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Abstract

In this paper, we introduce fusion frames in Hilbert modules over pro-C*-algebras. Also, we give some
useful results about these frames.
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1 Introduction

F
rames for Hilbert spaces were formally defined
by Duffin and Schaeffer [5] in 1952 to study

some deep problems in nonharmonic Fourier se-
ries. They were reintroduced and developed in
1986 by Daubechies, Grossmann and Meyer [6].
Frames have many nice properties which make
them very useful in the characterization of func-
tion spaces, signal processing and many other
fields. Many generalizations of frames were intro-
duced, e.g. frames of subspaces [1] and g-frames
[17]. Meanwhile, Frank and Larson presented a
general approach to the frame theory in Hilbert
C*-modules in [7]. Finally, A. and B. Khosravi
[11] generalized the concept of fusion frames and
g-frames to Hilbert C*-modules.

In this note, we generalize the theory of fusion
frames to Hilbert modules over a pro-C*-algebra
and give some useful results.

We refer the reader to [8],[15] for pro-C*-
algebras and [13],[15] for Hilbert modules over
pro-C*-algebras. We also refer the reader to
[1],[3],[7],[12],[17] for more information about the
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theory of frames and its generalizations.

In section 2, we give some definitions and basic
properties of pro-C*-algebras and we state some
notations. In section 3, we recall the basic defini-
tions and some notations about Hilbert pro-C*-
modules. We also give some basic properties of
such spaces which we will use in sequel. Finally,
in section 4, we introduce fusion frames in Hilbert
pro-C*-modules. We also generalize some of the
results about fusion frames in Hilbert C*-modules
to pro-C*-algebra case.

2 Pro-C*-algebras

In the follwoing, we briefly recall some definitions
and basic properties of pro-C*-algebras .

A pro-C*-algebra is a complete Hausdorff com-
plex topological ∗-algebra A whose topology is de-
termined by its continuous C*-seminorms in the
sense that a net {aλ} converges to 0 iff p(aλ) → 0
for any continuous C*-seminorm p on A and we
have :

(a) p(ab) ≤ p(a)p(b)

(b) p(a∗a) = (p(a))2

for all C*-seminorm p on A and a, b ∈ A .

If the topology of a pro-C*-algebra is deter-
mined by only countably many C*-seminormes,
then it is called a σ-C*-algebra.
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Let A be a unital pro-C*-algebra with unit 1A
and let a ∈ A. Then, the spectrum sp(a) of a ∈ A
is the set {λ ∈ C : λ1A−a is not invertible}. If
A is not unital, then the spectrum is taken with
respect to its unitization Ã.

If A+ denotes the set of all positive elements
of A, then A+ is a closed convex cone such that
A+ ∩ (−A+) = 0. We denote by S(A), the set of
all continuous C*-seminorms on A. For p ∈ S(A),
we put ker(p) = {a ∈ A : p(a) = 0}; which is
a closed ideal in A. For each p ∈ S(A), Ap =
A/ker(p) is a C*-algebra in the norm induced by
p which defined as ;

∥a+ ker(p)∥Ap= p(a) , p ∈ S(A) .

We have A = lim←−
p

Ap (see [15]) .

The canonical map from A onto Ap for p ∈
S(A), will be denoted by πp and the image of
a ∈ A under πp will be denoted by ap. Hence
l2(Ap) is a Hilbert Ap-module (see [9]), with the
norm, defined as :

∥(πp(ai))i∈N∥p= [ p(
∑

i∈N aiai
∗) ]1/2 , p ∈

S(A) , (πp(ai))i∈N ∈ l2(Ap) .

Example 2.1 Every C*-algebra is a pro-C*-
algebra .

Example 2.2 A closed ∗-subalgebra of a pro-C*-
algebra is a pro-C*-algebra.

Example 2.3([15]) Let X be a locally compact
Hausdorff space and let A = C(X) denotes all
continuous complex-valued functions on X with
the topology of uniform convergence on compact
subsets of X. Then A is a pro-C*-algebra .

Example 2.4([15]) A product of C*-algebras
with the product topology is a pro-C*-algebra .

Notation 2.1 a ≥ 0 denotes a ∈ A+ and a ≤ b
denotes a− b ≥ 0 .

Proposition 2.1 ([8]) Let A be a unital
pro-C*-algebra with an identity 1A. Then for
any p ∈ S(A), we have :

(1) p(a) = p(a∗) for all a ∈ A
(2) p(1A) = 1
(3) If a, b ∈ A+ and a ≤ b , then p(a) ≤ p(b)
(4) a ≤ b iff ap ≤ bp
(5) If 1A ≤ b , then b is invertible and b−1 ≤ 1A
(6) If a, b ∈ A+ are invertible and 0 ≤ a ≤ b ,

then 0 ≤ b−1 ≤ a−1

(7) If a, b, c ∈ A and a ≤ b , then c∗ac ≤ c∗bc
(8) If a, b ∈ A+ and a2 ≤ b2 , then 0 ≤ a ≤ b

Proposition 2.2 If
∑∞

i=1 ai is a convergent
series in a pro-C*-algebra A and ai ≥ 0 for i ∈ N,
then it converges unconditionally.

Proof. For n ∈ N, let Sn =
∑n

i=1 ai . Then
for any ε ≥ 0 and p ∈ S(A), there is a positive
integer Np such that for m,n ≥ Np ;

p(
∑n

i=m ai) ≤ ε .

For a permutation σ of N, we define , S′n =∑n
i=1 aσ(i) . Let k ∈ N such that

{1, 2, ..., Np} ⊆ {σ(1), σ(2), ..., σ(k)} .

Then S′n − Sn for n ≥ k, do not have any ai for
1 ≤ i ≤ Np. Hence for n ≥ k,

p(S′n − Sn) ≤ ε .

Thus for S =
∑∞

i=1 ai and n ≥ k, we have ,

p(S′n − S) ≤ p(S′n − Sn) + p(Sn − S) ≤ 2ε .

This means that lim
n→∞

S′n = S . 2

3 Hilbert pro-C*-modules

In this section, we recall some of the basic def-
initions and properties of Hilbert modules over
pro-C*-algebras from [15].

Definition 3.1 A pre-Hilbert module over pro-
C*-algebra A is a complex vector space E which is
also a left A-module compatible with the complex
algebra structure, equipped with an A-valued in-
ner product ⟨., .⟩ : E × E → A which is C-and
A-linear in its first variable and satisfies the fol-
lowing conditions:

(i) ⟨x, y⟩∗ = ⟨y, x⟩
(ii) ⟨x, x⟩ ≥ 0
(iii) ⟨x, x⟩ = 0 iff x = 0

for every x, y ∈ E. We say that E is a Hilbert A-
module (or Hilbert pro-C*-module over A) if E is
complete with respect to the topology determined
by the family of seminorms

p̄E(x) =
√

p(⟨x, x⟩) x ∈ E , p ∈ S(A) .
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Let E be a pre-Hilbert A-module. By Lemma 2.1
of [19] for every p ∈ S(A) and for all x, y ∈ E, the
following Cauchy-Bunyakovskii inequality holds

p(⟨x, y⟩)2 ≤ p(⟨x, x⟩)p(⟨y, y⟩) .

Consequently, for each p ∈ S(A), we have :

p̄E(ax) ≤ p(a)p̄E(x) a ∈ A , x ∈ E.

If E is a Hilbert A-module and p ∈ S(A), then
ker(p̄E) = {x ∈ E : p(⟨x, x⟩) = 0} is a closed
submodule of E and Ep = E/ker(p̄E) is a Hilbert
Ap-module with scalar product

ap.(x+ ker(p̄E)) = ax+ ker(p̄E) a ∈ A
, x ∈ E

and inner product

⟨ x+ ker(p̄E) , y + ker(p̄E) ⟩ = ⟨x, y⟩p
x, y ∈ E .

By Proposition 4.4 of [15], we have E ∼= lim←−
p

Ep .

Example 3.1 If A is a pro-C*-algebra, then it
is a Hilbert A-module with respect to the inner
product defined by :

⟨a, b⟩ = ab∗ a, b ∈ A .

Example 3.2 (See[15], Remark 4.8) Let l2(A) be
the set of all sequences (an)n∈N of elements of a
pro-C*-algebra A such that the series

∑∞
i=1 aiai

∗

is convergent in A. Then l2(A) is a Hilbert mod-
ule over A with respect to the pointwise opera-
tions and inner product defined by :

⟨ (ai)i∈N , (bi)i∈N ⟩ =
∑∞

i=1 aibi
∗ .

Example 3.3 If {Mi}i∈J is a finite family
of Hilbert A-modules. Then the direct sum⊕

i∈J Mi is a Hilbert A-module with pointwise
operations and A-valued inner product ⟨x, y⟩ =∑

i∈J⟨xi, yi⟩ , where x = (xi)i∈J and y = (yi)i∈J
are in

⊕
i∈J Mi .

Example 3.4 Let Ei for i ∈ N , be a Hilbert A-
module with the topology induced by the family
of continuous seminorms {p̄i}p∈S(A) defined as :

p̄i(x) =
√

p(⟨x, x⟩) , x ∈ Ei .

Direct sum of {Ei}i∈N is defined as follows :⊕
i∈NEi = {(xi)i∈N : xi ∈

Ei ,
∑∞

i=1⟨xi, xi⟩ is convergent in A} .

It has been shown (see [12], Example 3.2.3) that
the direct sum

⊕
i∈NEi is a Hilbert A-module

with A-valued inner product ⟨x, y⟩ =
∑∞

i=1⟨xi, yi⟩
, where x = (xi)i∈N and y = (yi)i∈N are in⊕

i∈NEi , pointwise operations and a topology
determined by the family of seminorms

p̄(x) =
√

p(⟨x, x⟩) , x ∈
⊕

i∈NEi , p ∈
S(A) .

The direct sum of a countable copies of a Hilbert
module E is denoted by l2(E) .

We recall that an element a in A (x in E) is
bounded, if

∥a∥∞= sup{p(a) ; p ∈ S(A)} < ∞ ,

(∥x∥∞= sup{p̄E(x) ; p ∈ S(A)} < ∞) .

The set of all bounded elements in A (in E) will
be denoted by b(A) (b(E)). We know that b(A)
is a C*-algebra in the C*-norm ∥.∥∞ and b(E) is
a Hilbert b(A)-module.([15], Prop. 1.11 and [19],
Theorem 2.1)

Let M ⊂ E be a closed submodule of a Hilbert
A-module E and let

M⊥ = {y ∈ E : ⟨x, y⟩ = 0 for all x ∈ M} .

Note that the inner product in a Hilbert modules
is separately continuous, hence M⊥ is a closed
submodule of the Hilbert A-module E. Also,
a closed submodule M in a Hilbert A-module
E is called orthogonally complementable if E =
M ⊕M⊥. A closed submodule M in a Hilbert A-
module E is called topologically complementable
if there exists a closed submodule N in E such
that M ⊕N = E , N ∩M = {0}.

Let A be a pro-C*-algebra and let E and F
be two Hilbert A-modules. An A-module map
T : E → F is said to bounded if for each p ∈ S(A)
, there is Cp > 0 such that :

p̄F (Tx) ≤ Cp.p̄E(x) (x ∈ E) ,

where p̄E , respectively p̄F , are continuous semi-
norms on E, respectively F . A bounded A-
module map from E to F is called an operator
from E to F . We denote the set of all opera-
tors from E to F by HomA(E,F ), and we set
HomA(E,E) = EndA(E) .

Let T ∈ HomA(E,F ). We say T is adjointable
if there exists an operator T ∗ ∈ HomA(F,E) such
that :
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⟨Tx, y⟩ = ⟨x, T ∗y⟩

for all x ∈ E , y ∈ F .
We denote by Hom∗A(E,F ), the set of all ad-
jointable operators from E to F and End∗A(E) =
Hom∗A(E,E) .

By a little modification in the proof of Lemma
3.2 of [19], we have the following result :

Proposition 3.1 Let T : E → F and T ∗ : F →
E be two maps such that the equality

⟨x, T ∗y⟩ = ⟨Tx, y⟩

holds for all x ∈ E , y ∈ F . Then T ∈
Hom∗A(E,F ) .

It is easy to see that for any p ∈ S(A), the map
defined by

p̂E,F (T ) = sup{ p̄F (Tx) : x ∈ E , p̄E(x) ≤
1} , T ∈ HomA(E,F ) ,

is a seminorm on HomA(E,F ). Moreover
HomA(E,F ) with the topology determined by
the family of seminorms {p̂E,F }p∈S(A) is a com-
plete locally convex space ([10], Prop. 3.1) .
Moreover using Lemma 2.2 of [19], for each y ∈ F
and p ∈ S(A), we can write

p̄E(T
∗(y)) = sup{p⟨T ∗(y), x⟩ :

p̄E(x) ≤ 1}

= sup{p⟨T (x), y⟩ :
p̄E(x) ≤ 1}

≤ sup{p̄FT (x) :
p̄E(x) ≤ 1}p̄F (y)

= p̂(T )p̄F (y) .

Thus for each p ∈ S(A), we have p̂F,E(T
∗) ≤

p̂E,F (T ) and since T ∗∗ = T , by replacing T with
T ∗, for each p ∈ S(A), we obtain:

p̂F,E(T
∗) = p̂E,F (T ). (3.1)

By Proposition 4.7 of [15], we have the canonical
isomorphism

HomA(E,F ) ∼= lim←−
p

HomAp(Ep, Fp).

Consequently, End∗A(E) is a pro-C*-algebra for
any Hilbert A-module E and its topology is ob-
tained by {p̂E}p∈S(A) ([19]). By Prop. 3.2 of [19],
T is a positive element of End∗A(E) if and only if
⟨Tx, x⟩ ≥ 0 for any x ∈ E .

Lemma 3.1 Let X be a Hilbert module over
C*-algebra B, S ∈ End∗B(X) and S ≥ 0, i.e.
this element is positive in C*-algebra End∗B(X).
Then for each x ∈ X ,

⟨Sx, x⟩ ≤ ∥S∥⟨x, x⟩ .

Proof. Since S is a positive element in End∗B(X),
we have, S ≤ ∥S∥I, such that I is the identity
element in End∗B(X). Hence S − ∥S∥I ≥ 0 , and
then

⟨(∥S∥I − S)x , x⟩ ≥ 0 , ∀x ∈ X .

Therefore, we have :

⟨Sx, x⟩ ≤ ∥S∥⟨x, x⟩,

for all x ∈ X . 2

Remark 3.1 Note that if T ∈ End∗B(X), then
T ∗T is a positive element in End∗B(X). Thus, we
can write :

⟨Tx, Tx⟩ = ⟨T ∗Tx, x⟩ ≤ ∥T ∗T∥⟨x, x⟩ =
∥T∥2⟨x, x⟩,

for all x ∈ X .

Definition 3.2 Let E and F be two Hilbert mod-
ules over pro-C*-algebra A. Then the operator
T : E → F is called uniformly bounded, if there
exists C > 0 such that for each p ∈ S(A),

p̄F (Tx) ≤ Cp̄E(x) , ∀x ∈ E. (3.2)

The number C in (2) is called an upper bound
for T and we set:

∥T∥∞= inf{C : C is an upper bound for T}.

Clearly, in this case we have:

p̂(T ) ≤ ∥T∥∞ , ∀p ∈ S(A).

Proposition 3.2 Let E be a Hilbert module
over pro-C*-algebra A and T be an invertible el-
ement in End∗A(E) such that both are uniformly
bounded. Then for each x ∈ E,

∥T−1∥−2∞ ⟨x, x⟩ ≤ ⟨Tx, Tx⟩ ≤ ∥T∥2∞⟨x, x⟩.

Proof. Recall that for each p ∈ S(A), the space
End∗Ap

(Ep) is a C*-algebra and Tp belong to this
space with the norm defined by:

∥Tp∥p= p̂E(T ).
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Therefore by Remark 3.1, for each p ∈ S(A) and
x ∈ E,

⟨Tx, Tx⟩p = ⟨(Tx)p, (Tx)p⟩
= ⟨Tp(xp), Tp(xp)⟩
≤ ∥Tp∥2p⟨xp, xp⟩
= p̂E(T )

2⟨x, x⟩p
≤ ∥T∥2∞⟨x, x⟩p.

By Remark 2.2 of [8], we have:

⟨Tx, Tx⟩ ≤ ∥T∥2∞⟨x, x⟩ , ∀x ∈ E. (3.3)

On the other hand, by replacing T−1 and y in-
stead of T and x in (3), we obtain:

⟨T−1y, T−1y⟩ ≤ ∥T−1∥2∞⟨y, y⟩.

Let x ∈ E such that Tx = y. Then, we can
conclude:

⟨x, x⟩ ≤ ∥T−1∥2∞⟨Tx, Tx⟩.

because T is an invertible operator, it can be con-
cluded that: ∥T−1∥∞> 0 and hence:

∥T−1∥−2∞ ⟨x, x⟩ ≤ ⟨Tx, Tx⟩ ∀x ∈ E. 2

Let N and M be closed submodules in a Hilbert
module E such that E = M ⊕N . We denote by
PM , the projection onto M along N .

Proposition 3.3 Let M be an orthogonally
complemented submodule of a Hilbert A-module
E. Then PM ∈ End∗A(E).

Proof. Let x, y ∈ E. Then, there exist unique
elements a, b ∈ M and a′, b′ ∈ M⊥ such that,
x = a+ a′ , y = b+ b′. Therefore

⟨PM (x) , y⟩ = ⟨a , b+ b′⟩ = ⟨a , b⟩ .

On the other hand,

⟨x , PM (y)⟩ = ⟨a+ a′ , b⟩ = ⟨a , b⟩ .

By Lemma 3.2 of [19], we have PM = PM
∗ . Using

Prop 3.1, we conclude PM ∈ End∗A(E) . 2

Proposition 3.4 Let M be an orthogonally
complemented submodule of a Hilbert A-module
E and let T ∈ End∗A(E) be an ivertible operator
such that T ∗TM ⊆ M . Then we have:

T (M⊥) = (TM)⊥ , PTM = TPMT−1 .

Proof. Let u ∈ M and v ∈ M⊥. Since T ∗Tu ∈
M , then we have ⟨Tu, Tv⟩ = ⟨T ∗Tu, v⟩ = 0.
Thus T (M⊥) ⊆ (TM)⊥. On the other hand if
y ∈ (TM)⊥, then there exists x ∈ E such that
y = Tx. Let x = m + n for some m ∈ M and
n ∈ M⊥, then we have

⟨y, Tm⟩ = ⟨Tx, Tm⟩ = ⟨Tm+ Tn, Tm⟩ =
⟨Tm, Tm⟩+ ⟨Tn, Tm⟩ = 0.

Since ⟨Tn, Tm⟩ = 0, we have ⟨Tm, Tm⟩ = 0
and then Tm = 0. Thus y = Tn, and we
have (TM)⊥ ⊆ T (M⊥). Let x ∈ E. Since
E = M + M⊥, so we have x = u + v , u ∈
M , v ∈ M⊥ . Hence, Tx = Tu + Tv . On
the other hand, we have, TM⊥ = (TM)⊥. Thus
Tu ∈ TM and Tv ∈ (TM)⊥. Therefore :

PTM (Tx) = Tu , TPM (x) = Tu .

This completes the proof . 2

Remark 3.2 Let A be a σ-C*-algebra and T a
continuous invertible operator on a Hillbert A-
module E. Then, T (M) is a closed submodule of
E for any closed submodule M ⊆ E.(See [4],[16])

4 Fusion frames in Hilbert pro-
C*-modules

In this section, we will assume that A is a unital
pro-C*-algebra, X is a Hilbert A-module and I
is a finite or countable index set. Furthermore, if
M is an orthogonally complemented submodule
of X, we let PM denote the orthogonal projection
of X onto M . By Prop. 3.3, we have, PM ∈
End∗A(X).

Definition 4.1 A sequence {xi : i ∈ I} of
elements in a Hilbert A-module X is said to be a
frame if there are real constants C,D > 0 such
that:

C⟨x, x⟩ ≤
∑
i∈I

⟨x, xi⟩⟨xi, x⟩ ≤ D⟨x, x⟩ (4.4)

for any x ∈ X. The constants C and D are called
lower and upper frame bounds for the frame, re-
spectively. If C = D = λ, the frame is called a
λ-tight frame. If C = D = 1, the frame is called
a Parseval frame. We say that {xi : i ∈ I} is a
frame sequence if it is a frame for the closure of
A-linear hull of {xi : i ∈ I}. If, in (4) we only re-
quire to have the upper bound, then {xi : i ∈ I}
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is called a Bessel sequence with Bessel bound D.

Definition 4.2 Let {vi : i ∈ I} be a family of
weights inA, i.e., each vi is a positive invertible el-
ement from the center of A, and let {Mi : i ∈ I}
be a family of orthogonally complemented sub-
modules of X. Then {(Mi, vi) : i ∈ I} is a
fusion frame if there exist real constants C,D >
0 such that:

C⟨x, x⟩ ≤
∑
i∈I

v2i ⟨PMi(x), PMi(x)⟩ ≤ D⟨x, x⟩

(4.5)

for any x ∈ X. We call C and D the lower and
upper bounds of the fusion frame. If C = D = λ,
the family {(Mi, vi) : i ∈ I} is called a λ-tight
fusion frame and if C = D = 1, it is called a
Parseval fusion frame. If in (5), we only have
the upper bound, then {(Mi, vi) : i ∈ I} is called
a Bessel fusion sequence with Bessel bound D.
Let X be a Hilbert A-module and {vi : i ∈ I}
be a family of weights in A. Let for each i ∈ I,
Mi be an orthogonally complemented submodule
of X and let {xij : j ∈ Ji} be a frame for Mi

with bounds Ci and Di. Suppose that 0 < C =
infiCi ≤ D = supiDi < ∞. Then, the following
conditions are equivalent.

(a) {vixij : i ∈ I , j ∈ Ji} is a frame for X.
(b) {(Mi, vi) : i ∈ I} is a fusion frame for X.
Proof. Since for each i ∈ I, {xij : j ∈ Ji} is a
frame for Mi with frame bounds Ci and Di, we
have :

Ci⟨x, x⟩ ≤
∑

j∈Ji⟨x, xij⟩⟨xij , x⟩ ≤ Di⟨x, x⟩ for
all x ∈ Mi .

Therefore, for all x ∈ X, we obtain :

C
∑

i∈I v
2
i ⟨PMi(x), PMi(x)⟩ ≤∑

i∈I Civ
2
i ⟨PMi(x), PMi(x)⟩

=∑
i∈I Ci⟨viPMi(x), viPMi(x)⟩

≤∑
i∈I

∑
j∈Ji⟨viPMi(x), xij⟩⟨xij , viPMi(x)⟩

=∑
i∈I v

2
i

∑
j∈Ji⟨PMi(x), xij⟩⟨xij , PMi(x)⟩

≤∑
i∈I v

2
iDi⟨PMi(x), PMi(x)⟩

≤
D

∑
i∈I v

2
i ⟨PMi(x), PMi(x)⟩ .

So, we can briefly write :

C
∑

i∈I v
2
i ⟨PMi(x), PMi(x)⟩ ≤∑

i∈I
∑

j∈Ji⟨x, vixij⟩⟨vixij , x⟩

≤
D

∑
i∈I v

2
i ⟨PMi(x), PMi(x)⟩ .

This shows that if {vixij : i ∈ I, j ∈ Ji} is
a frame for X with frame bounds A and B,
then, {(Mi, vi) : i ∈ I} form a fusion frame for
X with frame bounds A

D and B
C . Moreover, if

{(Mi, vi) : i ∈ I} is a fusion frame for X with
frame bounds A and B, the above calculation
implies that {vixij : i ∈ I, j ∈ Ji} is a frame for
X with frame bounds AC and BD. Thus (a) ⇔
(b) . 2

Definition 4.3 Let X be a Hilbert A-module.
A squence {xi : i ∈ I} in X is called complete,
if the A-linear hull of {xi : i ∈ I} is dense in X.
Also, a family of closed submodules {Mi : i ∈ I}
of X is called complete if the A-linear hull of
∪i∈IMi is dense in X.

Lemma 4.1 Let {(Mi, vi) : i ∈ I} be a fusion
frame for Hilbert A-module X such that the closed
A-linear hull of {Mi : i ∈ I} is orthogonally com-
plemented. Then {Mi : i ∈ I} is complete .

Proof. Let M be the closed A-linear hull of
{Mi : i ∈ I}. Then X = M ⊕ M⊥. As-
sume that {Mi : i ∈ I} is not complete. Then
there exists some x ∈ X, x ̸= 0 with x ⊥ M .
Hence for each i ∈ I, x ⊥ Mi . It follows∑

i∈I v
2
i ⟨PMi(x), PMi(x)⟩ = 0, hence {(Mi, vi) :

i ∈ I} is not a fusion frame for X . 2

The following lemma follows immediately from
the definitions.

Lemma 4.2 Let {Mi : i ∈ I} be a family of
closed submodules of a Hilbert A-module X such
that the closed A-linear hull of {Mi : i ∈ I} is
orthogonally complemented and for each i ∈ I, let
{xij : j ∈ Ji} be a frame for Mi. Then {Mi : i ∈
I} is complete if and only if {xij : i ∈ I, j ∈ Ji}
is complete .

Lemma 4.3 Let X be a Hilbert A-module
and {(Mi, vi) : i ∈ I} be a fusion frame for
X with frame bounds C and D. Let M be an
orthogonally complemented submodule of X.
Then {(Mi ∩ M, vi) : i ∈ I} is a fusion frame
for M with frame bounds C and D.
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Proof. For all i ∈ I and x ∈ M , we have:

PMi∩M (x) = PMi(PM (x)) = PMi(x) .

Hence, for all x ∈ M , we can write:

∑
i∈I v

2
i ⟨PMi∩M (x), PMi∩M (x)⟩ =∑
i∈I v

2
i ⟨PMi(x), PMi(x)⟩ .

Now, the result follows. 2

Lemma 4.4 Let {(Mi, vi) : i ∈ I} be a Bessel
fusion sequence for a Hilbert A-module X with
Bessel bound D. Then, for each x = (xi)i∈I in
the Hilbert A-module M =

⊕
i∈I Mi, the series∑

i∈I vixi converges unconditionally and for each
p ∈ S(A), we have:

p̄X(
∑

i∈I vixi) ≤
√
Dp̄M (x) .

Proof. Let x = (xi)i∈I be an element of
M =

⊕
i∈I Mi and J be a finite subset of I. Let

y =
∑

i∈J vixi. Since the projection PMi is self
adjoint, we have

⟨y, y⟩ = ⟨y,
∑

i∈J vixi⟩ =
∑

i∈J vi⟨y, xi⟩ =∑
i∈J⟨viPMi(y), xi⟩ .

Using Cauchy-Bunyakovskii inequality, we have

p(⟨y, y⟩)2 = p(
∑

i∈J⟨viPMi(y), xi⟩)
2 =

p(⟨{viPMi(y)}i∈J , {xi}i∈J)
2

≤
p(⟨{viPMi(y)}i∈J , {viPMi(y)}i∈J
⟩)p(⟨{xi}i∈J , {xi}i∈j⟩)

=
p(

∑
i∈J v

2
i ⟨PMi(y), PMi(y)⟩)p(

∑
i∈J⟨xi, xi⟩)

for all p ∈ S(A). Since {(Mi, vi) : i ∈ I} is a
Bessel fusion sequence with Bessel bound D, we
can write

∑
i∈J v

2
i ⟨PMi(y), PMi(y)⟩ ≤∑

i∈I v
2
i ⟨PMi(y), PMi(y)⟩ ≤ D⟨y, y⟩ .

Hence, for all p ∈ S(A), we have

p(⟨y, y⟩)2 ≤ D.p(⟨y, y⟩)p(
∑

i∈J⟨xi, xi⟩) .

Using p̄X(y) =
√

p(⟨y, y⟩), we obtain

p̄X(
∑
i∈J

vixi) = p̄X(y) ≤
√
D.p(

∑
i∈J

⟨xi, xi⟩)1/2

(4.6)

p ∈ S(A).

Since x = (xi)i∈I is an element of
⊕

i∈I Mi, the
series

∑
i∈I⟨xi, xi⟩ is convergent in A and by

Prop. 2.2, converges unconditionally. So, by (6),
the series

∑
i∈I vixi converges unconditionally

and we have

p̄X(
∑

i∈I vixi) ≤
√
Dp(

∑
i∈I⟨xi, xi⟩)

1/2 =√
Dp̄M (x)

for all p ∈ S(A). 2 Let {(Mi, vi) : i ∈ I}
be a fusion frame for a Hilbert A-module X with
frame bounds C and D. Then, the corresponding
frame transform θ : X → l2(X) defined by
θ(x) = (viPMi(x))i∈I for x ∈ X, is an isomorphic
imbedding with closed range, and its adjoint
operator θ∗ : l2(X) → X is bounded and defined
by θ∗(y) =

∑
i∈I viPMi(yi) for y = (yi)i∈I in

l2(X). Proof. Since {(Mi, vi) : i ∈ I} is a
fusion frame, for each x ∈ X, we have:

C⟨x, x⟩ ≤
∑

i∈I v
2
i ⟨PMi(x), PMi(x)⟩ ≤ D⟨x, x⟩ .

Thus, the frame transform is well-defined and by
Prop. 2.1, for each p ∈ S(A) and x ∈ X, we can
write

Cp⟨x, x⟩ ≤ p⟨θ(x), θ(x)⟩ ≤ Dp⟨x, x⟩ .

Hence, for each p ∈ S(A) and x ∈ X, we obtain

√
Cp̄X(x) ≤ p̄l2(X)(θ(x)) ≤

√
Dp̄X(x), (4.7)

where p̄X and p̄l2(X), are continuous seminorms
on X and l2(X), respectively. Thus, θ is bounded
by the second inequality of (7) and is injective by
the first inequality and Lemma 2.2 of [19]. Now,
we show that θ has closed range. Let {θ(xn)}
be a sequence in Hilbert A-module l2(X) such
that converges to an element y. Thus, {θ(xn)}
is a Cauchy sequence and by definition, for each
ε ≥ 0 and p ∈ S(A), there exists positive number
N such that for m,n ≥ N , we have
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p̄l2(X)(θ(xn)− θ(xm)) <
√
Cε .

Using the first inequality of (4.4), we can write

√
Cp̄X(xn − xm) ≤ p̄l2(X)(θ(xn)− θ(xm)) <

√
Cε

for m,n ≥ N . Hence, {xn} is a Cauchy sequence
in Hilbert A-module X and therefore converges
to an element x ∈ X. By the second inequality
of (7), for each p ∈ S(A), we have

p̄l2(X)(θ(xn − x)) ≤
√
Dp̄X(xn − x) → 0 .

Thus, the sequence {θ(xn)} converges to θ(x)
in Hilbert A-module l2(X). This means that
θ(x) = y. Therefore θ : X → l2(X) is an
isomorphic imbedding with closed range. Now,
for each y = (yi)i∈I in l2(X) define:

θ∗ : l2(X) → X , θ∗(y) =
∑

i∈I viPMi(yi)

By Proposition 2.2, the series
∑

i∈I⟨yi, yi⟩ con-
verges unconditionally. Moreover, we have∑

i∈I⟨PMi(yi), PMi(yi)⟩ ≤
∑

i∈I⟨yi, yi⟩ .

Hence, {PMi(yi)}i∈I is in
⊕

i∈I Mi. Thus, by
Lemma 4.4,

∑
i∈I viPMi(yi) converges uncondi-

tionally and θ∗ is well-defined. On the other
hand, for each x ∈ X and y = (yi)i∈I in l2(X),
we have

⟨x, θ∗(y)⟩ = ⟨x,
∑

i∈I viPMi(yi)⟩ =∑
i∈I⟨viPMi(x), yi⟩ = ⟨θ(x), y⟩.

This shows that θ∗ is bounded (Prop. 3.1). 2

Proposition 4.1 Let {(Mi, vi) : i ∈ I} be a
Parseval fusion frame for a Hilbert A-module X.
Then, the corresponding frame transform θ pre-
serves the inner product.

Proof. For each x, y ∈ X, we have the polariza-
tion identity as follows

⟨x, y⟩ = 1
4

∑3
k=0 i

k⟨x+ iky, x+ iky⟩ .

On the other hand, by the definition of frame
transform θ, for each x ∈ X, we have

⟨θ(x), θ(x)⟩ =
⟨(viPMi(x))i∈I , (viPMi(x))i∈I⟩

=∑
i∈I⟨viPMi(x), viPMi(x)⟩

=∑
i∈I v

2
i ⟨PMi(x), PMi(x)⟩

= ⟨x, x⟩ .

Using the polarization identity, for each x, y ∈ X,
we can write

⟨θ(x), θ(y)⟩ = 1
4

∑3
k=0 i

k⟨θ(x) +
ikθ(y), θ(x) + ikθ(y)⟩

= 1
4

∑3
k=0 i

k⟨θ(x +
iky), θ(x+ iky)⟩

= 1
4

∑3
k=0 i

k⟨x +
iky, x+ iky⟩

= ⟨x, y⟩ .

This shows that θ preserves the inner prod-
uct. 2

Remark 4.1 By Proposition 4.1, if θ is a
frame transform for a Parseval fusion frame of
a Hilbert A-module X then for each x ∈ X,
we have ⟨θ(x), θ(x)⟩ = ⟨x, x⟩. Hence for each
p ∈ S(A), we obtain:

p̄X(x) = p̄l2(X)(θ(x)) , x ∈ X .

Then, by (1) and for each p ∈ S(A), we have
p̂X,l2(X)(θ) = p̂l2(X),X(θ∗) = 1.

Definition 4.4 Let M = {(Mi, vi) : i ∈ I} be
a fusion frame for a Hilbert A-module X. Then
the fusion frame operator S for M is defined
by

S(x) = θ∗θ(x) =
∑

i∈I v
2
i PMi(x) , x ∈ X.

Let {(Mi, vi) : i ∈ I} be a fusion frame for a
Hilbert A-module X with fusion frame operator
S and fusion frame bounds C and D. Then, S is
a positive, self-adjoint and invertible operator on
X and we have the reconstruction formula

x =
∑

i∈I v
2
i S
−1PMi(x) , for all x ∈ X .

Proof. It is easy to see that for each x, y ∈ X, we
have ⟨S(x), y⟩ = ⟨x, S(y)⟩. Hence, by Proposition
3.1, we obtain S ∈ End∗A(X) and S∗ = S. On the
other hand, for any x ∈ X, we can write

⟨S(x), x⟩ =
∑

i∈I v
2
i ⟨PMi(x), x⟩ =∑

i∈I v
2
i ⟨PMi(x), PMi(x)⟩ .
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Thus, S is a positive operator. Since {(Mi, vi) :
i ∈ I} is a fusion frame with bounds C and D,
for each x ∈ X, we have

C⟨x, x⟩ ≤
∑

i∈I v
2
i ⟨PMi(x), PMi(x)⟩ =

⟨S(x), x⟩ ≤ D⟨x, x⟩ .

Thus, CI ≤ S ≤ DI that I is the identity
element in pro-C*-algebra End∗A(X). By (6)
and (7) of Proposition 2.1, S is invertible and
D−1I ≤ S−1 ≤ C−1I. We also have

x = S−1S(x) =
∑

i∈I v
2
i S
−1PMi(x) , x ∈ X.

This completes the proof. 2

Remark 4.2 Since S and S−1 are positive
elements from pro-C*-algebra End∗A(X), by (2)
and (3) of Proposition 2.1, we have

C ≤ p̂X(S) ≤ D , D−1 ≤ p̂X(S−1) ≤ C−1 .

Proposition 4.2 Let A be a σ-C*-algebra and
let {(Mi, vi) : i ∈ I} be a fusion frame for
a Hilbert A-module X with fusion frame opera-
tor S and fusion frame bounds C and D. If T
is an invertible element of End∗A(X) such that
both are uniformly bounded and for each i ∈ I,
T ∗T (Mi) ⊆ Mi, then {(TMi, vi) : i ∈ I} is a
fusion frame for X with fusion frame operator
TST−1.

Proof. By definition, Mi for each i ∈ I, is a
closed submodule of X, so each TMi is also a
closed submodule of X (Remark 3.2). Since T is
surjective, for each x ∈ X, there exist a unique
y ∈ X such that x = Ty. On the other hand, for
each i ∈ I, Mi is an orthogonally complemented
submodule, hence there exist unique elements u ∈
Mi and v ∈ M⊥i such that y = u + v. Thus
x = Tu + Tv and since TMi ∩ TM⊥i = {0}, for
each i ∈ I, we have

X = T (Mi)⊕ T (M⊥i ) .

On the other hand, by Proposition 3.4, we have
T (M⊥i ) = (TMi)

⊥, for each i ∈ I, which implies
that TMi is orthogonally complemented. Using
Propositions 3.2 and 3.4, for each x ∈ X and
p ∈ S(A), we have∑

i∈I v
2
i ⟨PTMi(x), PTMi(x)⟩ =∑

i∈I v
2
i ⟨TPMiT

−1(x), TPMiT
−1(x)⟩

≤
∥T∥2∞

∑
i∈I v

2
i ⟨PMi(T

−1x), PMi(T
−1x)⟩

≤
D∥T∥2∞⟨T−1x, T−1x⟩

≤
D∥T∥2∞∥T−1∥2∞⟨x, x⟩ .

On the other hand,∑
i∈I v

2
i ⟨PTMi(x), PTMi(x)⟩ ≥

∥T−1∥−2∞
∑

i∈I v
2
i ⟨PMi(T

−1x), PMi(T
−1x)⟩

≥
C∥T−1∥−2∞ ⟨T−1x, T−1x⟩

≥
C∥T−1∥−2∞ ∥T∥−2∞ ⟨x, x⟩ .

This shows that {(TMi, vi) : i ∈ I} is a
fusion frame for X. Furthermore, if S′ is the
corresponding fusion frame operator, then by
using Proposition 3.4, for any x ∈ X, we have

S(T−1x) =
∑

i∈I v
2
i PMi(T

−1x) =
T−1

∑
i∈I v

2
i PTMi(x) = T−1S′ .

Thus, S′ = TST−1 . 2
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