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Abstract
Stochastic programming is an approach for modeling and solving optimization problem
that include uncertain data. Chance constrained programming is one of the most impor-
tant methods of stochastic programming. In many real world data envelopment analysis
(DEA) models, exact amount of data can not be determined. Therefore several researchers
proposed methods to evaluate stochastic efficiency of units with random inputs and/or out-
puts. Most of these methods are nonlinear. In this paper by introducing symmetric error
structure for random variables, a linear from of stochastic CCR is provided. Finally, the
proposed model is applied on an example.
Keywords : Data envelopment analysis; Stochastic programming; Symmetric error structure

——————————————————————————————————

1 Introduction

Data Envelopment Analysis (DEA) is a technique based on mathematical programming
to assess the efficiency of a set of Decision Making Units (DMUs). Charnes et al. [2]
were pioneers in DEA by introducing CCR model. In various fields, many DEA models
have been presented to evaluate DMUs with different kinds of data such as deterministic,
fuzzy and interval. However, in many practical problems managers deal with units with
imprecise data. Thus they need methods to assess their units. In these situations analysts
may consider imprecise data as random variables. While working by random variables
with considering the possibility for occurrence of unforeseen events, different aspects of
the information can be detected. The main advantage of working with random data
in DEA is the prediction of efficiencies in future. Given the need to use random data in
practical models, Several researchers initiated stochastic DEAmodels (see [3,4,5,10,11,15]).
Subsequently, Li [12], Sengupta [14], Huang and Li [6], Olesen [13], Khodabakhshi [8,9],
Behzadi et al.[1] and Jahanshahloo et al. [7] present more stochastic DEA models. Almost
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all of these models are nonlinear. In this paper using symmetric error structure for inputs
and outputs, deterministic equivalent of CCR model is presented which is a linear model.

The paper organized as follows: First the preliminaries on stochastic models and
stochastic efficiency is provided in section 2 and then by introducing symmetric error
structure the deterministic equivalent of CCR model is obtained in section 3. In section 4
Using numerical example, we will demonstrate how to use the result. Section 5 conclude
the paper.

2 Preliminaries

Assume there are n homogeneous DMUs (DMUj , j = 1, ..., n) such that all the DMUs
use m inputs xij (i = 1, ...,m) to produce s outputs yrj (r = 1, ..., s). Also assume that
xj = (x1j , ..., xmj) and yj = (y1j , ..., ysj) are nonnegative and nonzero vectors. The set of
production possibility set (PPS) is defined as T = {(X,Y )|Y ≥ 0 can be produced by X ≥
0}. Here we assume that T = TCCR in which:

TCCR = {(X,Y )|
n∑

j=1

λjXj ≤ X,
n∑

j=1

λjYj ≥ Y, λj ≥ 0}.

The input oriented CCR model [2] to estimate the efficiency of DMUo, o ∈ {1, ..., n} is

min θ

s.t.
n∑

j=1

xijλj ≤ θxio, i = 1, ...,m,

n∑
j=1

yrjλj ≥ yro, r = 1, ..., s,

λj ≥ 0, j = 1, ..., n.

(2.1)

In model (2.1) it is assumed that inputs and outputs are deterministic values. Now, let us
assume that these data are random variables i.e. X̃j = (x̃1j , ..., x̃mj) and Ỹj = (ỹ1j , ..., ỹsj)
are random input and output vectors ofDMUj , j = 1 . . . , n andXj = (x1j , ..., xmj) ∈ Rm+

and Yj = (y1j , ..., ysj) ∈ Rs+ stand for corresponding vectors of expected values of input
and output for it. All input and output components have been considered to be normally
distributed i.e.

x̃ij ∼ N(xij , σ
2
ij), i = 1, ...,m,

ỹrj ∼ N(yrj , σ
′2
rj), r = 1, ..., s.

Therefore the chance constrained model related to input oriented stochastic CCR model
for evaluating DMUo, o ∈ {1, ..., n} is follows:

min θ

s.t. p{
n∑

j=1

x̃ijλj ≤ θx̃io} ≥ 1− α, i = 1, ...,m,

p{
n∑

j=1

ỹrjλj ≥ ỹro} ≥ 1− α, r = 1, ..., s,

λj ≥ 0, j = 1, ..., n.

(2.2)
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where in the above model, p means “probability” and α is a level of error between 0 and
1, which is a predetermined number. The deterministic equivalent of model (2.2) which is
obtained by Cooper et al.[4] is follows:

min θ

s.t.

n∑
j=1

xijλj + s−i − Φ−1(α)vi = θxio, i = 1, ...,m,

n∑
j=1

yrjλj − s+r +Φ−1(α)ur = yro, r = 1, ..., s,

v2i =
∑
j ̸=o

∑
k ̸=o

λjλkcov(x̃ij , x̃ik) + 2(λo − θ)
∑
j ̸=o

λjcov(x̃ij , x̃io)+

(λo − θ)2var(x̃io), i = 1, ...,m,

u2r =
∑
j ̸=o

∑
k ̸=o

λjλkcov(ỹrj , ỹrk) + 2(λo − 1)
∑
j ̸=o

λjcov(ỹrj , ỹro)+

(λo − 1)2var(ỹro), r = 1, ..., s,
s−i ≥ 0, s+r ≥ 0, i = 1, ...,m, r = 1, ..., s,
λj ≥ 0, ur ≥ 0, vi ≥ 0 j = 1, ..., n, r = 1, ..., s, i = 1, ...,m.

(2.3)

Here, Φ is the cumulative distribution function of the standard normal distribution and
Φ−1(α), is its inverse in level of α. model (2.3) is an nonlinear and quadratic programming
model. Also, DMUo is defined a stochastic efficient DMU in level of α if and only if θ∗ = 1
in the optimal solution of model (2.3).

3 Stochastic Efficiency Based on Symmetric Error Struc-
ture

In this section symmetric error structure for random inputs and outputs is introduced.
Then using this structure the stochastic CCR model convert to a deterministic linear
model.

Assume related inputs and outputs of DMUj , j = 1, ..., n are as following structure:

x̃ij = xij + aij ε̃ij , i = 1, ...,m,

ỹrj = yrj + brj ξ̃rj , r = 1, ..., s.
(3.1)

where aij and brj are nonnegative real values. Also, ε̃ij and ξ̃rj are random variables with
normal distributions, ε̃ij ∼ N(0, σ̄2) and ξ̃rj ∼ N(0, σ̄2). Therefore ε̃ij and ξ̃rj are errors of
inputs and outputs in contrast to the mean values respectively. Since normal distribution
is symmetric then the structure in expression (3.1) is named symmetric error structure.
Also, the following relations are resulted from expression (3.1):

x̃ij ∼ N(xij , σ̄
2a2ij),

ỹrj ∼ N(yrj , σ̄
2b2rj).

It must be noted that every random variable with normal distribution can be stated
as symmetric error structure. Assume that ith input of every DMUs are uncorrelated.
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Similarly assume rth output of every DMUs are uncorrelated, too. i.e. for every j ̸= k,

Cov(ε̃ij , ε̃ik) = 0, i = 1, ...,m,

Cov(ξ̃rj , ξ̃rk) = 0, r = 1, ..., s.
(3.2)

Therefore according to relations (3.1) and (3.2), it can be considered a same error for all
DMUs, i.e. ε̃i = ε̃ij and ξ̃r = ξ̃rj , for every j = 1, ..., n, i = 1, ...,m and r = 1, ..., s.

Now, consider ith input constraint of model (2.2),

p{
n∑

j=1

x̃ijλj ≤ θx̃io} ≥ 1− α (3.3)

Let h̃i =
n∑

j=1
λj x̃ij − θx̃io. So (3.1) and (3.2) result:

h̃i = (

n∑
j=1

λjxij − θxio)+ε̃i(
n∑

j=1

λjaij − θaio)

Therefore,

h̃i ∼ N

(

n∑
j=1

λjxij − θxio),σ̄2(
n∑

j=1

λjaij − θaio)
2


From the above expression and normal distribution properties, the stochastic constraint
(3.3) can be converted to the following deterministic equivalent:

n∑
j=1

λjxij − Φ−1(α)σ̄

∣∣∣∣∣∣
n∑

j=1

λjaij − θaio

∣∣∣∣∣∣ ≤ θxio. (3.4)

Similarly, rth output constraint of model (2.2) can be converted to

n∑
j=1

λjyrj +Φ−1(α)σ̄

∣∣∣∣∣∣
n∑

j=1

λjbrj − bro

∣∣∣∣∣∣ ≥ yro (3.5)

Therefore from (3.4) and (3.5), deterministic equivalent of model (2.2) is

min θ

s.t.
n∑

j=1
λjxij − Φ−1(α)σ̄

∣∣∣∣∣ n∑
j=1

λjaij − θaio

∣∣∣∣∣ ≤ θxio,i = 1, ...,m,

n∑
j=1

λjyrj +Φ−1(α)σ̄

∣∣∣∣∣ n∑
j=1

λjbrj − bro

∣∣∣∣∣ ≥ yro, r = 1, ..., s,

λj ≥ 0, j = 1, ..., n.

(3.6)
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Model (3.6) is a nonlinear programming but it can be converted to linear using the following
transformations:

∣∣∣∣∣ n∑
j=1

λjaij − θaio

∣∣∣∣∣ = (p+i + p−i ), i = 1, ...,m,

n∑
j=1

λjaij − θaio = (p+i − p
−
i ), i = 1, ...,m,

p+i p
−
i = 0, i = 1, ...,m,∣∣∣∣∣ n∑

j=1
λjbrj − bro

∣∣∣∣∣ = (q+r + q−r ), r = 1, ..., s,

n∑
j=1

λjbrj − bro = (q+r − q−r ), r = 1, ..., s,

q+r q
−
r = 0, r = 1, ..., s,

p+i ≥ 0, p−i ≥ 0, q+r ≥ 0, q−r ≥ 0.

By substituting the above relation in model (3.6), we have:

min θ

s.t.
n∑

j=1
λjxij − Φ−1(α)σ̄(p+i + p−i ) ≤ θxio,i = 1, ...,m,

n∑
j=1

λjyrj +Φ−1(α)σ̄(q+r + q−r ) ≥ yro, r = 1, ..., s,

n∑
j=1

λjaij − θaio = p+i − p
−
i ,i = 1, ...,m,

n∑
j=1

λjbrj − bro = q+r − q−r , r = 1, ..., s,

p+i p
−
i = 0, i = 1, ...,m, q+r q

−
r = 0, r = 1, ..., s,

λj , p
+
i , p

−
i , q

+
r , q

−
r ≥ 0, j = 1, ..., n, i = 1, ...,m, r = 1, ..., s.

(3.7)

Model (3.7) is nonlinear because of the existence of constraints p+i p
−
i = 0 and q+r q

−
r = 0.

It must be noted that for every linear problem which has an optimal solution, there is at
least a basic optimal solution. Model (3.7) without constraints p+i p

−
i = 0 and q+r q

−
r = 0

is a linear model while in every its optimal basic solutions at least one of p+i and p−i for
every i = 1, ...,m and at least one of q+r and q−r for every r = 1, ..., s is zero. Therefore
constraints p+i p

−
i = 0 and q+r q

−
r = 0 will be satisfied in optimal basic solutions of linear

model. Thus, assuming the use of optimal basic solution detector algorithms (for example
Simplex), constraints p+i p

−
i = 0 and q+r q

−
r = 0 can be removed. So, the linear deterministic
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equivalent of model (2.2) is

θ∗(α) =min θ

s.t.
n∑

j=1
λjxij − Φ−1(α)σ̄(p+i + p−i ) ≤ θxio,i = 1, ...,m,

n∑
j=1

λjyrj +Φ−1(α)σ̄(q+r + q−r ) ≥ yro, r = 1, ..., s,

n∑
j=1

λjaij − θaio = p+i − p
−
i ,i = 1, ...,m,

n∑
j=1

λjbrj − bro = q+r − q−r , r = 1, ..., s,

λj , p
+
i , p

−
i , q

+
r , q

−
r ≥ 0, j = 1, ..., n, i = 1, ...,m, r = 1, ..., s.

(3.8)

Theorem 3.1. 0 < θ∗(α) ≤ 1 for every α < 0.5 in model (3.8).

Proof. Let θ = 1, λo = 1, λj = 0; j ̸= o, p+i = 0, p−i = 0; i = 1, ...,m, q+r = 0, q−r = 0;
r = 1, ..., s. This solution is feasible for model (3.8) in every α levels of error. Since this
model is minimizing then θ∗(α) ≤ 1. If α < 0.5, then Φ−1(α) < 0. Therefore inputs and
output constraint of model (3.8) results

n∑
j=1

λ∗jxij ≤ θ∗xio, i = 1, ...,m,

n∑
j=1

λjyrj ≥ yro,r = 1, ..., s.

Now suppose θ∗(α) ≤ 0 (by contradiction hypothesis). Since xij ≥ 0, xj ̸= 0 and λ∗j ≥ 0
by definition then the first and the last of above inequalities results λ∗j = 0; j = 1, ..., n
and yrj ≤ 0 respectively. which is a contradiction by definitions yrj ≥ 0, r = 1, ..., s and
yj ̸= 0. Thus θ∗(α) ≥ 0.

Theorem 3.2. θ∗(α′) ≤ θ∗(α) for every α ≤ α′ in model (3.8).

Proof. Let (θ∗,λ∗, p+∗, p−∗, q+∗, q−∗) be an optimal solution of model (3.8) in α level of
error. Since Φ−1(α) is nondecreasing function, so Φ−1(α) ≤ Φ−1(α′) and

0 ≥
n∑

j=1

λ∗jxij − Φ−1(α)σ̄(p+∗
i + p−∗

i )− θ∗xio ≥
n∑

j=1

λ∗jxij − Φ−1(α′)σ̄(p+∗
i + p−∗

i )− θ∗xio,

0 ≤
n∑

j=1

λ∗jyrj +Φ−1(α)σ̄(q+∗
r + q−∗

r )− yro ≤
n∑

j=1

λ∗jyrj +Φ−1(α′)σ̄(q+∗
r + q−∗

r )− yro.

The above relations show that (θ∗,λ∗, p+∗, p−∗, q+∗, q−∗) is a feasible solution of model
(3.8) in α′ level of error. Since model (3.8) is minimizing, the assertion will be proved.
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Corollary 3.1. Theorem 3.1 shows if DMUo is efficient in α′ level of error, then it would
be efficient for every α < α′. Also, if DMUo is inefficient in α′ level of error, then it would
be inefficient for every α′ < α. It is noteworthy to say that for 0.5 level of error model
(3.8) is CCR model with mean of data. Thus if a DMU is efficient in CCR mean model,
then it would be efficient for every α < 0.5. It means permanent efficient DMUs can be
detected by assessing them in α = 0.5. Also, if a DMU is inefficient in α = 0, then it
remain inefficient in all levels of error. Since Φ−1(0) = −∞ but Φ−1(0, 001) ≃ −3, so by
assessing DMUs in α = 0, 001 almost all permanent inefficient DMUs can be detected.

4 An application

In this section, we consider 20 branches of an Iranian bank with three stochastic inputs
and five stochastic outputs which are mentioned in Table 4.1.

Table 4.1. inputs and outputs
input 1 personal rate (weighted combination of personal qualifications, quantity, education and others)
input 2 payable benefits (of all deposits)
input 3 delayed requisitions (delay in returning ceded loans and other facilities)

output 1 facilities (sum of business and individual loans)
output 2 amount of deposits (of current, short duration and long duration accounts)
output 3 received benefits (of all ceded loans and facilities)
output 4 received commission (on banking operations, issuance guaranty, transferring money and others)
output 5 other resources of deposits

These data based on consideration ten successive months have normal distribution and
their scaled parameters are presented in Tables 4.2 and 4.3. We want to assess the total
performance of these units. We suppose that σ̄ = 1 in symmetric error structure, thus
aij =

√
V ar(x̃ij) and brj =

√
V ar(ỹrj). Here by running model (3.8) stochastic efficien-

cies of all branches are evaluated and results are gathered in Table 4.4.

Table 4.2 Estimated parameters of inputs normal distributions.
Input1 Input2 Input3

DMU Mean Variance Mean Variance Mean Variance
DMU1 9131 0.05 18.79 8.81 7228 0.58
DMU2 10.59 0.53 44.32 24.1 1121 0.02
DMU3 6712 0.86 19.73 27.7 19.21 0.47
DMU4 11.91 0.31 17.43 12.2 59.47 0.85
DMU5 7012 0.02 10.38 2.12 12.23 59.9
DMU6 18.99 0.88 16.67 10.8 568.6 28.1
DMU7 11.16 0.01 25.46 18.6 552.8 43.2
DMU8 15.05 0.48 123.1 42.6 14.78 0.06
DMU9 8787 0.38 36.16 38.4 361.8 23.2
DMU10 19.88 0.25 46.41 53.1 12.81 0.38
DMU11 18.92 0.17 36.88 54.5 24.43 0.01
DMU12 20.45 0.42 100.8 31.8 115.2 19.4
DMU13 12.41 0.12 20.19 10.6 78.02 24.1
DMU14 8051 0.79 33.21 24.3 115.3 15.6
DMU15 18.48 0.92 45.36 92.6 57.52 12.8
DMU16 10.35 0.27 11.16 3.32 43.32 36.1
DMU17 9511 0.01 31.49 38.5 173.3 3.13
DMU18 13.71 0.18 40.32 51.4 10.88 0.12
DMU19 11.69 0.26 26.44 26.2 31.22 0.05
DMU20 7823 0.58 17.74 10.1 13.06 8.88

Table 4.3 Estimated parameters of outputs normal distributions.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

342 M. Mirbolouki, et al /IJIM Vol. 4, No. 4 (2012) 335-343

output1 output2 output3 output4 output5
DMU Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance
DMU1 149.85 48.51 49621 48.01 4701 0.41 4748 0.41 30.09 24.34
DMU2 50772 8011 73132 13.11 1815 0.02 3035 0.68 5823 0.689
DMU3 259.91 295.9 108.04 225.6 6016 0.01 10.06 2.98 2721 4392
DMU4 137.51 21.65 44972 13.78 4923 1.65 4212 3.84 63.61 33.73
DMU5 95901 2521 31633 38.94 2718 0.44 9024 7.23 64.55 31.25
DMU6 112.58 3562 71958 70.05 13.19 9.15 41.89 13.2 291.3 92.52
DMU7 192.97 145.6 78015 195.6 7791 3.56 15.89 2.34 7499 12.68
DMU8 724.38 660.2 219.69 375.6 35.32 15.3 23.98 10.4 361.6 48.35
DMU9 548.15 418.6 86225 48.31 17.64 3.67 86.23 17.2 565.2 175.1
DMU10 1229.1 69.02 194.58 17.35 25.91 12.3 86.76 22.1 600.6 86.34
DMU11 11557 718.1 155.32 49.13 166.6 14.1 8142 31.1 119.9 14.89
DMU12 1132.1 353.5 248.16 238.9 46.88 26.3 31.85 45.1 96.21 44.47
DMU13 438.39 174.1 104.41 257.1 10.68 10.4 30.22 37.7 331.9 171.6
DMU14 260.82 15.32 87369 234.4 8415 3.52 6101 2.86 36.93 5777
DMU15 11190 1214 166.44 106.9 65.12 16.1 132.7 13.9 919.1 133.1
DMU16 709.85 42.19 159.48 327.8 36.89 6.28 12.15 25.1 79.66 105.2
DMU17 308.11 43.72 107.03 99.39 11.87 1.76 13.63 15.7 342.3 134.9
DMU18 259.21 342.1 81779 51.65 5212 19.4 8021 3.52 107.9 130.7
DMU19 381.33 573.8 72993 69.26 5165 1.79 50.32 34.7 577.2 113.4
DMU20 399.25 10.41 40985 25.93 11.51 0.99 6432 4.25 82.13 98.91

Table 4.4 Computational results of model (3.8).
DMU α = 0.999 α = 0.5 α = 0.1 α = 0.05 α = 0.001
DMU1 0.03 0.59 0.67 0.7 0.77
DMU2 0 1 1 1 1
DMU3 0.02 1 1 1 1
DMU4 0.1 0.28 0.3 0.3 0.34
DMU5 -1.81 0.49 0.98 1 1
DMU6 0.03 0.92 0.97 0.99 1
DMU7 0.02 0.48 0.56 0.58 0.66
DMU8 0.12 1 1 1 1
DMU9 0.08 1 1 1 1
DMU10 0.51 1 1 1 1
DMU11 1 1 1 1 1
DMU12 0.1 0.79 0.89 0.91 0.99
DMU13 1 0.91 0.95 0.96 0.99
DMU14 0.01 0.69 0.73 0.74 0.77
DMU15 1 1 1 1 1
DMU16 0.06 1 1 1 1
DMU17 0.08 0.93 0.99 1 1
DMU18 0.08 0.56 0.61 0.62 0.67
DMU19 0.16 1 1 1 1
DMU20 0.04 0.46 0.54 0.57 0.73

Results in Table 4.4 show the efficiency may be negative while the level of error is less
than half (note efficiency of DMU5 in 0.999 level of error). Also, efficiency of each DMU
increases during decreasing level of error. DMUs 2, 3, 8, 9, 10, 11, 15, 16 and 19, which
are efficient in 0.5 level of error, are permanent efficient DMUs. DMUs 1, 4, 7, 12, 13, 14,
18 and 20, which are inefficient in 0.001 level of error, are permanent inefficient DMUs.

5 Conclusion

In this paper considering symmetric error structure, equivalent nonlinear deterministic
model of stochastic CCR model is converted to linear model. It is showed that stochastic
efficiency may negative while level of error is greater than fifty percent. The efficiency
is also nonincreasing function of level of error, so a DMU will be permanent inefficient
DMU, if it is not efficient in the lowest level of error. However, efficient units at a level of
error may be inefficient in other levels of error. These results emphasis that it should pay
more attention to the level of error in order to evaluate stochastic efficiency. Applying
symmetric error structure in other DEA models is an interesting area for future researches.
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