0.6910547 0.7054787 0.6903988
0.7117454 0.6802888 0.7150568 0.7058754 0.6901041 0.6841475
0.7289969 0.6977386 0.7234855 0.7154222 0.7059025 0.6783689
0.7256536 0.7426642 0.7138050 0.6864514 0.6946754 0.7035494
0.7283608 0.7246335 0.7136284 0.7058230 0.6891336 0.6951037

Ĥ∗
N 0.7294284 0.7153035 0.7145215 0.7086045 0.6949616 0.6942103
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Where |X| is the size of the state set X, and N is the size of sample
path. For any pair of (|X|, N), ten sample paths were generated, and the
mean of the estimate of the entropy rate of them was used. The tables
show that Ĥ∗

N (x) converges to H(X ) when N increases asymptotically.
Also when |X| increases, the entropy rate of the birth and death chain
with two reflecting barriers converges to the entropy rate of the birth
and death chain with one reflecting barrier.

Conclusions

In this paper the entropy rate of a Markov chain with the countable
state set is reviewed. First, an estimator for the stationary distribution
of Markov chain via sample-path is obtained and then the entropy rate of
the Markov chain is estimated.We illustrated that the estimated entropy
rate of the Markov chain asymptotically converges to the true entropy
rate exponentially fast with regard to the size of the sample-path.
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Appendix

Appendix A. The proof of inequality (18)

E[exp(N(ĤN (x) − H(X )))]

≤ exp(2‖ξ‖)E[exp(
N∑

n=1

Mn)]

≤ exp(2‖ξ‖)E[exp(
N−1∑
n=1

Mn)]E[exp(MN )|X0, ...,XN−1].

(30)

Note that Φ(a) ≥ 0 for all a ∈ R and Φ(a) is nondecreasing.

E[exp(MN )|X0, ...,XN−1]

= exp(log(E[eMN |X0, ..,XN−1]))

= exp(log(E[eMN − 1 − MN + 1 + MN |X0, ...,XN−1]))

= exp(log(E[eMN − 1 − MN |X0, ...,XN−1] + 1)),

(31)

where the last equality is concluded from E[MN |X0, ...,XN−1] = 0.
Now we have
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e(log(E[eMN −1−MN |X0,...,XN−1]+1))

= exp(log(E[Φ(MN )M2
N |X0, ...,XN−1] + 1))

≤ exp(E[Φ(MN )M2
N |X0, ...,XN−1]),

(32)

by using log(a + 1) ≤ a for a ≥ 0. Now by monotonicity of Φ and
|MN | ≤ 2‖ξ‖, we have

exp(E[Φ(MN )M2
N |X0, ...,XN−1])

≤ exp(Φ(2‖ξ‖)E[M2
N |X0, ...,XN−1])

≤ exp(Φ(2‖ξ‖)σ2),

(33)

where σ2 ≥ E[M2
N |X0, ...,XN−1].

Appendix B. The estimation of series in (29)
For estimating of the series in (29), we calculate it for finite cases. Let

Hn(X ) = −
n−1∑
i=0

ρ(i)S(i).

The results of calculation are mentioned in the following table.

Table 3: Hn(X ) for n = 10, 102, ..., 107 and 2.5 × 107

n Hn(X ) n Hn(X )
10 0.7813217 105 0.6924781
102 0.7165776 106 0.6924643
103 0.6939823 107 0.6924629
104 0.6926162 2.5 × 107 0.6924628
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