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Ranking EÆient Units by Regular Polygon Area(RPA) in DEAF. Rezai Balf �Department of Mathematis, Qaemshahr Branh, Islami Azad University, Qaemshahr, Iran.Reeived 29 September 2010; revised 29 January 2011; aepted 9 February 2011.|||||||||||||||||||||||||||||||-AbstratIn this paper, we address the problem of assessing the rank of the set of eÆient unitsin Data Envelopment Analysis (DEA). DEA measures the eÆienies of deision-makingunits (DMUs) within the range of less than or equal to one. The orresponding eÆieniesare referred to as the best relative eÆienies, whih measure the best performane ofDMUs and determine an eÆieny frontier. This researh proposes a methodology to usean ommon set of weights for the performane indies of only DEA eÆient DMUs. ThenDMUs are ranked aording to the eÆieny sore weighted by the ommon set of weightsin two dimensional spae.Keywords : Data Envelopment Analysis (DEA); Weights Analysis; EÆieny; Ranking.||||||||||||||||||||||||||||||||{1 IntrodutionData Envelopment Analysis (DEA) is a nonparametri method of measuring the eÆienyof a deision-making unit (DMU) suh as a �rm, �rst introdued by Charnes, Cooper,and Rhodes (CCR) (1978). To measure the tehnial eÆieny of any observed input-output bundle, one needs to know the maximum quantity of output that an be produedfrom the relevant input bundle. However, in DEA we onstrut a benhmark tehnologyfrom the observed input-output bundles of the �rms in the sample, suh as a produtionfrontier. Justifying eah unit on frontier is interpreted as eÆieny and any deviationfrom this frontier is interpreted as ineÆieny. Firms that are found to be tehniallyineÆient an be ranked aspet of their measured levels of eÆieny. Firms that are foundto be eÆient are, also, all ranked equally by a riterion. Andersen and Petersen (1993)suggested a riterion that permits one to rank order �rms that have all been found to beat 100It is worthwhile that noted AP model an be infeasible, sometimes. A potential�Email address: frb balf�yahoo.om, Tel:+98-123-224411141
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42 F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53problem of feasibility with these supper eÆieny models has been noted by Dula andHikman (1997), Seiford and Zhu (1999), Harker and Xue (2002), and Lovel and Rouse(2003). For some eÆient observations, there may not exist any input-oriented or output-oriented projetion onto a frontier that is onstruted from the remaining observations inthe data set. In this study, we introdue a di�erent approah for ranking eÆient units. Inour approah, we aim to obtain one ommon set of weights (CSW) to reate the identityritial of projetion the eÆient units in two dimensional spae. Then, we alulatethe area of the regular polygon onstruter of all eÆient units. However, we rank theprojeted eÆient units. The ranking that adopts the one ommon set of weights generatedfrom our methodology makes sense beause a deision maker objetively hooses the oneommon set of weights for the purpose of maximizing the group eÆieny. The seondsetion of this paper represents disussion about regular polygon area (RPA). In Setion3, a method for �nding CSW is briey disussed. Setion 4, present a brief disussionabout supper-eÆieny ranking tehniques. Setion 5, gives a omplete ranking of DMUsby RPA method. Numerial example and onlusion of the methods are presented in thelast setions.2 Regular polygon area (RPA)In this setion, we present a rule for alulating of regular polygon area (RPA). For thispurpose, we �rst onsider a triangle as simplest regular polygon and then introdue generalase for �nding regular polygon area. Consider the Cartesian oordinates system in twodimensional spaes. Four possible ases exist for appointing origin, when we depit atriangle in this system. First ase, the origin is one of vertexes, seond ase the origin lieinside triangle, in third ase the origin lie outside triangle and �nally the last ase originlie on one of triangle edges. However, we will show the area of a triangle an be written asdeterminant form for eah of above quaternion ases. Also, it an be shown that if pointsO;A and B be triangle vertexes in anti-lok wise sense respetively, then determinantvalue is positive and it is negative when these points are lok wise. It should be note thevalue of area is positive.Theorem 2.1. If points O(0; 0); A(x1; y1) and B(x2; y2) be oordinates of triangle vertexesthen the area of triangle 4OAB determine as follows:S4OAB = 12 ���� x1 y1x2 y2 ����Proof: Consider 4OAB , aording to Fig. 1.6
-o x

y
���������������HHHHHHx1 Dy2 x2 y1A(x1; y1)B(x2; y2)x1 � x2 y2 � y1EF

Fig. 1. The graph of triangle OAB
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F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53 43Obviously, �nding the area4OAB equal to subtrating the area three triangles4OAD,4OFB and 4EAB of the retangular area �ODEF . Hene, it an be shown thatS4OAB = S�ODEF � S4OFB � S4OAD � S4EAB= x1y2 � x2y22 � x1y12 � (x1�x2)(y2�y1)2= x1y2 � x2y22 � x1y12 � x1y2�x1y1�x2y2+x2y12= x1y2�x2y12= 12 ���� x1 y1x2 y2 ����The proof is omplete.In ontinue we extend this topi when origin is not triangle vertex (See Fig. 2 and Fig.3).Theorem 2.2. If points A(x1; y1); B(x2; y2) and C(x3; y3) be arbitrarily oordinates oftriangle vertexes in anti-lok wise sense then the area of triangle 4ABC is determinedas follows: S4ABC = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ ���� x3 y3x1 y1 �����Proof: For proof onsider two below ases:1. The origin is outside triangle (see Fig. 2)2. The origin is inside triangle (see Fig. 3)In �rst ase aording to Fig. 2, we obtain:S4ABC = S4OAB + S4OBC � S4OACand with respet to Theorem (2.1) we have:S4ABC = 12 ���� x1 y1x2 y2 ����+ 12 ���� x2 y2x3 y3 ����� 12 ���� x1 y1x3 y3 ����Aording to determinant property, Substitute;�12 ���� x1 y1x3 y3 ���� = 12 ���� x3 y3x1 y1 ����then, we obtain S4ABC = 12f���� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ ���� x3 y3x1 y1 ����gThe proof is omplete.The proof of seond part of Theorem (2.2) is similar to the �rst part aording to Fig. 3.We ignore the proof of it.
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44 F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53
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-o x
y HHHHHHHHH����� A(x1; y1)B(x2; y2)C(x3; y3)

Fig. 2. The graph of triangle 4ABC that isn't ontain origin.6
-o x

y
!!!!!!!!!!!!DDDDD A(x1; y1)

C(x3; y3)
B(x2; y2)

Fig. 3. The graph of triangle 4ABC ontain origin.At this point, we interest to extend the above method for �nding the regular polygonarea when the oordinate vertexes are available. It is mentionable that every regularpolygon with n vertex an be partitioned to n� 2 triangular.Theorem 2.3. The area of any regular polygon with pj(xj ; yj); j = 1; :::; n vertex in anti-lok wise sense is as followsSp1p2:::pn = 12f���� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ ���� x3 y3x4 y4 ����+ :::+ ���� xn ynx1 y1 ����gProof: The proof is by indution over : Consider the following relation,Sp1p2:::pn = S4p1p2p3 + S4p1p2p4 + :::+ S4p1pkpk+1 + :::+ S4p1pn�1pnwhere it an be written asSp1p2:::pn = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ ���� x3 y3x4 y4 ����+ :::+ ���� xn ynx1 y1 �����
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F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53 45This relation has been proved for n = 3 already. Suppose that it satisfy in ase n = k ashypothesis indution:Sp1p2:::pk = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ :::+ ���� xk ykx1 y1 �����We show the above relation due for n = k + 1 (assertion indution) asSp1p2:::pk+1 = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ :::+ ���� xk ykxk+1 yk+1 ����+ ���� xk+1 yk+1x1 y1 �����Hene, for this purpose it is suÆient we add S4p1pkpk+1 to the two parts of hypothesisindution, we obtainSp1p2:::pk + S4p1pkpk+1 = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ :::+ ���� xk ykx1 y1 �����+ S4p1pkpk+1With substitutingS4p1pkpk+1 = 12 ����� x1 y1xk yk ����+ ���� xk ykxk+1 yk+1 ����+ ���� xk+1 yk+1x1 y1 �����to above relation, the assertion is satis�edSp1p2:::pn = 12 ����� x1 y1x2 y2 ����+ ���� x2 y2x3 y3 ����+ ���� x3 y3x4 y4 ����+ :::+ ���� xn ynx1 y1 �����For further desription onsider the following example.Example 2.1. Find the area of following 5- regular polygon, aording to Fig. 4.6
-o x

y
HHHHH ������������

AAAAAAA����
p1(5;�1)

p2(3; 6)p3(�3; 4)
p4(�6;�2)p5(�1;�4)Fig.4. The graph of 5- regular polygon.Sp1p2p3p4p5 = S4p1p2p3 + S4p1p3p4 + S4p1p4p5= 12 ����� 5 �13 6 ����+ ���� 3 6�3 4 ����+ ���� �3 45 �1 ����+ ���� 5 �1�3 4 ����+ ���� �3 4�6 �2 ����+ ���� �6 �25 �1 ����+ ���� 5 �1�6 �2 ����+ ���� �6 �2�1 �4 ����+ ���� �1 �45 �1 ����� = 68
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46 F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-533 A method for �nding ommon set of weights (CSW)The exibility in the hoie of weights is both a weakness and strength. It is a weaknessbeause the judiious hoie of weights by a unit possibly unrelated to the value of anyinput or output may allow a unit to appear eÆient but there may be onern that thisis more to do with the hoie of weights than any inherent eÆieny. This exibility isalso strength, however, if a unit turns out to be ineÆient even when the most favourableweights have been inorporated in its eÆieny measure then this is a strong statement.This setion presents a multiple objetive programming proedure for �nding a ommonset of weights in DEA [9℄. An important outome of suh an analysis is a set of virtualmultipliers or weights aorded to eah fator taken into aount. These sets of weightsare, typially, di�erent for eah of the partiipating DMUs. In this setion, by means ofsolving only one problem, we an determine a ommon set of weights.In DEA for alulating the eÆieny of di�erent DMUs, di�erent set of weights are ob-tained, whih seems to be unaeptable in reality. So the following model is used to �ndommon set of weights whih has some advantages that will be disussed later on. Thisidea is formulated as maximizing the ratio of outputs and inputs simultaneously for allDMUs. So we presents the following multiple objetive funtional programming problem.max nPsr=1 uryr1Pmi=1 vixi1 ; : : : ; Psr=1 uryrnPmi=1 vixin oS:t: Psr=1 uryrjPmi=1 vixij � 1; j = 1; : : : ; nur � �; r = 1; : : : ; svi � �; i = 1; : : : ;m (3.1)
where U = (u1; : : : ; us)T and V = (v1; : : : ; vm)T are the weights of outputs and inputs,respetively, and � is a positive non-Arhimedean in�nitesimal.For solving this problem, the following proedure is suggested. Here we onsider the in-�nite norm, so it tends the maximization of the objetive funtion pertaining the DMUwill minimum ratio of outputs to inputs.max nminnPsr=1 uryr1Pmi=1 vixi1 ; : : : ; Psr=1 uryrnPmi=1 vixin ooS:t: Psr=1 uryrjPmi=1 vixij � 1; j = 1; : : : ; nur � �; r = 1; : : : ; svi � �; i = 1; : : : ;m (3.2)
By introduing non-negative variable z , problem (3.2), an be onverted to the followingproblem:
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F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53 47max zS:t: Psr=1 uryrj � zPmi=1 vixij � 0; j = 1; : : : ; nPsr=1 uryrj �Pmi=1 vixij � 0; j = 1; : : : ; nz � 0ur � �; r = 1; : : : ; svi � �; i = 1; : : : ;m
(3.3)

Note that instead of solving n linear programming DEA models, only one non-linearprogramming problem is solved and the eÆieny for all DMUs are obtained.4 Supper-eÆieny ranking tehniquesSuppose we have a set of n (produtive units), DMUs. Eah DMUj; j = 1; :::; n onsumesm di�erent inputs to produe s di�erent outputs. Two types of orientation DEA modelsare often used to evaluate DMUs' relative eÆieny: CRS models, suh as CCR model,and VRS models, suh as BCC model. For example, CCR model in multiplier form isde�ned as a linear programming model as follows:max Psr=1 uryroS:t: Psr=1 uryrj �Pmi=1 vixij � 0; j = 1; : : : ; nPmi=1 vixio = 1;ur � �; r = 1; : : : ; svi � �; i = 1; : : : ;m (4.4)
Where � is a non-Arhimedean element de�ned to be smaller than any positive real number.The BCC (Banker et al., 1984) model adds an additional onstant variable, uo , in orderto permit variable return-to-sale:max Psr=1 uryro + uoS:t: Psr=1 uryrj �Pmi=1 vixij + uo � 0; j = 1; : : : ; nPmi=1 vixio = 1;ur � �; r = 1; : : : ; svi � �; i = 1; : : : ;m (4.5)
In most models of Data Envelopment Analysis (DEA) (Charnes et al., 1978 ; Banker etal., 1984; Cooper et al., 2000) [3, 2, 4℄, the best performers have eÆieny sore unity, andthese units lie on frontier eÆieny. Several authors have proposed methods for ranking
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48 F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53these eÆient units. See Andersen and Petersen (1993) [1℄, Doyle and Green (1993, 1994)[6, 7℄, Stewart (1994) [13℄, Tofallis (1996)[10℄, Seiford and Zhu (1999)[11℄, Mehrabian(1999)[10℄, Zhu (2001)[15℄ and Jahanshahloo (2005)[8℄, among others. It is mentionedthat only Jahanshahloo method is able to rank all kind of eÆient DMUs (extreme andnon-extreme eÆient DMUs), while the other methods are not able to rank non-extremeeÆient DMUs. For example, Andersen and Petersen (1993) developed a new proedurefor ranking eÆient units. The methodology enables an extreme eÆient unit "o" to obtainan eÆieny sore greater than one by eliminating the o-th onstraint in the model (4.4),as shown in model (4.6).max Psr=1 uryroS:t: Psr=1 uryrj �Pmi=1 vixij � 0; j = 1; : : : ; n; j 6= oPmi=1 vixio = 1;ur � � r = 1; : : : ; svi � � i = 1; : : : ;m (4.6)
The next setion develops the new method. Our goal is to translate the basi idea ofombining RPA and DEA in order to determining ranking of eÆient units.5 Ranking of DMUs by RPA methodThis setion deals with ranking of DMUs by RPA method. Suppose that we have n DMUseah with m inputs and s outputs. The vetors v and u are the weight vetors for inputand output, respetively. We have to somehow solve for eah DMU a linear programming(LP) whih an lead to a di�erent optimal solution. The index "o" selets the DMU forwhih the optimization should be evaluated, as shown in models (4.4) or (4.5), aordingto onstant return to sale or variable return to sale. Throughout this setion we assumethat eÆieny is evaluated by means of the CCR model (4.4) of tehnial eÆieny. Thismeasure was introdued by Charnes et al. (1978)[3℄. We assume that in evaluating DMUswith model (4.4), k DMUs (k � n) , are eÆient. The set Eo = fj j DMUj is effiientgand (v�; u�) be optimal ommon set of weights by model (3.3). Let us de�ne f funtionas: f : Rm+s ! R2f(x; y) = (v�x; u�y)De�ne the set B as follows:B = fzj j zj = (v�xj ; u�yj); j 2 Eo; xj 2 Rm; yj 2 RsgIt is obviously, zj � 0 = (0; 0); j 2 Eo and B � R2+: In fat the set B is projetion of A,in two dimension plane under ommon set of weights. However, we rank the members ofthe set B instead of DMUj ; j 2 Eo .
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F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53 495.1 The ranking method for members in the set BIn this setion, we desribe the ranking approah for the members of the set B. Supposethat T be onvex hall of f zj j zj 2 Bg. Set T = onvex(B). It is trivial that T is a regularpolygonal in R2+ . Suppose that S be area of T . Set, S = RPA(T ). For ranking zp in B, we�rst remove it from the set of T then we obtain (another) onvex hall Tp = T � fzpg. LetSp = RPA(Tp) . It is obvious Tp � T and Sp � S , (see Fig. 5), and set �p = S � Sp � 0. This value �p is de�ned the rank of zp .As already mentioned, zj is as a point of T = onvex(B) . If zj be extreme point in T , then�p > 0 , meanwhile if zj be non-extreme point of T , then �p = 0 . For more desriptionde�ne B+ = f zj j �j > 0; j 2 Bg and B0 = f zj j �j = 0; j 2 Bg. Let Card(B0) = k0and Card(B+) = k1 , then it is obvious that, Card(B0) + Card(B+) = Card(B) , thatis, k0 + k1 = k . Then, we present the below de�nition:De�nition 5.1. Suppose that zp; zq 2 B+ , then zp has higher rank of zq if and only if�p > �q . 6
-o vx

uy
����������������AAAAAA

z1 z2 z3z4z5z6
z7r r rrrr r

Fig. 5. a. Convex hall of fzjg; � = 1; : : : ; 7.6
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z1 z2 z3z4z5z6

z7�1 S1r r rrrr r
Fig. 5. b. Convex hall of fzjg; � = 2; : : : ; 7.Fig. 5. a shows a onvex hall of 7 point together with its area S , meanwhile, Fig. 5. bshows a onvex hall after removing z1 . We gain �1 as its rank , that is, �1 = S � S1 > 0:
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50 F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53Now if we verify points z6 or z7 we obtain �6 = �7 = 0 . In last ase we should be rankthe units z6 and z7, in the onvex set T0 = onvexfz6; z7g.Some notes are worthwhile:Note 1. Suppose that zp; zq 2 B+ , then the probability �p = �q tend to vanish. It is trivialthat points in B+ have higher rank than the points in B0 . Nevertheless, we interestto rank points belong to B0 in seond order, aording to mentioned method basedon the new onvex set T0 = onvex(B �B+) .Note 2. If T = onvex(B) be a segment line, that is,S = 0 , then we suppose that thisprobability is zero. Otherwise this method enounter with a problem.Note 3. For non-extreme points whih have the zero rank value, it is suggested the distaneof origin be as a riterion for ranking.6 Numerial exampleExample 6.1. To illustrate the appliation of this method, we onsider 19 with two inputsand two outputs (Table 1).Table 1The value of inputs and outputsDMUs Input1 Input2 Output1 Output21 81 87.6 5191 2052 85 12.8 3629 03 56.7 55.2 3302 04 91 78.8 3379 05 216 72 5368 6396 58 25.6 1674 07 112.2 8.8 2350 08 293.2 52 6315 4149 186.6 0 2865 010 143.4 105.2 7689 6611 108.7 127 2165 26612 105.7 134.4 3963 31513 235 236.8 6643 23614 146.3 124 4611 12815 57 203 4869 54016 118.7 48.2 3313 1617 58 47.4 1853 23018 146 50.8 4578 21719 0 91.3 0 508Table 2The results of using di�erent models for ranking of DMUsDMUs 1 2 5 9 15 19AP rank 4 1 3 - 2 -MAJ rank 5 3 2 6 4 1Th. Norm rank 5 2 3 6 4 1RPA rank 6 4 3 1 2 5
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F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53 51DMUs 1, 2, 5, 9, 15 and 19 are CCR eÆient. The results of ranking using RPA methodare ompared with Thebyhe� norm, AP and MAJ methods in Table 2. As shown in Ta-ble 2, DMU19 and DMU9 have highest and lowest rank in MAJ and Thebyhe� models,respetively. Meanwhile, both of them (DMU19 and DMU9) are infeasible in AP model.Also, notie that, all DMUs are ranked very lose to eah other in MAJ and Thebyhe�models, while this is not in AP model. In model AP, DMU2 and DMU1 have �rst and lastrank respetively. The operations for ranking eÆient units 1, 2, 5, 9, 15 and 19 aordingto model (3.3), the ommon set of weights have obtained as follows:u�1 = 0:01000; u�2 = 0:089560; v�1 = 0:351901; v�2 = 0:498316; z� = 0:44Therefore we aquire:z1 = (72:16; 70:27); z2 = (36:29; 36:29); z5 = (111:89; 110:91); z9 = (65:66; 28:65);z15 = (121:22; 97:05); z19 = (45:5; 45:5)Now we rank the units of the set B = fz1; z2; z5; z9; z15; z19g6
-o vx

uy
���#####HHH������```̀ z1z2

z5
z9 z15z19 rr r

r rr
Fig.6. Convex hall of members of BFor ranking units, �rst we ompute RPA(T ) = S . Aording to the Fig. 6, onsider thatz1 don't e�etive in onstrutive RPA(T ) = S . Hene; we obtain:S = 12����� 65:66 28:65121:22 97:05 ����+ ���� 121:22 97:05111:89 110:91 ����+ ���� 111:89 110:9145:5 45:5 ����+ ���� 45:5 45:536:29 36:29 ����+ ���� 36:29 36:2965:66 28:65 ����� = 4186:43where �i = S � Si have obtained follows:�1 = 0; �2 = 340:87; �5 = 1029:17; �9 = 2433:39; �15 = 1408:23; �19 = 9:037 ConlusionIn this paper, we have addressed a di�erent rankingof eÆient units whih is alled regularpolygon area (RPA) method. In our approah, �rst eÆient units are transformed into
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52 F. Rezai Balf = IJIM Vol. 3, No. 1 (2011) 41-53two dimension spae by a ommon set of weights. Then the area from the regular polygononstruter of all projeted eÆient units is onsidered alulatal. However, we rankedthe projeted eÆient units aording to the di�erene between regular polygon areasbefore and after removed. We also suggested that one an be work on this method overimpreise data [5℄, and fous on Stability regions for keeping eÆieny [15℄. Reader shouldattend that this method has a drawbak, beause the projetion funtion of f : Rm+s !R2; f(x; y) = (vx; uy) is not injetive map.Referenes[1℄ P. Andersen, N.C. Petersen, A proedure for ranking eÆient units in data envelop-ment analysis, Management Siene 39 (1993) 1261-1264.[2℄ R.D. Banker, A. Charnes, W.W. Cooper, Some model for estimating tehnial andsale ineÆienies in data envelopment analysis, Manegement Siene 30 (1984) 1078-1092.[3℄ A. Charnes, W.W. Cooper, E. Rhodes, Measuring the eÆieny of deision makingunits, European Journal of Operating Researh 2 (6) (1978) 429-444.[4℄ W.W. Cooper, L.M. Seiford, K. Tone, Data Envelopment Analysis - A Comprehen-sive Text with Models, Appliation, Referenes and DEA-Solver Software. KluwerAademi Publishers, Dordreht 2000.[5℄ D.K. Despotis, Y.G. Smirlis, data envelopment analysis with impreise data, Euro-pean Journal of Operational Researh 140 (2002) 243-246.[6℄ J. Doyle, R. Green, Data envelopment analysis and multiple riteria deision making,Omega 21 (1993) 713-713.[7℄ J. Doyle, R. Green, EÆieny and ross-eÆieny in DEA; Derivations, meanings anduses, Journal of the Operational Researh Soiety 45 (1994) 567- 578.[8℄ G.R. Jahanshahloo, F. Hosseinzadeh Lot�, H. Zhiani Rezai, F. Rezai Balf, UsingMonte Carlo method for ranking eÆient DMUs, Applied Mathematis and Compu-tation 162 (2005) 371-379.[9℄ G.R. Jahanshahloo, M.R. Alirezai, S. Saati, S. Mehrabian, The Role of Multipliersin DEA, with an empirial study, J. Eonomi Mgmt. Quarterly, J. Islami AzadUniversity, 6 331-347.[10℄ S. Mehrabian, M.R. Alirezaee, G.R. Jahanshahloo, A omplete eÆieny ranking ofdeision making units in data envelopment analysis, Computational Optimisation andAppliation 14 (1999) 261-266.[11℄ L.M. Seiford, J. Zhu, Infeasibility of super-eÆieny data envelopment analysis Mod-els. INFORS 37 (1999) 174-187.[12℄ L.M. Seiford, J. Zhu, Stability regions for maintaining eÆieny in data envelopmentanalysis, European Journal of Operational Researh 108 (1998) 127-139.
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