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Abstract

This work uses the thermal non-equilibrium model to study free convection boundary-layer
flow of a micropolar fluid along a cylinder of elliptic cross-section embedded in porous me-
dia. The transformed conservation equations of the non-similar boundary layers are solved
numerically by an efficient, iterative, tri-diagonal implicit finite difference method. The
numerical results are compared and found to be in excellent agreement with previously
published results on special cases of the problem. The obtained results are displayed
graphically to illustrate the influence of the different physical parameters on the linear
and angular velocities and the fluid- and solid-phase temperatures, as well as the local
skin-friction coefficient, wall couple stress coefficient and the local Nusselt numbers for
fluid and solid phases.

Keywords : Free convection; Elliptic cylinder; Micropolar fluid; Porous media; Thermal non-
equilibrium model.

1 Introduction

The classical Navier-Stokes theory does not describe adequately the flow properties of
polymeric fluids, colloidal suspensions, and fluids containing certain additives. Eringen [1]
proposed the theory of micropolar fluids which includes micro-rotation as well as micro-
inertia effects. The theory of thermo-micropolar fluids was also developed by Eringen [2]
by extending his theory of micropolar fluids. The theory of micropolar fluids is generating
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a lot of interest and many classical flows are being re-examined to determine the effects
of micro-structure.

On the other hand, in modeling flows in porous media, the utilization of the assump-
tion of local thermal equilibrium between the fluid and the solid porous medium breaks
down often in many practical applications. Quintard and Whitaker [3] cited numerous
physical situations where local thermal equilibrium fails. For example, when there is a
significant heat generation occurring in any one of the two phases (solid or fluid), the tem-
peratures in the two phases are no longer identical. When the temperature at the bounding
surface changes significantly with respect to time, and when solid and fluid phases have
significantly different heat capacities and thermal conductivities, the local rate of change
of temperature for one phase differs significantly from that for the other phase. Amiri
and Vafai [4] investigated the validity of local thermal equilibrium conditions for steady
state as well as transient incompressible flow through a porous medium. Kim et al. [5]
presented an analytical solution for the two-equation model including the boundary effect
for an equivalent micro-channel application. They presented analytical solutions for the
fluid- and solid-phase temperature distributions based on the Brinkman-extended Darcy
equation. They also analyzed the validity of the local thermal equilibrium assumption.

In the absence of local thermal equilibrium, the single energy equation needs to be
replaced with two energy equations, one for the solid and another for the fluid. The
coupling of these two equations is given by the interfacial heat transfer coefficient. Two
energy equation models have been introduced heuristically in the literature [6]. In recent
years, the local thermal non-equilibrium model has been given considerable attention and
has been utilized in various fields [7] due to its pertinence in applications. For example,
Lee and Vafai [8] employed the thermal non-equilibrium model to investigate the forced
convection flow through a channel filled with a porous medium. They obtained analytical
solutions for the fluid- and solid-phase temperature distributions.

The objective of this paper is to study the thermal non-equilibrium model for heat
transfer by free convection from cylinders of elliptic cross-section in micropolar fluid
through a porous medium. An appropriate coordinate transformation and an adequate
implicit finite-difference method are applied to study this problem. The influence of vertex
viscosity parameter, permeability parameter, heat transfer coefficient parameter, thermal
conductivity ratio, and the aspect ratio on heat transfer characteristics, linear velocity
and angular velocity are examined for both cases when the major axis is horizontal (blunt
orientation) and when the major axis is vertical (slender orientation).

2  Governing equations

The configuration considered is a horizontal cylinder of elliptic cross-section which is
situated in a micropolar fluid as shown in Fig. 1, where coordinates are measured along
the surface of the cylinder and normal to it, respectively. is the angle made by the outward
normal from the cylinder with the downward vertical and is the eccentric angle. We assume
that the surface of the cylinder is maintained at a uniform temperature which is higher
than the ambient fluid temperature
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Fig. 1. Physical model and coordinate system: (a) blunt orientation; (b) slender orientation

Using the thermal non-equilibrium model and the Boussinesq approximation, we can write
the governing equations in two-dimensional Cartesian coordinates as:
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In the above equations, (%, v)are the velocity components along the (Z,7) axes, N is
the angular velocity of the micropolar fluid, k is the vortex-viscosity, j is the micro-inertia,
7 is the spin gradient viscosity, Trand T,are the fluid- and solid-phase temperatures, re-
spectively, krand kgare the fluid- and solid-phase thermal conductivities, respectively, h is
the heat transfer coefficient between the solid and fluid phase, k1 is the permeability of the
porous medium, v is the kinematic viscosity of the fluid, gis the gravitational acceleration,
f3 is the coefficient of volume expansion, prand ¢, are the density and constant-pressure
specific heat of the fluid, respectively, and ¢ is the porosity of the porous medium.

The appropriate boundary conditions are

u=0=0, Ty =Ty, Ts=Ty, N:_ng_g on §=0 (26)

=0, Tf =T, Ts=Tx, N=0 as § — 00, '
where 0 < n < 1. The case n = 0, which indicates N = 0, represents concentrated particle
flow in which the microelements close to the wall surface are unable to rotate. The case
n = 1/2 indicates the vanishing of the anti-symmetric part of the stress tensor and denotes

weak concentrations. The case n = 1 is used for modeling turbulent boundary layer flows.
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The above equations are further non-dimensionalized using the definitions

z=%/a, y=(g/a)Gr'/, = (Dlv)Gr=/

N = (a*N/v)Gr=®*, 0 = (Ty = Too) /(T — Tx), (2.7)
Os =(Ts — Too) /(T — Too),

where Gr = g3(T — T )a®/v? is the Grashof number and vis the stream function which
is defined in the usual Way (@,7) = (0v /37, —0/dF). Substitution of Equations(2.7) into

Equations (2.2)-(2.5) leads to

%;jgjx - %% (1+A) g:;/) + A oy —I— Ofsing — Kl%, (2.8)
%% _ %%_ny S {% + H[h, ef]} (2.10)
%279 — xHI0s = 0] =0, (2.11)

where Pr = (uc,)/ckyis the Prandtl number, H = (ha®/ck;)Gr~'/? is the heat transfer
coefficient parameter, y = ky/cks(1 — ¢) is the thermal conductivity ratio parameter,
A = k/uis the vortex-viscosity parameter, A = /uj is the micro-rotation parameter,
B = (a?/§)Gr~"/? is the material parameter and K| = (a?/k;)Gr~"/? is the permeability
parameter.

The dimensionless form of the boundary conditions (2.6) become

B =20, ;=1 6,=1, N+nSt=0 ony=0,

%:0, 0; =0, 0,=0, N=0 as y — oc.

(2.12)

A further transformation is needed for bodies with rounded lower ends because sin ¢/x
approaches a constant value as x approaches zero [9]. The new non-dimensional variable
is defined as [10].

Flay) = 20(ry),  Glry) = -N(ry). (213)

Substituting Equations (2.13) into Equations (2.8)-(2.11), one obtains
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while the boundary conditions (2.12) become

— \H [, — 0;] =0, (2.17)

2
F:%—izo, O =1, 0,=1, G—i—n%Tg:O on y =0,
9 =0, 9; =0, 6,=0, G=0 as y — .

It should be noted here that A =1+ A/2 as done by Cheng [11].

(2.18)

For cylinders of circular cross-section, sin ¢ = sinx. However, for cylinders of elliptic
cross-section, x and sin ¢ can be given in terms of the eccentric angle a by the relations:

1. For blunt orientation

r= / (1 — e?sin’~)2dy, (2.19)
0

b sin v
i = . 2.20
sin ¢ a(l — e sin? a)1/2 (220)

2. For slender orientation

[0
xr = / (1 — €2 cos® 7)Y 2dy, (2.21)
0
sin o
sin ¢ = . 2.22
¢ (1 — €2 cos? a)l/2 (222)
Here, e denotes the eccentricity expressed as e? = (1 — b?/a?), and b/a is the aspect

ratio of the elliptic cylinder. When xapproaches zero, as shown in Equations (2.19)-(2.22),
the value of sin ¢/x approaches the aspect ratio b/a for the elliptic cylinder with blunt
orientation while the value of sin ¢/x approaches the value of b?/a? for the elliptic cylinder
with slender orientation.

Of special significance in this type of problems are the local wall shear stress 7, the
local wall couple stress M, the local rate of heat transfer for the fluid phase (¢.)s, and
the local rate of heat transfer for the solid phase (¢, )s which may be written respectively
as

ou _
Tw = [(u +h) 4 kN} : (2.23)
M, = —y 8—]Y , (2.24)
Y |50
Ty
Qw)f = —kf —= ; 2.25
(qw)y 7797 |y (2.25)
oT,
(w)s = ks = (2.26)
Y lg=0
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Using Equations (2.7) and (2.13), we have

_ PV~ 3/4 9*F
Tw—gGr/x[l—l—A(l—n)] 97

, (2.27)
y=0
oG
M, =-ara S| (2.28)
@ 8:[/ y:(]
ky 1/4 0y

qu)f = ———Gr /" Ty — Tso| , 2.29
(quw)y = == Gr'/* EA (2.20)

ks 1/4 895
qu)s = ——Gr /" [Ty —Tyo| , 2.30
(qu)s = ——Gr'/*| EA (2:30)

By means of Equations (2.27) and (2.28), we can define the local skin-friction coefficient
Cf*and the local wall couple-stress coefficient Cg* as

. Tw O*F
CfGr3/4 = =2Cf=ux 14+ A(1—n)

— , (2.31)
9y* |,—o
M, oG
CiGr = ——5 20y = —x — (2.32)
1z Ay |,
a3 y=0
In addition, the local Nusselt number for the fluid can be written as
a(Qw)f
Nuy = . 2.33
Using Equation (2.29), we obtain
N o9
Yo _2r (2.34)
Grl/4 Y |,=o
Similarly, the local Nusselt number for the solid matrix can be written as
a(qw)s
Nug = . 2.35
U e Ty — Too] (2:35)
and by using Equation (2.30), we obtain
Nu, 005
s T (2.36)
Grl/4 Y |,=0
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Table 1
Comparison of the local Nusselt number for the Newtonian fluid case with H=0, K1=0, Pr=1.0.
a b/a=0.1 b/a=0.25 b/a=0.5 b/a=1.0
(blunt) (blunt) (blunt) (slender)
0.0 0.2373 0.2979 0.3543 0.4213
[0.2375] [0.2979] [0.3542] [0.4213]
(0.2369) (0.2979) (0.3542) (0.4212)
04 0.2419 0.3037 0.3592 0.4282
[0.2418] [0.3034] [0.3589] [0.4183]
(0.2421) (0.3039) (0.3593) (0.4182)
0.8 0.2561 0.3240 0.3747 0.4093
[0.2607] [0.3240] [0.3747] [0.4093]
(0.2599) (0.3240) (0.3747) (0.4093)
1.2 0.3036 0.3675 0.3979 0.3941
[0.3044] [0.3677] [0.3985] [0.3942]
(0.3031) (0.3673) (0.3984) (0.3942)
2.0 0.3212 0.3659 0.3693 0.3441
[0.3220] [0.3670] [0.3712] [0.3440]
(0.3206) (0.3670) (0.3713) (0.3443)
24 0.2362 0.2838 0.3073 0.3073
[0.2360] [0.2836] [0.3078] [0.3066]
(0.2361) (0.2840) (0.3081) (0.3073)
T 0.1206 0.1501 0.1745 0.1963
[0.1201] [0.1500] [0.1744] [0. 1963]
(0.1206) (0.1504) (0.1746) (0.1963)

Results in brackets are those of Bhattacharyya and Pop [9] and results in parentheses are those of
Merkin [10]

The solution of the problem is obtained by solving the system of equations (14)-(17) along
with the boundary conditions (18) numerically by means of an efficient, iterative, tri-diagonal
implicit finite difference method discussed previously by Blottner [12]. In order to check the
accuracy of the numerical method, the local Nusselt number of the fluid phase for a Newtonian
fluid ( is compared with those reported earlier by Bhattacharyya and Pop [9] and Merkin [10]
using the thermal-equilibrium model. As shown in Table 1, the present results are found to be in
excellent agreement with the results of Bhattacharyya and Pop [9] and Merkin [10].

3 Results and Discussion

Numerical computations are carried out and a parametric study is performed to illustrate the
influence of the physical parameters on the linear and angular velocities and the fluid- and solid-
phase temperatures, as well as the local skin-friction coefficient, wall couple-stress coefficient, and
the local Nusselt numbers for fluid and solid phases. The results of this parametric study are
shown in Figs. 2-25.
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Fig. 2. Linear velocity profiles for different values of aspect ratio Fig. 3. Angular velocity profiles for different values of aspect ratio

Fig. 4. Fluid-phase temperature profiles for different values of aspect ratio Fig. 5. Solid-phase temperature profiles for different values of aspect ratio

Figures 2-5 present typical profiles for the linear velocity, angular velocity, fluid-phase tempera-
ture, and solid-phase temperature for different values of the aspect ratio b/aand blunt and slender
cylinder orientations, respectively. It is clearly observed that different behaviors take place depend-
ing on the cylinder orientation. For a blunt cylinder orientation, the linear velocity (F') increases
whereas the angular velocity (G), fluid-phase temperature (6), and the solid-phase temperature
(05) decrease as the cylinder aspect ratio b/aincreases. On the other hand, the exact opposite effect
is obtained for a slender cylinder orientation for which the profiles of G, 8¢ and 6, increase while
the profile of F’ decreases as the cylinder aspect ratio b/a increases.
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Fig. 6. Local skin-fiction coefficient distiibution for vasious aspect ratios Fig 7. Local couple-stress coefficient distnbution for vanous aspect ratios

Fig 8 Local flmid- and solid-phase Nusselt numbers distnbutions for blunt Fig 9. Local fhuid- and solid:phase Nusselt numbers distributions for slender
cylinders and various aspect ratios cylinders and vanous aspect ratios

Figures 6-9 illustrate the effects of the cylinder aspect ratio b/a on the distributions of
the local skin-friction coefficientC, local couple-stress coefficientC,, and local Nusselt numbers
for the fluid and solid phases Nu;/Gr'/?and Nu,/Gr'/?along the cylinder for blunt and slen-
der cylinder orientations, respectively. The trends of Cy,C,, Nus/Gr'/?and Nu,/Gr'/?along the
cylinder depend strongly on the cylinder orientation. In general, for a blunt cylinder orientation
and0 < b/a < 1, the values of Cy, Cy, Nus/Gr'/?and Nu,/Gr'/?*tend to increase as the ec-
centric angle « increases reaching a maximum at around o = 7/2 and then decrease thereafter
reaching a minimum at a = 7. However, for a slender cylinder orientation, the values of C'y,Cy,
Nuy/Gr'/?and Nu,/Gr'/?are maxima at small values of the eccentric angle o and they decrease
as « increases further reaching their minima at o = 7. As the cylinder aspect ratio b/a increases,
the values of C, Cy, Nuf/Gr1/2and NuS/Gr1/2increase for a blunt cylinder orientation while they
decrease for a slender cylinder orientation. The local Nusselt number values for the solid phase
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are lower than those for the fluid phase. Also, the values of Cy, Cy, Nuf/Gr1/2and NuS/Grl/Qfor
a slender cylinder orientation are higher than those corresponding to a blunt cylinder orientation.
All these behaviors are clearly shown in Figs. 6-9.

[ ]

Wi S (] ]
g 1) :‘;:"
. Seader e Ll Herder B0
e — K0S St bt
sl o ™y wid - 00
n =t LU P piry
uf \ 5 : adt
4 \ P8 amll 051005 -
-0
i
4T
\
o N
an
L] 2 i L] ] "
7 b
Fig 10. Effects of vortex-viscosity parameter oa linear welocity profiles Fig 11 Effects of vortex-viscosity parameter on angular velocity profiles

Figures 10 and 11 present the effects of the micropolar fluid vortex-viscosity parameterA on the
linear and angular velocity profiles for both blunt and slender cylinder orientations, respectively.
It should be noted that A=0 corresponds to the case of a Newtonian fluid. Physically, increasing
the values of A has the tendency to increase the viscous effects in the boundary layer close to the
cylinder surface which in turn, causes decreases in the linear and angular velocities (F’ and G).
However, far downstream, this effect decreases and an increasing trend in the linear and angular
velocities is predicted. These behaviors are true regardless of the cylinder orientation as is clear
from Figs. 10 and 11.
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Fig 12 Effects of vortex-viscosity parameter on local shan-friction Fig 13. Effects of vartex-viscosty parameter on local couple-stress
coefficient coefficient
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Fig 14, Effects of vortex-viscosity parameter on local finad- and sobid-phase Nusselt Fig 15. Effects of vortex-viscostty parameter on local fiuid- and solid-phase Nuseelt
mtmbers for blmt cylinders numbers for slender cylnders

Figures 12-15 depict the influence of the micropolar fluid vortex-viscosity parameter A on the
distributions of the local skin-friction coefficient Cy, local couple-stress coefficient Cy, and local
Nusselt numbers for the fluid and solid phases Nuy/Gr'/?and Nu,/Gr'/?along the cylinder for
blunt and slender cylinder orientations, respectively. It is predicted that the local skin-friction and
couple-stress coefficients increase whereas the local Nusselt numbers for the fluid and solid phases
decrease as the vortex-viscosity parameterA increases. This prediction is true for both blunt and
slender cylinder orientations.
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Fig 16. Effects of permeability parameter on linear velocity profiles Fig 17. Effects of permeability parameter on local skin-fniction coefficient

Figure 16 displays the effects of the permeability parameter Kjon the linear velocity profiles for
both blunt and slender cylinder orientations. The presence of the porous medium represents an
obstacle to flow and, as a result, reduces its velocity. This is depicted in the decreases in the linear
velocity profiles asKjincreases, as shown in Fig. 16.
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Fig 18. Effects of permeabulity parameter on local couple-stress coefficient

Fig 20. Effects of permeabdaty parameter on local fld- and sobd-phase Nusselt

numbess for slender cylmders

Fig 19 Effects of permeablity parameter on local fhad- and sobd-phase Nusselt
mumbers for biunt cylinders

Fig. 21. Effects of heat transfer coefficient on local flud- and solid-phase Nusselt
musmbers for blunt cylnders

The effects of the presence of the porous medium represented by the permeability parameter K
on the distributions of the local skin-friction coefficient C, local couple-stress coefficient C,, and
local Nusselt numbers for the fluid and solid phases Nu/Gr'/2and Nu,/Gr'/?along the cylinder
for blunt and slender cylinder orientations are elucidated in Figs. 17-20, respectively. It is observed
that the values ofCy,Cy, Nuys/Gr'/?and Nu,/Gr'/?*tend to decrease as K1 increases and that is
true for both blunt and slender cylinder orientations.
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Fig. 22. Efficts of heat transfer coefficient on local fluid- and solid-phase Nusselt Fig. 23, Effects of mucro-gyration boundary parameter on lmear nd angulas velocaty
numbers for slender cylmders profiles

Figures 21 and 22 depict the effects of the heat transfer coefficient between the fluid and solid
phases Hon the local Nusselt number distributions of both the fluid and solid phases along the
cylinder for blunt and slender cylinder orientations, respectively. Obviously, an energy balance
for the fluid and solid phases indicates that heat loss from the fluid phase is gained by the solid
phase. The case H = Orepresents the case of thermal equilibrium. As Hincreases, the fluid-phase
Nusselt number decreases while the solid-phase Nusselt number increases by virtue of inter-phase
heat transfer. AsH — oo, then the temperatures of both phases become the same. This gives
equal Nusselt numbers of both phases. This behavior is true for both blunt and slender cylinder
orientations as is obvious from Figs. 21 and 22.

The effects of the micro-gyration boundary parameter n on the linear and angular velocity
profiles for both blunt and slender cylinder orientations are displayed in Fig. 23. As expected, the
wall value of the angular velocity is strongly affected by changes in the value of n. A comparison
of the values of the linear velocity for strong concentration of microelement (n = 0) and weak
concentration of microelement (n = 0.5) shows that the values of the linear velocity for n = 0.5
are larger than those corresponding to n = 0. However, the angular velocity (G) decreases as n
increases. In addition, for a slender cylinder orientation, the angular velocity profiles are completely
negative in the case of weak concentration of microelement (n = 0.5), while it is positive and
negative in the case of strong concentration of microelement (n = 0).

303
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Fig 24. Effects of micro-gymation boundary parameter on Jocal fhud- and solid-phase

4 Fig. 25, Effects of thermal conductiaty ratio on local fhud- and solid-phase Nusselt
Nusselt mumbers )

mumbers

Figures 24 and 25 show the effects of the micro-gyration boundary parameter n and the thermal
conductivity ratio y on the local Nusselt number for the fluid phase Nuf/GT1/4and the local Nusselt
number for the solid phase Nu,/Gr'/*for blunt and slender cylinder orientations, respectively.
From these figures, it is observed that increasing either the thermal conductivity ratio y or the
micro-gyration boundary parameter n results in increases in the local Nusselt numbers of the fluid
and solid phases for both blunt and slender cylinder orientations.

4 Conclusions

Heat transfer by free convection boundary-layer flow of a micropolar fluid along a cylinder of
elliptic cross-section embedded in porous media was studied using the thermal non-equilibrium
model. An appropriate coordinate transformation was employed to transform the governing equa-
tions into non-dimensional non-similar boundary-layer equations. The obtained boundary-layer
equations were then solved numerically by an efficient implicit finite-difference method. From the
results of the problem the following conclusions were observed:

1. The linear velocity increased due to increases in the cylinder aspect ratio and the micro-
gyration boundary parameter and decreased as either the permeability parameter or the
vortex-viscosity parameter was increased.

2. The angular velocity profiles were completely negative for the case of weak concentration
of microelement, while it was positive and negative in the case of strong concentration of
microelement.

3. The local skin-friction coefficient and the local wall couple-stress coefficient increased as
either the cylinder aspect ratio or the vortex-viscosity parameter decreased due to increases
in either of the permeability parameters.

4. The local fluid-phase Nusselt number increased as either the micro-gyration boundary pa-
rameter, thermal conductivity ratio or the cylinder aspect ratio (for blunt orientation and
small eccentric angles) increased, and decreased as either the vortex-viscosity parameter,
permeability parameter, heat transfer coefficient or the cylinder aspect ratio for slender
cylinder orientation increased.
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5. The local solid-phase Nusselt number increased as either the micro-gyration boundary pa-
rameter, thermal conductivity ratio or the heat transfer coefficient increased, and decreased
as either the vortex-viscosity parameter, cylinder aspect ratio (for slender orientation), or
the permeability parameter increased.

6. The local skin-friction coefficient, local wall couple-stress coefficient and the local Nusselt
numbers of the fluid and solid phases of elliptic cylinders with a slender orientation were
found to be higher than those with a blunt orientation.
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