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The variational iteration method for solvingNagumo telegraph equationH. Rouhparvar �Department of Mathematis, Islami Azad University, Saveh Branh, Saveh 39187/366, Iran.Reeived 2 Otober 2010; revised 30 November 2010; aepted 11 Deember 2010.|||||||||||||||||||||||||||||||-AbstratIn this paper, the variational iteration method is proposed to solve the Nagumo telegraphequation as boundary value problems over the �nite spatial interval x 2 [0; L℄, and �nitetime t 2 [0; t�℄. Approximate solution is obtained for some speial ases, so that denotesthe validity of the variational iteration method. Also, this approximate solution is used todisuss the qualitative harateristis of the solution for spei� initial data onsidered.Keywords : Nagumo telegraph equation, Variational iteration method.||||||||||||||||||||||||||||||||{1 IntrodutionThe telegraph equations are used in the propagation of eletrial signals along a telegraphline, digital proessing teleommuniation and also in many appliations of siene [28, 8,9, 10, 24℄.In this paper, we onsider the Nagumo telegraph equation [24, 25, 7℄�utt + (1� � [a� 2(1 + a)u+ 3u2℄)ut = uxx + u(a� u)(1� u); (1.1)as boundary value problems for a 2 [0; 1℄ and � 2 R. This equation is subjet to theboundary onditionsux(0; t) = 0 and ux(L; t) = 0; for someL > 0; (1.2)and the initial ondition u(x; 0) = � 2 [0; 1℄: (1.3)Physially, the initial data provides information on a distribution or onentration, atthe time t = 0 [7℄. For appropriate initial data, the onentration should be expeted to�Email address: rouhparvar59�gmail.om 295
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296 H. Rouhparvar = IJIM Vol. 2, No. 4 (2010) 295-304approah the �xed point a 2 (0; 1) for large time. The parameter a ats as the ambientonentration and the parameter � ats as a measure of the memory delay e�et in theequation (1.1). We see that, as � ! 0, the Nagumo telegraph equation is redued to theNagumo reation-di�usion equation [24, 7℄.Note that we don't solve the equation via ordinary di�erential equation, suh as thosedisussed in the traveling wave ase [7, 5, 20℄. We obtain the approximate solution of thepartial di�erential equation for spei�ed initial data, so that it illustrates the validity andonvergene of method, about the onvergene of method see [22℄.2 The He's variational iteration methodThe variational iteration method (VIM) is an analytial tehnique that is introdued byHe [16, 17, 18℄. In this method, as the �rst idea, a orretion funtional is onstruted bya general Lagrange multiplier, whih an be identi�ed optimally via the variation theory.As the seond idea, the initial approximation is freely hosen with possible unknownonstants, whih an be determined by imposing the boundary=initial onditions.The VIM has been suessfully applied on wide lass of initial and boundary valueequations inluding integro-di�erential equations [26, 6℄, telegraph equation [12℄, Fokker-Plank equation [13℄, the Cauhy reation-di�usion problem [14℄, Klein-Gordon equation[1℄, non-linear wave and di�usion equations [2℄, eighth-order and tenth-order boundary-value di�erential equations [3, 4℄ and Boussinesq equations [27℄.To illustrate the basi onepts of the VIM, we onsider the following di�erentialequation Lu(x; t) +Nu(x; t) = g(x; t); (2.4)where L is a linear di�erential operator, N a nonlinear operator and g(x; t) an inhomoge-neous term.Aording to the VIM, we an onstrut a orretion funtional in x and t-diretionsas followsun+1(x; t) = un(x; t) + Z t0 �fLun(x; s) + ~Nun(x; s)� g(x; s)g ds; n � 0; (2.5)un+1(x; t) = un(x; t) + Z x0 �fLun(s; t) + ~Nun(s; t)� g(s; t)g ds; n � 0; (2.6)where � is a general Lagrangian multiplier and an be identi�ed optimally by the varia-tional theory [19℄, the subsript n shows the nth-order approximation, and ~un is onsideredas a restrited variation [19, 15℄, i.e., Æ~un = 0. The suessive approximations un+1(x; t),n � 0 of the solution u(x; t) will be readily obtained upon using the obtained Lagrangemultiplier and by using any seletive funtion u0. The zeroth approximation u0 may beseleted by any funtion that justi�es at least one of the presribed boundary onditions.With � determined, then several approximations uj(x; t), j � 0 follow immediately. Con-sequently, the exat solution may be obtained by usingu(x; t) = limn!1un(x; t):To illustrate the above theory, we implement the VIM for �nding the approximate solutionof Nagumo telegraph equation. This problem will be handled easily, quikly and elegantlyby implementing the VIM.
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H. Rouhparvar = IJIM Vol. 2, No. 4 (2010) 295-304 2973 Analysis of Nagumo telegraph equationIn reent years, the telegraph equation has been studied with various methods [12, 11, 21℄and so on. In this setion, the Nagumo telegraph equation is presented by the VIM.To onsider equation (1.1) with respet to iteration formula (2.5), we onstrut itera-tion formula in t-diretion with two ideas. As the �rst idea, we an onstrut a orretionfuntional as followsun+1(x; t) = un(x; t) + R t0 �(s)f�unss + (1� �a)uns � a~un + 2�(1 + a)~un~uns�3� ~u2n~uns � ~unxx + (1 + a)~u2n � ~u3ng ds:Making the above orretion funtional stationary, and noting Æ~un = 0, we getÆun+1(x; t) = Æun(x; t) + Æ Z t0 �(s)f�unss + (1� �a)unsg ds = 0;or Æun+1(x; t) = Æun(x; t) + ��(s)Æunsjs=t � ��0(s)Æunjs=t+(1� �a)�(s)Æunjs=t + R t0 (��00(s)� (1� �a)�0(s))Æun ds = 0;whih yield the following stationary onditionsÆun : ��00 � (1� �a)�0 = 0;Æun : 1� ��0(s) + (1� �a)�(s)js=t = 0;Æuns : ��(s)js=t = 0:The general Lagrange multiplier, therefore, an be identi�ed as�(s) = 11� �a(e 1��a� (s�t) � 1):As a result, we obtain the following iteration formulaun+1(x; t) = un(x; t) + R t0 11��a (e 1��a� (s�t) � 1)f�unss + (1� �a)uns � aun+2�(1 + a)ununs � 3�u2nuns � unxx + (1 + a)u2n � u3ng ds; (3.7)with initial approximation u0(x; t) = u(x; 0) = �.As the seond idea, we an also onsider a orretion funtional as the following form:un+1(x; t) = un(x; t) + R t0 �(s)f�unss + (1� �a)uns � aun + 2�(1 + a)~un~uns�3� ~u2n~uns � ~unxx + (1 + a)~u2n � ~u3ng ds;where Æ~un is onsidered as a restrited variation, i.e. Æ~un = 0, and the orretion funtionalstationary is obtained as the followingÆun+1(x; t) = Æun(x; t) + Æ Z t0 �(s)f�unss + (1� �a)uns � aung ds = 0;or Æun+1(x; t) = Æun(x; t) + ��(s)Æunsjs=t � ��0(s)Æunjs=t+(1� �a)�(s)Æunjs=t + R t0 (��00(s)� (1� �a)�0(s)� a�)Æun ds = 0:
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298 H. Rouhparvar = IJIM Vol. 2, No. 4 (2010) 295-304Its stationary onditions an be obtained as followÆun : ��00 � (1� �a)�0 � a� = 0;Æun : 1� ��0(s) + (1� �a)�(s)js=t = 0;Æuns : ��(s)js=t = 0:The general Lagrange multiplier, so, an be identi�ed as�(s) = 11 + �a(e 1� (s�t) � e�a(s�t)):Again as a result, we obtain another iteration formula as followsun+1(x; t) = un(x; t) + R t0 11+�a(e 1� (s�t) � e�a(s�t))f�unss + (1� �a)uns � aun+2�(1 + a)ununs � 3�u2nuns � unxx + (1 + a)u2n � u3ng ds; (3.8)with initial approximation u0(x; t) = u(x; 0) = �.The method depends on the proper seletion of the initial approximation u0(x; t).The variational iteration formulas (3.7) and (3.8) will give several approximations, andtherefore the exat solution is obtained asu(x; t) = limn!1un(x; t):Let us onsider uM (x; t) as the M -order approximate solution of Nagumo telegraph equa-tion, therefore, we de�ne the error funtional for M -order approximate solution as thefollowing Error(x; t) = j�uMtt + (1� �a)uMt � auM + 2�(1 + a)uMuMt�3�u2MuMt � uMxx + (1 + a)u2M � u3M j: (3.9)4 Numerial appliationsIn this setion, we apply the VIM for solving the Nagumo telegraph equation via somespeial ases, to demonstrate the validity of the method.Remark 4.1. We onsider initial data of the form u(x; 0) = � where � 2 [0; 1℄; that is,the density or onentration is uniform over the spae (in our ase, the interval [0; L℄)at time t = 0. We �nd that, in the ase of onstant initial data, the solution dependspredominantly on t, and terms depending on x are of magnitude on the order of the errorin the approximation. Hene, we onsider a solution of the form t. Also this permitsus to prepare a physially signi�ant situation and analyze the inuene of the physialparameters on the solutions.Note that when a = �, a solution is given by u(x; t) = �. The parameter a maybe viewed as an ambient density of onentration, while � serves as an initial density oronentration over the �nite spae onsidered. Thus we expet for the solution via theVIM to tend from � to a, as we move forward in time (see [5, 23℄).
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H. Rouhparvar = IJIM Vol. 2, No. 4 (2010) 295-304 299Let us �x a = 0:5, L = 1, t� = 1 and � = 0:1 in the equation (1.1) and (1.2). Toonsider ases for initial value, we have the equation0:1utt + 0:95ut � 0:5u + 0:3uut � 0:3u2ut � uxx + 1:5u2 � u3 = 0; (4.10)subjet to the following di�erent onditions( ux(0; t) = ux(1; t) = 0;u(x; 0) = 0:55; (4.11)( ux(0; t) = ux(1; t) = 0;u(x; 0) = 0:5; (4.12)and ( ux(0; t) = ux(1; t) = 0;u(x; 0) = 0:45: (4.13)Following the proedure in setion 3, at �rst, we solve the equation (4.10) with the on-ditions (4.11), (4.12) and (4.13) the use of iteration formula (3.7) by initial approximationsu0(x; t) = 0:55, u0(x; t) = 0:5 and u0(x; t) = 0:45, respetively.Therefore, we �nd that the solutions are generally symmetri about the ambient densityor onentration a = 0:5. we denote a plot of these funtions over t 2 [0; 1℄ (for �xedx = 0:5) in Fig. 1.
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Fig. 1. Solutions to the Nagumo telegraph equation for variable � = 0:55; n = 2 (the above blueurve), � = 0:5; n = 1 (red line) and � = 0:45; n = 2 (the below blue urve) via iteration formula(3.7).Now we solve the equation (4.10) with the onditions (4.11), (4.12) and (4.13) usingiteration formula (3.8) by the previous initial approximations. As the preeding, we ob-serve that the solutions are generally symmetri about value 0.5, see Fig. 2. (for �xedx = 0:5).
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Fig. 2. Solutions to the Nagumo telegraph equation for variable � = 0:55; n = 2 (the above blueurve), � = 0:5; n = 1 (red line) and � = 0:45; n = 2 (the below blue urve) via iteration formula(3.8).The value of error funtional for approximations is denoted in Fig. 3 and Fig. 4.
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Fig. 3. The error funtional for u(x; 0) = 0:55 by (3.7) (blue urve) and (3.8) (red urve).
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Fig. 4. The error funtional for u(x; 0) = 0:45 by (3.7) (blue urve) and (3.8) (red urve).Note that for u(x; 0) = 0:5, with one iteration of (3.7) and (3.8), we have u1(x; t) =u(x; t) = 0:5 in other words the error funtional is zero.Proeeding as the same way, we an obtain high order approximations. The numerialresults of the equation (4.10) with di�erent onditions (4.11) and (4.13) are presented inthe following Tables 1-4, we evaluated the numerial results using n = 1 and n = 2 terms
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H. Rouhparvar = IJIM Vol. 2, No. 4 (2010) 295-304 301approximation of the reurrene relations (3.7) and (3.8) at various values of the time t.Tables 1-4 show the numerial solution and the error funtional with n = 1 and n = 2.Table 1For x = 0:5, Comparison of the numerial results with n = 1 in Eq. (4.10) by (4.11)t By (3.7) Error(x; t) By (3.8) Error(x; t)0.2 0.548561 0.00117232 0.54854 0.001933520.4 0.54613 0.00188765 0.545938 0.004072760.6 0.543551 0.00253622 0.542929 0.006439590.8 0.540949 0.00317624 0.539585 0.009058261 0.538345 0.00381634 0.535887 0.0119556Table 2For x = 0:5, Comparison of the numerial results with n = 2 in Eq. (4.10) by (4.11)t By (3.7) Error(x; t) By (3.8) Error(x; t)0.2 0.548623 0.00007046 0.548624 0.000146040.4 0.546428 0.00019064 0.546452 0.000625810.6 0.544239 0.00033989 0.544359 0.001509220.8 0.542167 0.00052102 0.542524 0.002877141 0.540228 0.00073547 0.541046 0.00482293Table 3For x = 0:5, Comparison of the numerial results with n = 1 in Eq. (4.10) by (4.13)t By (3.7) Error(x; t) By (3.8) Error(x; t)0.2 0.451439 0.00117232 0.45146 0.001933520.4 0.45387 0.00188765 0.454062 0.004072760.6 0.456449 0.00253622 0.457071 0.006439590.8 0.459051 0.00317624 0.460415 0.009058261 0.461655 0.00381634 0.464113 0.0119556Table 4For x = 0:5, Comparison of the numerial results with n = 2 in Eq. (4.10) by (4.13)t By (3.7) Error(x; t) By (3.8) Error(x; t)0.2 0.451377 0.00007046 0.451376 0.000146040.4 0.453572 0.00019064 0.453548 0.000625810.6 0.455761 0.00033989 0.455641 0.001509220.8 0.457833 0.00052102 0.457476 0.002877141 0.459772 0.00073547 0.458954 0.004822935 ConlusionIn this paper, we onsidered the Nagumo telegraph equation (1.1) over a �nite spatialdomain and presented the VIM with di�erent ases for obtaining approximate analytialsolutions of the boundary value problems. We found that, in all ases onsidered, theobtained error is rather good onsidering the small number of iterations needed in the
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