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Using Multiquadri Quasi-Interpolation forSolving Kawahara EquationR. Ezzati �, K. Shakibi, M. GhasemimaneshDepartment of Mathematis, Karaj Branh, Islami Azad University, Karaj, Iran.Reeived 12 June 2010; revised 20 Deember 2010; aepted 22 Deember 2011.|||||||||||||||||||||||||||||||-AbstratMultiquadri quasi-interpolation is a useful instrument in approximation theory and itsappliations. In this paper, a numerial approah for solving Kawahara equation (KE)is developed by using multiquadri quasi-interpolation method. Obtaining numerial so-lution of KE by multiquadri quasi-interpolation is done by a reurrene relation. Inthis reurrene relation, the approximation of derivative is evaluated diretly without theneed to solve any linear system of equation. Also, by ombining Hermite interpolationand quasi-interpolation LD, another way to solve KE is obtained. The KE ours in thetheory of magneto-aousti waves in a plasma and in the theory of shallow water waveswith surfae tension. We test the method in two examples and ompare the numerialand exat results.Keywords : Radial basis funtion; Quasi-interpolation; Preserving monotoniity; Linear reprodu-ing, The Kawahara equation; Hermite interpolating polynomial.||||||||||||||||||||||||||||||||{1 IntrodutionNonlinear equations play an important role in various �leds of sienes. The atual worldis nonlinear, so these equations are a model to desribe the physial phenomena. Un-fortunately, solving the nonlinear equations is harder than the linear ones, so we havealways been looking for ways to solve them more easily. The KE is a nonlinear partialdi�erential equation. It was �rst proposed by Kawahara in 1972 as a model equationdesribing solitary-wave propagation in media [1℄. This equation ours in the theoryof magneto-aousti waves in a plasma and in the theory of shallow water waves withsurfae tension [5℄. The KE has been the subjet of wide researh work [1, 10, 11, 12℄.Abbasbandy [1℄ solved the KE with homotopy analysis method (HAM) and proved that�Corresponding author. Email address: ezati�kiau.a.ir.111
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112 R. Ezzati et al. = IJIM Vol. 3, No. 2 (2011) 111-123obtained solution of this equation by using (HAM) has a reasonable residual error. Thismethod is a powerful analytial tool for nonlinear problems. The approximate solution ofKE with this method is obtained as a series of exponentials. Moreover we an �nd theexat and numerial solution of KE by the Variational Iteration Method (VIM) [5℄. TheVIM is based on Lagrange multipliers. Using this method reates a sequene whih tendsto the exat solution of the problem. Existene and uniqueness of solution of the KE isonsidered in [9℄. Reently, many authors have applied the diret algebrai method to �ndthe exat solution of nonlinear PDE suh as KE [13, 14, 15℄. The KE is as follows:ut + �uux + �u3x + u5x = 0 (1.1)where �, �,  are arbitrary onstants. The numerial solution of Eq. (1) is obtainedsubjet to the initial ondition: u(x; 0) = f(x); x 2 R:The rest of this paper is as follows: In Setion 2, multiquadri quasi interpolation isintrodued. In Setion 3, mathematial formulation of our method is explained. In Setion4, Hermite quasi-interpolation is mentioned and mathematial formulation for Hermitequasi-interpolation is expressed. In Setion 5, two examples for testing our methods areshown and in the last setion the onlusion is derived.2 Multiquadri quasi-interpolation methodHardy [6℄ proposed multiquadri (MQ) in 1968 as a kind of radial basis funtion (RBF).For the �rst time, Kansa [8℄ suessfully used modi�ed MQ for solving partial di�erentialequation (PDE). In 1992, Betson and Powell [2℄ proposed three univariate multiquadriquasi-interpolations. They named them LA; LB ; LC to approximate a funtionff(x)jx0 �x � xng. Afterwards, Shabak and Wu [3℄ proposed a multiquadri quasi-interpolationLD to improve LA; LB ; LC . Multiquadri quasi-interpolation LD possesses preservingmonotoniity, onvexity preserving and linear reproduing on [x0; xn℄; but for example LAand LB annot preserve both linearity and onvexity. Quasi-interpolation is an appro-priate instrument in approximation theory and its appliations. Multiquadri is used ingeodesy, geophysis, photogrammetry, hydrology and mining and so on [7℄ but the mostimportant advantage of quasi-interpolation is that one an evaluate the approximation di-retly without the need to solve any linear system of equations. In this setion we introduethe multi-quadri quasi-interpolation LD to approximate a funtion ff(x)jx0 � x � xng:Given the points f(xj ; fj)gnj=0 where x0 � x1 � ::: � xn; the form of univariate quasi-interpolation is as follows: f�(x) = nXj=0 fj j(x) (2.2)where,  j(x) (j = 0; 1; :::n) is a linear ombination of radial basis funtions. Buhmann [4℄onsidered  (x) as a seond divided di�erene of � as follows: j(x) = �j+1(x)� �j(x)2(xj+1 � xj) � �j(x)� �j�1(x))2(xj � xj�1) : (2.3)
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R. Ezzati et al. = IJIM Vol. 3, No. 2 (2011) 111-123 113The operator LD is introdued as follows [3, 4℄ :(LDf)(x) = f0�0(x) + f1�1(x) + n�2Xj=2 fj j(x) + fn�1�n�1(x) + fn�n(x); (2.4)where �0(x) = 12 + �1(x)� (x� x0)2(x1 � x0) ;�1(x) = �2(x)� �1(x)2(x2 � x1) � �1(x)� (x� x0)2(x1 � x0) ;�n�1(x) = (xn � x)� �n�1(x)2(xn � xn�1) � �n�1(x)� �n�2(x)2(xn�1 � xn�2) ;�n(x) = 12 + �n�1(x)� (xn � x)2(xn � xn�1) ;�j(x) =q(x� xj)2 + 2; j = 1; :::; n� 1;  2 R; j(x) = �j+1(x)� �j(x)2(xj+1 � xj) � �j(x)� �j�1(x)2(xj � xj�1) ; j = 2; :::; n � 2:Let ��1(x) = jx� x�1j; �0(x) = jx� x0j; �n(x) = jx� xnj; �n+1(x) = jx� xn+1jthen (LDf)(x) an be written as follows:(LDf)(x) = nXj=0 fj j(x):Quasi-interpolation f�(x) has the following properties.Theorem 2.1. [4℄, If ��1(x) = �0(x) + x0 � x�1;�n(x) = �0(x)� 2x+ x0 + xn;�n+1(x) = �n(x) + xn+1 � xn (2.5)then the multiquadri quasi-interpolation f�(x) an be written as three equivalent formsas follows: f�(x) = 12 n�1Xj=1(�j+1(x)� �j(x)xj+1 � xj � �j(x)� �j�1(x)xj � xj�1 )fj+12(1 + �1(x)� �0(x)x1 � x0 )f0 + 12(1� �n(x)� �n�1(x)xn � xn�1 )fn;f�(x) = f0 + fn2 + 12 n�1Xj=0 �j(x)� �j+1(x)xj+1 � xj (fj+1 � fj);
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114 R. Ezzati et al. = IJIM Vol. 3, No. 2 (2011) 111-123f�(x) = 12 n�1Xj=1( fj+1 � fjxj+1 � xj � fj � fj�1xj � xj�1 )�j(x)+f0 + fn2 + f1 � f02(x1 � x0)�0(x)� fn � fn�12(xn � xn�1)�n(x):In addition on [x0; xn℄ , we have(f�(x))(k) = 12 n�1Xj=0 �(k)j � �(k)j+1xj+1 � xj (fj+1 � fj)where, x�1 < x0 and xn < xn+1. With the Eqs. (2.5) and the de�nition of �j(x),  j(x);we an say that the quasi-interpolation f�(x) de�ned by Eq. (2.2) is just the multiquadriquasi-interpolatin whih we use in this paper.Theorem 2.2. [4℄. Let h = maxfxj � xj�1g; 1 � j � n:For any real number  > 0, x 2 [x0; xn℄ and funtion f(x) 2 C2(x0; xn), the multiquadriquasi-interpolation LD satis�es:k(LD)(x)� f(x)k1 � k1h2 + k2h+ k32 log h;where k1; k2; k3 are onstants independent of h and .3 Mathematial formulation for MQ quasi-interpolationAs [16℄, we an present the numerial method for solving the KE . The KE is as follows:ut + �uux + �u3x + u5x = 0;where �, �,  are arbitrary onstants. unj is the approximation of the value of u(x; t) atpoint (xj ; tn), tn = n� , � is time step. We approximate ut with un+1j �unj� so we get:un+1j � unj� ' ��unj (ux)nj � �(u3x)nj � (u5x)nj :Clearly we have: un+1j = unj � ��(unj )(ux)nj � ��(u3x)nj � �(u5x)nj :The above equation means that the value of u an be obtained in time step (n+1) aordingto time step (n). So, it dose not need to solve a system of equations. Aording to Theorem(2.1), the approximate values of ux; u3x and u5x an be obtained. The derivative of themultiquadri quasi-interpolation to approximate ux; u3x and u5x is used. And also wehave: (ux)nj = 12Pn�1m=0 �(1)m (xj)��(1)m+1(xj)xm+1�xm (u(xm+1; tn)� u(xm; tn));(u3x)nj = 12Pn�1m=0 �(3)m (xj)��(3)m+1(xj)xm+1�xm (u(xm+1; tn)� u(xm; tn));(u5x)nj = 12Pn�1m=0 �(5)m (xj)��(5)m+1(xj)xm+1�xm (u(xm+1; tn)� u(xm; tn)): (3.6)
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R. Ezzati et al. = IJIM Vol. 3, No. 2 (2011) 111-123 1154 MQ interpolating operator using Hermite interpolatingpolynomialIn this setion, �rst, the quasi-interpolation LH2m�1 is realled [17℄ and the problem oper-ators LH2m�1 for solving KE is expressed. This defet is removed by ombining operatorsLD and LH2m�1 . The quasi-interpolation operator LB is de�ned as follows [2℄:(LBf)(x) = f(x0) 0(x) + n�1Xi=1 f(xi) i(x) + f(xn) n(x); x 2 [a; b℄; (4.7)where  0(x) = 12 + �1(x)��0(x)2(x1�x0) ; n(x) = 12 � �n(x)��n�1(x)2(xn�xn�1) ; i(x) = �i+1(x)��i(x)2(xi+1�xi) � �i(x)��i�1(x)2(xi�xi�1) ; (4.8)and i = 1; 2; : : : ; n� 1.By ombiningLB and Hermite interpolating polynomials [17℄ the improved quasi-interpolationoperator is de�ned as follows:(LH2m�1f)(x) = nXi=0  i(x)H2m�1[f ;xi; xi+1℄(x); (4.9)where H2m�1[f ;xi; xi+1℄(x) is Hermite interpolating polynomial of degree 2m � 1 whihagrees with the funtion f at the pointsxi; xi; : : : ; xi| {z }m ; xi+1; xi+1; : : : ; xi+1| {z }m :Also Hermite interpolating polynomial is de�ned as follows [18℄:H2m�1(f(x)) = m�1Xi=0 ri(x)f(xi) + m�1Xi=0 si(x)f 0(xi); (4.10)where ri(x) = (1� 2(x� xi)L0i(xi))(Li(x))2;si(x) = (x� xi)(Li(x))2;Li(x) = (x�x0):::(x�xi�1)(x�xi+1):::(x�xm�1)(xi�x0):::(xi�xi�1)(xi�xi+1):::(xi�xm�1) :If we want to use Eq. (4.9) for solving (KE), ux(xi; t); i = 0; 1; :::n; should bealulated in Eq. (4.10). But, as it is seen the values of ux(x; t) at x = xi are notavailable. To remove this defet, the bellow steps are done.The (KE) is as follows: ut + �uux + �u3x + u5x = 0;
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116 R. Ezzati et al. = IJIM Vol. 3, No. 2 (2011) 111-123where �, �,  are arbitrary onstants. unj is the approximation of the value of u(x; t) atpoint (xj ; tn), tn = n� , � is time step. We approximate ut with un+1j �unj� so we get:un+1j � unj� ' ��unj (ux)nj � �(u3x)nj � (u5x)nj :Clearly we have: un+1j = unj � ��(unj )(ux)nj � ��(u3x)nj � �(u5x)nj :The above equation means that the value of u an be obtained in time step (n + 1)aording to time step (n). This time the values of ux; u3x and u5x are approximated byHermite quasi-interpolation as bellow:Lu(x; t) = nXi=0  i(x)H2m�1(u(xi; t));H2m�1(u(x; t)) = m�1Xi=0 ri(x)u(xi; t) + m�1Xi=0 si(x)(ux(x; t))x=xi ;where ux(x; t) is the derivative of LD(u(x; t)) as follows:(ux(x; t))x=xi = ��x [12 n�1Xj=1(u(xj+1; t)� u(xj ; t)xj+1 � xj � u(xj ; t)� u(xj�1; t)xj � xj�1 )�j(x)�u(x0; t) + u(xn; t)2 + u(x1; t)� u(x0; t)2(x1 � x0) (x� x0)�u(xn; t)� u(xn�1; t)2(xn � xn�1) (xn � x)℄x=xi :Sou(xj ; tn+1) = u(xj ; tn)���u(xj ; tn)(Lu(x; tn))(1)x=xj���(Lu(x; tn))(3)x=xj��(Lu(x; tn))(5)x=xj :Remark 4.1. [4℄, The formula of (LDf)(x) an be rewritten as:(LDf)(x) = 12Pn�1j=1 ( fj+1�fjxj+1�xj � fj�fj�1xj�xj�1 )�j(x)� f0+fn2+ f1�f02(x1�x0) (x� x0)� fn�fn�12(xn�xn�1) (xn � x):5 Numerial examplesIn this setion we give two examples to test the methods. All through this setion wesuppose � = � = 1,  = �1.
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R. Ezzati et al. = IJIM Vol. 3, No. 2 (2011) 111-123 117Example 5.1. Consider the KE:ut + uux + u3x � u5x = 0;with initial ondition u(x; 0) = � 72169 + 105169seh4( 12p13x):The authors of [5℄ obtain the exat solution of this equation as follows:u(x; t) = � 72169 + 105169seh4( 12p13(x+ 36169 t)):Aording to ut ' un+1j �unj� we get:un+1j � unj� ' �uux � u3x + u5x:So we an write:u(xj; tn+1) = u(xj ; tn) + �(�u(xj ; tn)ux(xj ; tn)� u3x(xj ; tn) + u5x(xj ; tn)):In the above relation ux; u3x and u5x an be obtained in eah time step with Eqs. (3.6).For example if we put t = 0:1, the values of u(xj ; 0:1) an be obtained as follows:u(xj ; 0:1) = u(xj ; 0) + 0:0001(�u(xj ; 0)ux(xj ; 0)� u3x(xj ; 0) + u5x(xj; 0));where ux(xj ; 0) = 12 n�1Xm=0 �(1)(xj ;m)� �(1)(xj ;m+ 1)xm+1 � xm (u(xm+1; 0) � u(xm; 0));u3x(xj; 0) = 12 n�1Xm=0 �(3)(xj ;m)� �(3)(xj;m+ 1)xm+1 � xm (u(xm+1; 0)� u(xm; 0));u5x(xj ; 0)) = 12 n�1Xm=0 �(5)(xj ;m)� �(5)(xj ;m+ 1)xm+1 � xm (u(xm+1; 0)� u(xm; 0)):Similarly the values of u(xj ; 0:2) an be obtained aording to the following:u(xj ; 0:2) = u(xj ; 0:1) + 0:0001(�u(xj ; 0:1)ux(xj ; 0:1) � u3x(xj; 0:1) + u5x(xj; 0:1));and so on. The omparison of the exat and numerial solution is shown in Table 1. Weshow the results at t=0.1 in Fig. 1.Table 1
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118 R. Ezzati et al. = IJIM Vol. 3, No. 2 (2011) 111-123Comparison of results at t = 0:1 for MQ.x Exat solution Numerial solution Absolute error0:1 0.194915 0.195027 0.0001125150:2 0.194097 0.194311 0.0002242140:3 0.192805 0.19312 0.0003151750:4 0.191042 0.191457 0.0004152870:5 0.188812 0.189326 0.0005142870:6 0.186121 0.186733 0.0006119140:7 0.182977 0.183685 0.0007079180:8 0.179389 0.180191 0.0008020960:9 0.175364 0.176261 0.0008972981 0.170914 0.171898 0.000983632
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Fig. 1. Comparison of numerial solution (� � � ), and exat solution (���) of example (5.1) fort=0.1.In Table 2, we ompare the absolute error at di�erent times for example (5.1).Table 2Absolute error of MQ at di�erent times.x t=0.1 t=0.2 t=0.3 t=0.4�25 1.11516�10�7 2.24354�10�7 3.38529�10�7 4.54058�10�730 6.912�10�9 1.37429�10�8 2.04936�10�8 4.54058�10�740 2.69876�10�11 5.36582�10�11 8.00156�10�11 1.06063 �10�10In Table 3, the values of u(x; t) is alulated at t = 0:1 by Hermite quasi-interpolationas bellow:u(xj ; 0:1) = u(xj ; 0) + 0:0001(�u(xj ; 0)ux(xj ; 0)� u3x(xj ; 0) + u5x(xj; 0));where ux(xj ; 0) = ��x [ nXi=0  i(x)H2m�1(u(xi; 0))℄x=xj ;u3x(xj; 0) = �3�x3 [ nXi=0  i(x)H2m�1(u(xi; 0))℄x=xj ;
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R. Ezzati et al. = IJIM Vol. 3, No. 2 (2011) 111-123 119u5x(xj; 0) = �5�x5 [ nXi=0  i(x)H2m�1(u(xi; 0))℄x=xj :And H2m�1(u(x; 0)) = m�1Xi=0 ri(x)u(xi; 0) + m�1Xi=0 si(x)(ux(x; 0))x=xi ;where(ux(x; 0))x=xi = ��x [12 n�1Xj=1(u(xj+1; 0) � u(xj; 0)xj+1 � xj � u(xj ; 0)� u(xj�1; 0)xj � xj�1 )�j(x)�u(x0; 0) + u(xn; 0)2 + u(x1; 0) � u(x0; 0)2(x1 � x0) (x� x0)�u(xn; 0) � u(xn�1; 0)2(xn � xn�1) (xn � x)℄:Similarlyu(xj ; 0:2) = u(xj ; 0:1) + 0:0001(�u(xj ; 0:1)ux(xj ; 0:1) � u3x(xj; 0:1) + u5x(xj; 0:1));where ux(xj ; 0:1) = ��x [ nXi=0  i(x)H2m�1(u(xi; 0:1))℄x=xj ;u3x(xj ; 0:1) = �3�x3 [ nXi=0  i(x)H2m�1(u(xi; 0:1))℄x=xj ;u5x(xj ; 0:1) = �5�x5 [ nXi=0  i(x)H2m�1(u(xi; 0:1))℄x=xj :And H2m�1(u(x; 0:1)) = m�1Xi=0 ri(x)u(xi; 0:1) + m�1Xi=0 si(x)(ux(x; 0:1))x=xi ;where(ux(x; 0:1))x=xi = ��x [12 n�1Xj=1(u(xj+1; 0:1) � u(xj ; 0:1)xj+1 � xj � u(xj ; 0:1) � u(xj�1; 0:1)xj � xj�1 )�j(x)�u(x0; 0:1) + u(xn; 0:1)2 + u(x1; 0:1) � u(x0; 0:1)2(x1 � x0) (x� x0)�u(xn; 0:1) � u(xn�1; 0:1)2(xn � xn�1) (xn � x)℄;and so on.Table 3Comparison of results at t = 0:1 for Hermite quasi-interpolation.

Archive of SID

www.SID.ir

www.SID.ir


120 R. Ezzati et al. = IJIM Vol. 3, No. 2 (2011) 111-123x Exat solution Numerial solution Absolute error0:1 0.194915 0.1945 0.0004143140:2 0.194097 0.194765 0.0006673340:3 0.192805 0.193127 0.0003217560:4 0.191042 0.191459 0.0004175590:5 0.188812 0.189326 0.000514435In Table 4, the values of u(x; t) are alulated at t = 0:2 by Hermite quasi-interpolation.In other time steps the same thing is done.Table 4Comparison of results at t = 0:2 for Hermite quasi-interpolation.x Exat solution Numerial solution Absolute error0:1 0.194781 0.193924 0.0008561210:2 0.193862 0.195259 0.001397320:3 0.192469 0.193135 0.0006664960:4 0.195606 0.191462 0.0008560560:5 0.188277 0.189327 0.00104978Example 5.2. Consider the KE:ut + uux + u3x � u5x = 0;with initial ondition u(x; 0) = � 72169 + 420seh2( 12p13x)169(1 + seh2( 12p13x)) :The authors of [5℄ obtained the exat solution of this equation as follows:u(x; t) = � 72169 + 420seh2( 12p13(x+ 36169 ))169(1 + seh2( 12p13 (x+ 36169 ))) :The omparison of the exat and numerial solution is shown in Table 5. We show theresults at t=0.1 in Fig. 2.Table 5Comparison of results at t = 0:1 of MQ.
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R. Ezzati et al. = IJIM Vol. 3, No. 2 (2011) 111-123 121x Exat solution Numerial solution Absolute error0:1 0.816392 0.816449 0.0000564320:2 0.815983 0.816091 0.0001075860:3 0.815335 0.815494 0.0001586180:4 0.814449 0.814658 0.0002095860:5 0.813324 0.813584 0.0002604730:6 0.811962 0.812273 0.0003112590:7 0.810362 0.810724 0.0003619240:8 0.808526 0.808939 0.0004124690:9 0.806454 0.806919 0.0004644831 0.804147 0.804659 0.000512132
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0.806

0.808

0.810

0.812

0.814

0.816

Fig. 2. Comparison of numerial solution (� � � ), and exat solution (���) of example (5.2) fort=0.1.In Table 6 we ompare the absolute error in di�erent times for example (5.2).Table 6Absolute error of MQ in di�erent times.x t=0.1 t=0.2 t=0.3 t=0.4�25 0.0000567258 0.000113784 0.000171176 0.00022890430 0.0000142158 0.0000283481 0.0000423974 0.000056364240 8.90104�10�7 1.77497�10�6 2.65462�10�6 3.52909 �10�6In Table 7. the values of u(x; t) is alulated at t = 0:1 and di�erent x by Hermitequasi-interpolation.Table 7Comparison of results at t = 0:1 for Hermite quasi-interpolation.x Exat solution Numerial solution Absolute error0:1 0.816392 0.816078 0.0003146230:2 0.815983 0.816318 0.0003351550:3 0.815335 0.815497 0.0001619230:4 0.814449 0.814659 0.0002107340:5 0.813324 0.813584 0.000260144 In Table 8. the values of
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