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Fuzzy Laplae Transform on Two OrderDerivative and Solving Fuzzy Two OrderDi�erential EquationsS.J. Ramazannia Tolouti �, M. Barkhordari AhmadiDepartment of Mathematis, Bandar Abbas Branh, Islami Azad University, Bandar Abbas, IranReeived 3 July 2010; revised 30 November 2010; aepted 11 Deember 2010.|||||||||||||||||||||||||||||||-AbstratIn this paper, the laplae transform formula on the fuzzy two order derivative is inves-tigated by using the strongly generalized di�erentiability onept. Then, it is used in aanalyti method for fuzzy two order di�erential equation. The related theorems and prop-erties are proved in detail and the method is illustrated by solving some examples.Keywords : Fuzzy-number, Fuzzy-valued funtion, Generalized di�erentiability, fuzzy di�erentialequation,fuzzy laplae transform, fuzzy initial value problem.||||||||||||||||||||||||||||||||{1 IntrodutionA natural way to model dynami systems under unortainty is to use FDEs. Two orderfuzzy di�erential equations are one of the simplest FDEs whih may appear in manyappliations. The topi of fuzzy di�erential equations (FDEs) has been rapidly growingin reent years. The onept of the fuzzy derivative was �rst introdued by Chang andZadeh [22℄; it was followed up by Dubois and Prade [27℄, who used the extension priniplein their approah. Other methods have been disussed by Puri and Ralesu [44℄ andGoetshel and Voxman [30℄. Kandel and Byatt [37, 38℄ applied the onept of FDEsto the analysis of fuzzy dynamial problems. The FDE and the initial value problem(Cauhy problem) were rigorously treated by Kaleva [35, 36℄, Seikkala [45℄, He and Yi[40℄, Kloeden [39℄ and Menda [42℄, and by other researhers (see [10, 15, 17, 16, 20,26, 34℄). The numerial methods for solving fuzzy di�erential equations are introduedin [1, 2, 7, 32℄. A thorough theoretial researh of fuzzy Cauhy problems was given byKaleva [35℄, Seikkala [45℄, Ouyang and Wu [40℄, and Kloeden [39℄ and Wu [48℄. Kaleva [35℄disussed the properties of di�erentiable fuzzy set-valued funtions by means of the onept�Corresponding author. Email address: S.J.Ramazannia�iauba.a.ir.279
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280 S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293of H-di�erentiability due to Puri and Ralesu [44℄, gave the existene and uniquenesstheorem for a solution of the fuzzy di�erential equation y0 = f(t; y); y(t0) = y0 when fsatis�es the Lipshitz ondition. Further, song and Wu [46℄ investigate fuzzy di�erentialequations, and generalize the main results of Kaleva [35℄. Seikkala [45℄, de�ned the fuzzyderivative whih is the generalization of Hukuhara derivative, and showed that fuzzy initialvalue problem y0 = f(t; y); y(t0) = y0 has a unique solution, for the fuzzy proess of areal variable whose values are in the fuzzy number spae (E, D), where f satis�es thegeneralized Lipshitz ondition. Strongly generalized di�erentiability was introdued in[12℄ and studied in [10℄. The strongly generalized derivative is de�ned for a larger lassof fuzzy-valued funtion than the H-derivative, and fuzzy di�erential equations an havesolutions whih have a dereasing length of their support. So we use this di�erentiabilityonept in the present paper. The fuzzy Laplae transform method solves FTDEs andorresponding fuzzy two order and boundary value problems. In this way fuzzy Laplaetransforms redue the problem of solving a FTDE to an algebrai problem. This swithingfrom operations of alulus to algebrai operations on transforms is alled operationalalulus, a very important area of applied mathematis, and for the engineer, the fuzzyLaplae transform method is pratially the most important operational method. Thefuzzy Laplae transform also has the advantage that it solves problems diretly, fuzzy twoorder value problems without �rst determining a general solution, and non homogeneousdi�erential equations without �rst solving the orresponding homogeneous equation.The paper is organized as follows:Setion 2 ontains the basi material to be used in the paper. In setion 3 fuzzy Laplaetransform for two order derivative is de�ned and Proedure for solving FDEs by fuzzyLaplae transform is proposed. Several examples are given in setion 4, and onlusionsare drawn in setion 5.2 PreliminariesWe now reall some de�nitions needed through the paper. The basi de�nition of fuzzynumbers is given in [25, 31℄.By R, we denote the set of all real numbers. A fuzzy number is a mapping u : R! [0; 1℄with the following properties:(a) u is upper semi-ontinuous,(b) u is fuzzy onvex, i.e., u(�x+ (1� �)y) � minfu(x); u(y)g for all x; y 2 R;� 2 [0; 1℄,() u is normal, i.e.,9x0 2 R for whih u(x0) = 1,(d) supp u = fx 2 R j u(x) > 0g is the support of the u, and its losure l(supp u) isompat.Let E be the set of all fuzzy number on R. The r-level set of a fuzzy number u 2 E,o � r � 1, denoted by [u℄r , is de�ned as[u℄r = � fx 2 R j u(x) � rg if 0 � r � 1l(supp u) if r = 0It is lear that the r-level set of a fuzzy number is a losed and bounded interval [u(r); u(r)℄,where u(r) denotes the left-hand endpoint of [u℄r and u(r) denotes the right-hand endpointof [u℄r. Sine eah y 2 R an be regarded as a fuzzy number ey de�ned by
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S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293 281ey(t) = � 1 if t = yo if t 6= yR an be embedded in E.Remark 2.1. (See [52℄) Let X be Cartesian produt of universes X = X1� :::�Xn, andA1; : : : ; An be n fuzzy numbers in X1; : : : ;Xn, respetively. f is a mapping from X to auniverse Y , y = f(x1; :::; xn). Then the extension priniple allows us to de�ne a fuzzy setB in Y by B = f(y; u(y)) j y = f(x1; :::; xn); (x1; :::; xn) 2 XgwhereuB(y) = ( sup(x1;:::;xn)2f�1(y) minfuA1(x1); :::; uAn(xn))g; if f�1(y) 6= 0;0 if otherwise:where f�1 is the inverse of f .For n = 1, the extension priniple, of ourse, redues toB = f(y; uB(y)) j y = f(x); x 2 Xgwhere uB(y) = ( supx2f�1(y) uA(x); if f�1(y) 6= 0;0 if otherwise:Aording to Zadeh;s extension priniple, operation of addition on E is de�ned by(u� v)(x) = supy2Rminfu(y); v(x � y)g; x 2 Rand salar multipliation of a fuzzy number is given by(k � u)(x) = ( u(x=k); k > 0;e0; k = 0;where ~0 2 E:It is well known that the following properties are true for all levels[u� v℄r = [u℄r + [v℄r; [k � u℄r = k[u℄rFrom this harateristi of fuzzy numbers, we see that a fuzzy number is determined bythe endpoints of the intervals [u℄r. This leads to the following harateristi representationof a fuzzy number in terms of the two "endpoint" funtions u(r) and u(r). An equivalentparametri de�nition is also given in ([29, 41℄) as:De�nition 2.1. A fuzzy number u in parametri form is a pair (u; u) of funtions u(r),u(r); 0 � r � 1, whih satisfy the following requirements:1. u(r) is a bounded non-dereasing left ontinuous funtion in (0; 1℄, and right ontin-uous at 0,
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282 S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-2932. u(r) is a bounded non-inreasing left ontinuous funtion in (0; 1℄, and right ontin-uous at 0,3. u(r) � u(r); 0 � r � 1.A risp number � is simply represented by u(r) = u(r) = �; 0 � r � 1: We reall thatfor a < b <  whih a; b;  2 R, the triangular fuzzy number u = (a; b; ) determined bya; b;  is given suh that u(r) = a+ (b � a)r and u(r) =  � ( � b)r are the endpoints ofthe r-level sets, for all r 2 [0; 1℄.For arbitrary u = (u(r); u(r)), v = (v(r); v(r)) and k > 0 we de�ne addition u� v , sub-tration u	 v and saler multipliation by k as (See [29, 41℄)(a) Addition: u� v = (u(r) + v(r); u(r) + v(r))(b) Subtration: u	 v = (u(r)� v(r); u(r)� v(r))() Multipliation:u�v = (minfu(r)v(r); u(r)v(r); u(r)v(r); u(r)v(r)g;maxfu(r)v(r); u(r)v(r); u(r)v(r); u(r)v(r)g)(d) Saler multipliation: k � u = ( (ku; ku); k � 0;(ku; ku); k < 0:The Hausdor� distane between fuzzy numbers given by D : E �E �! R+S 0,D(u; v) = supr2[0;1℄maxfju(r)� v(r)j; ju(r)� v(r)jg;where u = (u(r); u(r)), v = (v(r); v(r)) � R is utilized (See [12℄). Then, it is easy to seethat D is a metri in E and has the following properties (See [43℄)(i)D(u� w; v � w) = D(u; v), 8u; v; w 2 E,(ii)D(k � u; k � v) = jkjD(u; v), 8k 2 R; u; v 2 E,(iii)D(u � v; w � e) � D(u;w) +D(v; e), 8u; v; w; e 2 E,(iV )(D;E) is a omplete metri spae.Theorem 2.1. (See [8℄) (i) If we de�ne e0 = �0, then e0 2 E is a neutral element withrespet to addition, i.e. u� e0 = e0� u = u, for all u 2 E.(ii) With respet to e0, none of u 2 E n R, has opposite in E.(iii) For any a; b 2 R with a; b � 0 or a; b � 0 and any u 2 E, we have (a + b) � u =a� u� b� u; for the general a; b 2 R, the above property does not neessarily hold.(iv) For any � 2 R and any u; v 2 E, we have �� (u� v) = �� u� �� v;(v) For any �; � 2 R and any u 2 E, we have �� (�� u) = (�:�)� u;De�nition 2.2. Let E be a set of all fuzzy numbers, we say that f is fuzzy- valued-funtionif f : R! E
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S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293 283It is well-known that the H-derivative (di�erentiability in the sense of Hukuhara)forfuzzy mappings was initially introdued by Puri and Ralesu([44℄) and it is based on theH-di�erene of sets, as follows.De�nition 2.3. Let x; y 2 E. If there exists z 2 E suh that x = y � z, then z is alledthe H-di�erene of x and y, and it is denoted by x�h y.In this paper, the sign "�h" always stands for H-di�erene, and also note that x�hy 6=x	 y.In this paper we onsider the following de�nition whih was introdued by Bede and Galin ([12, 13℄).De�nition 2.4. Let f : (a; b)! E and x0 2 (a; b). We say that f is strongly generalizeddi�erential at x0 (Bede-Gal di�erential). If there exists an element f 0(x0) 2 E, suh that(i) for all h > 0 suÆiently small,9f(x0 + h)	 f(x0); 9f(x0)	 f(x0 � h)and the limits(in the metri D)limh&0 f(x0 + h)	 f(x0)h = limh&0 f(x0)	 f(x0 � h)h = f 0(x0)or(ii) for all h > 0 suÆiently small,9f(x0)	 f(x0 + h); 9f(x0 � h)	 f(x0)and the limits(in the metri D)limh&0 f(x0)	 f(x0 + h)�h = limh&0 f(x0 � h)	 f(x0)�h = f 0(x0)or(iii) for all h > 0 suÆiently small,9f(x0 + h)	 f(x0); 9f(x0 � h)	 f(x0)and the limits(in the metri D)limh&0 f(x0 + h)	 f(x0)h = limh&0 f(x0 � h)	 f(x0)�h = f 0(x0)or(iv) for all h > 0 suÆiently small,9f(x0)	 f(x0 + h); 9f(x0)	 f(x0 � h)and the limits(in the metri D)limh&0 f(x0)	 f(x0 + h)�h = limh&0 f(x0)	 f(x0 � h)h = f 0(x0)
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284 S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293(h and �h at denominators mean 1h and �1h , respetively)Theorem 2.2. (See e.g. [21℄) Let y : [0; a℄�R �! R be ontinuous and f : [0; a℄�E �!E, be the Zadeh s extension of y, i.e., [f(t; x)℄r = f(t; [x℄r). If y is non-inreasing withrespet to the seond argument, using the derivative in De�nition (2.4), ase (ii), the fuzzysolution of y0 = f(t; y); y(t0) = y0whenever it exists, oinides with the solution obtained via di�erential inlusions.Remark 2.2. These ase (iii) and (iv) introdued in [12℄, in order to ensure a di�eren-tiable swith the ase (i) and ase (ii) in De�nition (2.4). Of ourse, as the authors in[12℄ and in [21℄ have stated, the ases (i) and (ii) in De�nition (2.4), are more importantsine ase (iii) and (iv) in De�nition (2.4) our only on a disrete set of points. As anexample supporting these omments, let us onsider  2 EnR be any fuzzy(non-real) on-stant and let f : [0; a℄ �E �! E, f(t) = � ost; t 2 [0; a℄. It is natural to expet that fis di�erentiable everywhere in its domain. Let us observe that f is di�erentiable aordingto De�nition (2.4) (ii), on eah sub interval (2k�; (2k + 1)�) and di�erentiable aordingto De�nition (2.4)(i), on eah interval of the form (2k + 1)�; (2k)�, k 2 Z. But, at thepoints fk�g, k 2 Z, none of the ases (i) and (ii) in De�nition (2.4) are ful�lled. Namely,at these points the H-di�erenes f(k�+h)�h f(k�) and f(k�)�h f(k��h) may not existsimultaneously. Also, the H-di�erenes f(k�)�h f(k�+h) and f(k��h)�h f(k�) annotexist simultaneously, so f is not di�erentiable at k� in none of the ases (i) and (ii) ofdi�erentiability in De�nition (2.4). Instead, it will be di�erentiable as in the ases (iii)and (iv) in De�nition (2.4). Another argument for the importane of the ases (iii) and(iv) in De�nition (2.4), is in the Theorem (2.2). Indeed, above stated theorem dose notover the ase when f(t; x) has not onstant monotoniity. In these ases (i) and (ii)of di�erentiability in De�nition (2.4), so the ases (iii) and (iv) in De�nition (2.4) maybeome important as swith points. In the speial ase when f is a fuzzy-valued funtion,we have the following result.Theorem 2.3. (See e.g. [21℄). Let f : R ! E be a funtion and denote f(t) =(f(t; r); f(t; r)), for eah r 2 [0; 1℄. Then(1) If f is (i)-di�erentiable, then f(t; r) and f(t; r) are di�erentiable funtions andf 0(t) = (f 0(t; r); f 0(t; r))(2) If f is (ii)-di�erentiable, then f(t; r) and f(t; r) are di�erentiable funtions andf 0(t) = (f 0(t; r); f 0(t; r))De�nition 2.5. (See [5, 6℄) Let f : (a; b) � E ! E and x0 2 (a; b). We De�ne thenth-order di�erential of f as follow: We say that f is strongly generalized di�erentiableof the nth�order at x0. If there exists an element f (s)(x0) 2 E; 8s = 1; : : : ; n, suhthat(i) for all h > 0 suÆiently small,9f (s�1)(x0 + h)	 f (s�1)(x0); 9f (s�1)(x0)	 f (s�1)(x0 � h)
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S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293 285and the limits(in the metri D)limh&0 f (s�1)(x0 + h)	 f (s�1)(x0)h = limh&0 f (s�1)(x0)	 f (s�1)(x0 � h)h = f (s)(x0)or(ii) for all h > 0 suÆiently small,9f (s�1)(x0)	 f (s�1)(x0 + h); 9f (s�1)(x0 � h)	 f (s�1)(x0)and the limits(in the metri D)limh&0 f (s�1)(x0)	 f (s�1)(x0 + h)�h = limh&0 f (s�1)(x0 � h)	 f(x0)�h = f (s)(x0)or(iii) for all h > 0 suÆiently small,9f (s�1)(x0 + h)	 f (s�1)(x0); 9f (s�1)(x0 � h)	 f (s�1)(x0)and the limits(in the metri D)limh&0 f (s�1)(x0 + h)	 f (s�1)(x0)h = limh&0 f (s�1)(x0 � h)	 f (s�1)(x0)�h = f (s)(x0)or(iv) for all h > 0 suÆiently small,9f (s�1)(x0)	 f (s�1)(x0 + h); 9f (s�1)(x0)	 f (s�1)(x0 � h)and the limits(in the metri D)limh&0 f (s�1)(x0)	 f (s�1)(x0 + h)�h = limh&0 f (s�1)(x0)	 f (s�1)(x0 � h)h = f (s)(x0)(h and �h at denominators mean 1h and �1h , respetively 8s = 1 : : : n)To more detail about di�erent ases of strongly generalized di�erentiability see [5, 6℄De�nition 2.6. [6℄ Let f(x) be ontinuous fuzzy-value funtion. Suppose that f(x)�e�pximproper fuzzy Rimann integrable on [0;1), then R10 f(x)� e�pxdx is alled fuzzy laplaetransforms and is denoted as:L[f(x)℄ = Z 10 f(x)� e�pxdx (p > 0 and integer)we have Z 10 f(x)� e�pxdx = (Z 10 f(x; r)� e�pxdx;Z 10 f(x; r)� e�pxdx)

Archive of SID

www.SID.ir



286 S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293also by using the de�nition of lassial laplae transform:`[f(x; r)℄ = R10 f(x; r)� e�pxdx and `[f(x; r)℄= R10 f(x; r)� e�pxdxthen, we follow: L[f(x)℄ = (`[f(x; r)℄; `[f (x; r)℄):Theorem 2.4. [6℄ Let f 0(x) be an integrable fuzzy-valued funtion, and f(x) is the prim-itive of f 0(x) on [0;1). ThenL[f 0(x)℄ = pL[f(x)℄�h f(0) where f is (i)� differentiableorL[f 0(x)℄ = (�f(0))�h (�pL[f(x)℄) where f is (ii) � differentiableTheorem 2.5. [6℄ Let f(x), g(x) be ontinuous-fuzzy -valued funtions and 1,2 are on-stant. Suppose that f(x)e�px, g(x)e�px are improper fuzzy Rimann-integrable on [0;1),then L[(1f(x))� (2g(x))℄ = (1L[f(x)℄)� (2L[g(x)℄):Theorem 2.6. [6℄ Let f be ontinuous fuzzy value funtion and L[f(x)℄ = F (p), ThenL[eax � f(x)℄ = F (p� a)where eax is real value funtion and p� a > 0.3 Laplae transform formula on two order fuzzy derivativeand its appliationsIn this setion, by using de�nition of laplae transform on �rst-order fuzzy derivative,laplae transform formula on seond-order fuzzy derivative is introdued then laplaetransform method for solving seond-order fuzzy di�erential equation is proposed.Theorem 3.1. . Let f : R! E be a funtion and denote f(t) = (f(t; r); f(t; r)), for eahr 2 [0; 1℄. Then(1) If f; f 0 are di�erentiable in the �rst form (i) or f; f 0 are di�erentiable in the seondform (ii), then f 0(t; r) and f 0(t; r) are di�erentiable funtions andf 00(t) = (f 00(t; r); f 00(t; r))(2) If f is (i)-di�erentiable and f 0 is di�erentiable in the seond form (ii) or f is (ii)-di�erentiable and f 0 is di�erentiable in the �rst form (i) , then f 0(t; r) and f 0(t; r)are di�erentiable funtions andf 00(t) = (f 00(t; r); f 00(t; r))
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S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293 287Proof: Sine the proof proedure is similar for all two ases, we onsider ase (1)without loss of generality.If f; f 0 is di�erentiable in the �rst form (i), then from theorem (2.3), we have:f 0(t) = (f 0(t; r); f 0(t; r))now, onsider g(t) as follows: g(t) = f 0(t)if h > 0 and r 2 [0; 1℄, we haveg(t+ h)�h g(t) = (g(t+ h; r)� g(t; r); g(t+ h; r)� g(t; r))= (f 0(t+ h; r)� f 0(t; r); f 0(t+ h; r)� f 0(t; r))and,multiplied by 1h , we have:g(t+ h)�h g(t)h = (f 0(t+ h; r)� f 0(t; r)h ; f 0(t+ h; r)� f 0(t; r)h )similarly, f 0(t)�h f 0(t� h)h = (f 0(t; r)� f 0(t� h; r)h ; f 0(t; r)� f 0(t� h; r)h )passing to the limit, we have: f 00(t) = (f 00(t; r); f 00(t; r))and If f; f 0 is di�erentiable in the �rst form (ii), then from theorem (2.3), we have:f 0(t) = (f 0(t; r); f 0(t; r))now, onsider g(t) as follows: g(t) = f 0(t)if h < 0 and r 2 [0; 1℄, we haveg(t+ h)�h g(t) = (g(t+ h; r)� g(t; r); g(t+ h; r)� g(t; r))= (f 0(t+ h; r)� f 0(t; r); f 0(t+ h; r)� f 0(t; r))and,multiplied by 1h , we have:g(t+ h)�h g(t)h = (f 0(t+ h; r)� f 0(t; r)h ; f 0(t+ h; r)� f 0(t; r)h )similarly, f 0(t)�h f 0(t� h)h = (f 0(t; r)� f 0(t� h; r)h ; f 0(t; r)� f 0(t� h; r)h )passing to the limit, we have: f 00(t) = (f 00(t; r); f 00(t; r))
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288 S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293De�nition 3.1. For arbitrary u = (u(r); u(r)),�hu and �h(	u) are de�ned as follows:�hu = (�u(r);�u(r))�h(	u) = (u(r); u(r))Theorem 3.2. Let f 00(x) be an integrable fuzzy-valued funtion, and f(x); f 0(x) are theprimitive of f 0(x); f 00(x) on [0;1). ThenL[f 00(x)℄ = p2L[f(x)℄�h pf(0)�h f 0(0)where f is (i)� differentiable and f 0 is (i)� differentiableorL[f 00(x)℄ = �h(	p)�h (	p)� L[f(x)℄�h �h(	p)�h (	1)� f(0)�h �h(	1)� f 0(0)where f is (ii)� differentiable and f 0 is (ii) � differentiableorL[f 00(x)℄ = �h(	p2)� L[f(x)℄�h �h(	p)� f(0)�h �h(	1)� f 0(0)where f is (i)� differentiable and f 0 is (ii) � differentiableorL[f 00(x)℄ = �h(	p2)� L[f(x)℄�h �h(	p)� f(0)�h f 0(0)where f is (ii)� differentiable and f 0 is (i)� differentiableProof: By indution, it an be proved easily. we shall now disuss how the laplaetransform method solves fuzzy di�erential equations.Consider the following fuzzy initial value problemy00 + ay0 + by = er(t) y(t0) = ek0; y0(t0) = ek1with onstant a and b.By applying the laplae transform method on fuzzy initial value problem, we have:L[y00 ℄ + aL[y0 ℄ + bL[y℄ = L[er(t)℄Then, by substituting, laplae transform formulas on �rst and seond- order fuzzy deriva-tive in theorem (2.4) and (3.2) we obtain the following alternatives for solving:Case I. If we onsider y(t) and y0(t) by using (i)-di�erentiable, then we havep2 � L[y(t)℄�h p� y(t0)�h y0(t0)� ap� L[y(t)℄�h a� y(t0)� b� L[y(t)℄ = L[er(t)℄Case II. If we onsider y(t) and y0(t) by using (ii)-di�erentiable, then we havep2 � L[y(t)℄�h p� y(t0)	 y0(t0)� a(�h(	p))� L[y(t)℄
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S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293 289	a� y(t0)� b� L[y(t)℄ = L[er(t)℄Case III. If we onsider y(t) by using (i)-di�erentiable and y0(t) by using (ii)-di�erentiable,then we have(�h(	p2))�L[y(t)℄(	p)� y(t0)	 y0(t0)� ap�L[y(t)℄�h a� y(t0)� b�L[y(t)℄ = L[er(t)℄Case IV. If we onsider y(t) by using (ii)-di�erentiable and y0(t) by using (i)-di�erentiable,then we have(�h(	p2))� L[y(t)℄(	p)� y(t0)�h y0(t0)� (�h 	 p)a� L[y(t)℄(	a)� y(t0)� b� L[y(t)℄ = L[er(t)℄using this representation for four ases, we have the following examples.4 exampleIn this setion, we present two examples to illustrate the laplae transform method andalso ompare the results of this method with other method.Example 4.1. Consider the one-dimensional heat Let us onsider the seond order fuzzydi�erential equation 8<: y00 � 3y0 + 2y = e4y0(0) = e0y(0) = e1where e1 = (0:8+0:2r; 1:5�0:5r) and e4 = (3:2+0:8r; 5�r): by using fuzzy laplae transformmethod, we have: L[y00℄	 3L[y0℄� 2L[y℄ = L[e4℄in (i)�di�erentiable, then by using ase(II), we haveL[y(t; r)℄ = (3:2 + 0:8r) 1p(p� 1)(p� 2) + (0:8 + 0:2r) p� 3(p� 1)(p� 2)L[y(t; r)℄ = (5� r) 1p(p� 1)(p� 2) + (1:5 � 0:5r) p� 3(p� 1)(p� 2)Hene solution is as follows:y(t; r) = (3:2 + 0:8r)(12 � et + 12e2t) + (0:8 + 0:2r)(2et � e2t)y(t; r) = (5� r)(12 � et + 12e2t) + (1:5 � 0:5r)(2et � e2t)Now, if we onsider r = 1, theny(t; 1) = y(t; 1) = 2� 2et + e2t:By using H-di�erentiability and Hukuhara di�erentiability onepts the following resultsare obtained:y(t; r) = (�1:6 � 0:4r) osh t� 43 sinh t+ (�0:8 + 0:2r) osh 2t� 23 sinh2t
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290 S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293+13(e2t � e�2t)� 13(et � e�t) + 13(5� r)t+ 12(3:2 + 0:8r)� 0:8� 0:2ry(t; r) = �2 osh t� (1:6 + 0:4r) sinh t+ osh 2t+ (0:2r � 0:8) sinh 2t+ 52 � 12rThe disadvantage of strongly generalized di�erentiability of a funtion with respet to H-di�erentiability and Hukuhara di�erentiability seems to be that a fuzzy di�erential equationhas not got a unique solution. So a fuzzy di�erential equation may have several solutions.the advantage of the existene of these solutions is that we an hoose the solution thatreets the behavior of the modelled real-world system, in a better way.Example 4.2. onsider the initial value problem equation8<: y00 + 4y = e4xy0(0) = 0y(0) = e1where e1 = (0:8 + 0:2r; 1:5 � 0:5r) and e4 = (3:2 + 0:8r; 5 � r): in (ii)�di�erentiable, thenby using ase(I), we haveL[y(t; r)℄� py(0; r) � y0(0; r) + 4L[y(t; r)℄ = L[(3:2 + 0:8r)t℄L[y(t; r)℄� py(0; r)� y0(0; r) + 4L[y(t; r)℄ = L[(5� r)t℄Hene solution is as follows:y(t; r) = (0:8 + 0:2r)(x � 12sin2t+ os2t)y(t; r) = (5� r)(14 t� 18sin2t) + (1:5 � 0:5r)os2tNow, if we onsider r = 1, theny(t; 1) = y(t; 1) = x� 12sin2x+ os2xFrom, examples (4) and (4.2), we see that the solution of a FDE is dependent on theseletion of the derivative: the (i)-di�erentiable or the (ii)-di�erentiable.5 ConlusionDeveloping fuzzy Laplae transform, we provided solutions to fuzzy two order di�erentialequation whih was interpreted by using the strongly generalized di�erentiability onept.This may onfer solutions whih have a dereasing length of their support. The eÆienyof method was illustrated by a numerial example.
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