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Abstract

In this paper, a new approach for solving first-order fuzzy differential equation (FDE) with fuzzy
initial value under strongly generalized H-differentiability is considered. The idea of the presented
approach is constructed based on the extending 0-cut and 1-cut solution of original FDE. First, under
H-differentiability the solutions of fuzzy differential equations in 0-cut and 1-cut cases are found and
convex combination of them, is considered. Then we choose the initial interval that 0-cut of original
problem is positive. The obtained convex combination on this interval is the solution of FDE.
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1 Introduction

T
he topic of fuzzy differential equation (FDE)
has been rapidly growing in recent years.

Kandel and Byatt [19] applied the concept of
(FDE) to the analysis of fuzzy dynamical prob-
lems. The (FDE) and the initial value prob-
lem (Cauchy problem) were rigorously treated
by Kaleva [17, 18], Seikkala [23], He and Yi
[13], Kloeden [20] and by other researchers (see
[3, 9, 10, 12, 16]). The numerical methods for
solving FDE are introduced in [1, 2, 4, 5]. Bede
[7] applied the concept of Strongly generalized H-
differentiability to solving first order linear fuzzy
differential equations and Allahviranloo et. al. [6]
proposed a method to obtain analytical solu-
tions for FDE under strongly generalized H-
differentiability.
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The idea of the presented approach is constructed
based on the extending 0-cut and 1-cut solution of
original FDE. Obviously, 0-cut of FDE is inter-
val differential equation or ordinary differential
equation. First, under H-differentiability FDE
has been divided in two differential equations and
solutions of each fuzzy differential equations in 0-
cut and 1-cut cases are found. Then in each cases
of differentiability, the initial interval that 0-cut
of original problem is positive, is found. The ob-
tained convex combination on this interval,is an
solution of FDE.
The structure of this paper is organized as fol-
lows. In Section 2, some basic definitions and
notations which will be used are brought. In Sec-
tion 3, first order fuzzy differential equation is
introduced and the proposed approach is given in
detail. In Section 4, the proposed method is illus-
trated by solving several examples. Conclusion is
drawn in Section 5.
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2 Basic Definitions and Nota-
tions

Definition 2.1 An arbitrary fuzzy number is
represented by an ordered pair of functions
(u(r), u(r)) for all r ∈ [0, 1], which satisfy the
following requirements [15].

• u(r) is a bounded left continuous nondecreas-
ing function over [0, 1];

• u(r) is a bounded left continuous non-
increasing function over [0, 1];

• u(r) ≤ u(r), 0 ≤ r ≤ 1.

Let E be the set of all upper semi-continuous nor-
mal convex fuzzy numbers with bounded r-level
intervals. This means that if ṽ ∈ E then the r-
level set

[v]r = {s|v(s) ≥ r},
is a closed bounded interval which is denoted by
[v]r = [v(r), v(r)] for r ∈ (0, 1] and [v]0 =∪

r∈(0,1][v]r.
Two fuzzy numbers ũ and ṽ are called equal

ũ = ṽ, if u(s) = v(s) for all s ∈ R or [u]r = [v]r
for all r ∈ [0, 1].

Lemma 2.1 [22] If ũ, ṽ ∈ E, then for r ∈ (0, 1],

[u+ v]r = [u(r) + v(r), u(r) + v(r)],

[u.v]r = [min kr,max kr],

where

kr = {u(r)v(r), u(r)v(r), u(r)v(r), u(r)v(r)}.

The Hausdorff distance between fuzzy numbers
given by D : E × E −→ R+

∪
{0},

D(u, v) = sup
r∈[0,1]

max{|u(r)− v(r)|, |u(r)− v(r)|},

where u = (u(r), u(r)), v = (v(r), v(r)) ⊂ E is
utilized (see [8]). Then it is easy to see that D is
a metric in E where for all u, v, w, e ∈ E has the
following properties (see [21]).
• D(u⊕ w, v ⊕ w) = D(u, v),
• D(k ⊙ u, k ⊙ v) = |k|D(u, v), ∀k ∈ R,
• D(u⊕ v, w ⊕ e) ≤ D(u,w) +D(v, e),
• (D,E) is a complete metric space.

Definition 2.2 [14]. Let f : R −→ E be a fuzzy
valued function. If for arbitrary fixed t0 ∈ R and
ε > 0, δ > 0 such that

|t− t0|< δ =⇒ D(f(t), f(t0)) < ε,

f is said to be continuous.

Definition 2.3 Let x, y ∈ E. If there exists
z ∈ E such that x = y + z, then z is called the
H-difference of x and y and it is denoted by x⊖y.
In this paper we consider the following defini-
tion of differentiability for fuzzy-valued functions
which was introduced by Bede et.al. [8] and in-
vestigate by Chalco-Cano et.al. [11].

Definition 2.4 Let f : (a, b) −→ E and x0 ∈
(a, b). We say that f is strongly generalized H-
differentiable at x0. If there exists an element
f

′
(x0) ∈ E, such that:

(1) for all h > 0 sufficiently near to 0, ∃f(x0 +
h)⊖ f(x0), ∃f(x0)⊖ f(x0 − h) such that the fol-
lowing limits hold.

limh−→0+
f(x0+h)⊖f(x0)

h =

limh−→0+
f(x0)⊖f(x0−h)

h = f
′
(x0)

(2) for all h < 0 sufficiently near to 0, ∃f(x0) ⊖
f(x0 + h), ∃f(x0 − h) ⊖ f(x0) such that the fol-
lowing limits hold.

limh−→0+
f(x0)⊖f(x0+h)

h =

limh−→0+
f(x0−h)⊖f(x0)

h = f
′
(x0)

In the special case when f is a fuzzy-valued func-
tion, we have the following results.

Theorem 2.1 [11]. Let f : R −→ E be a
function and denote f(t) = (f(t; r), f(t; r)), for
each r ∈ [0, 1]. Then
(1) if f is differentiable in the first form (1) in
definition 2.4 then f(t; r) and f(t; r)) are differ-

entiable functions and f
′
(t) = (f

′
(t; r), f

′
(t; r)).

(2) if f is differentiable in the second form (2) in
definition 2.4 then f(t; r) and f(t; r)) are differ-

entiable functions and f
′
(t) = (f

′
(t; r), f

′
(t; r)).

The principal properties of the H-derivatives in
the first form (1), some of which still hold for the
second form (2), are well known and can be found
in [17] and some properties for the second form
(2) can be found in [11].
Notice that we say fuzzy-valued function f is (I)-
differentiable if satisfies in the first form (1) in
Definition 2.4 and we say f is (II)-differentiable
if satisfies in the second form (2) in Definition 2.4.
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3 First Order Fuzzy Differential
Equations

In this section, we are going to investigate solu-
tion of FDE. Consider the following first order
fuzzy differential equation:{

y
′
(t) = f(t, y(t))

ỹ(t0) = ỹ0,
(3.1)

where f : [a, b] × E −→ E is fuzzy-valued
function, ỹ0 ∈ E and strongly generalized H-
differentiability is also considered which is defined
in Definition 2.4
Now, we describe our propose approach for solv-
ing FDE (3.1). First, we shall solve FDE (3.1)
in sense of 1-cut and 0-cut as a follows:{

(y
′
)[1](t) = f [1](t, y(t)),

y[1](t0) = ỹ
[1]
0 , t0 ∈ [0, T ].

(3.2)

{
(y

′
)[0](t) = f [0](t, y(t)),

y[0](t0) = ỹ
[0]
0 , t0 ∈ [0, T ].

(3.3)

If Eq. (3.2) and Eq. (3.3) be a crisp differential
equation we can solve it as usual, otherwise, if
Eq. (3.2) and Eq. (3.3) be an interval differen-
tial equation we will solve it by stefanini et. al.’s
method is proposed and discussed in [24]. Notice
that the solutions of differential equation (3.2)
and Eq. (3.3) are presented with notation y[1](t)
and y[0](t) respectively. Then unknown ỹ(t) must
be determined, this approach leads to obtain

y(t) = [y(t; r), y(t; r)] = (3.4)

[(1− r)y[0](t) + ry[1](t), (1− r)y[0](t) + ry[1](t)]

Pleased notice that, we assumed the 0-cut and
1-cut solutions are differentiable. Consequently,
based on type of differentiability we have two fol-
lowing cases:
Case I. Suppose that ỹ(t) in Eq. (3.3) is (I)-
differentiable, then we get:

y
′
(t) = [y

′
(t; r), y′(t; r)] (3.5)

Consider Eq. (3.5) and original FDE (3.1), then
we have the following for all r ∈ [0, 1]:

y
′
(t; r) = f(t; r), t0 ≤ t ≤ T,

y
′
(t; r) = f(t; r), t0 ≤ t ≤ T.

(3.6)

Therefore

(1− r)(y[0])
′
(t) + r(y[1])

′
(t) =

(1− r)(f [0])(t) + r(f [1])(t),

(1− r)(y[0])
′
(t) + r(y[1])

′
(t) =

(1− r)(f [0])(t) + r(f [1])(t),

y(t0; r) = (1− r)y[0](t0) + ry[1](t0),

y(t0; r) = (1− r)y[0](t0) + ry[1](t0).

(3.7)

Then we have

y[0]
′
(t) = f [0](t),

y[0]
′

(t) = f [0](t),

y[0](t0) = y0
[0],

y[0](t0) = y0
[0],

(3.8)

and 

y[1]
′
(t) = f [1](t),

y[1]
′

(t) = f [1](t),

y[1](t0) = y0
[1],

y[1](t0) = y0
[1].

(3.9)

Indeed, we will find y[0](t), y[0](t), y[1](t), y[1](t)
by solving ODEs (3.8), (3.9). Hence, solution
of original FDE (3.1) is derived based on 1-cut
solution and 0-cut solution as follows:

ỹ(t) = [y(t; r), y(t; r)] = [(1− r)y[0](t) +

ry[1](t), (1− r)y[0](t) + ry[1](t)],

where for all 0 ≤ r ≤ 1 and t ∈ [0, T ] such that:

y(t; r) = (1− r)y[0](t) + ry[1](t),

y(t; r) = (1− r)y[0](t) + ry[1](t).

Case II. Suppose that ỹ(t) in Eq. (3.3) is (II)-
differentiable, then we get:

y
′
(t) = [y

′
(t; r), y′(t; r)] (3.10)
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Similarly, ODEs (3.8) and (3.9) can be rewritten
in sense of (II)-differentiability as following:

y[0]
′
(t) = f [0](t),

y[0]
′

(t) = f [0](t),

y[0](t0) = y0
[0],

y[0](t0) = y0
[0],

(3.11)

and 

y[1]
′
(t) = f [1](t),

y[1]
′

(t) = f [1](t),

y[1](t0) = y0
[1],

y[1](t0) = y0
[1].

(3.12)

Finally, by solving above ODEs (3.11) and (3.12)

y[0](t), y[0](t), y[1](t), y[1](t) are determined and
follows we can drive solution of original FDE
(3.1) in sense of (II)-differentiability by using

y(t; r) = (1− r)y[0](t) + ry[1](t),

y(t; r) = (1− r)y[0](t) + ry[1](t),

for all 0 ≤ r ≤ 1 and t ∈ [0, T ].

4 Examples

In this section, some examples are given to illus-
trate our method and we show that our approach
is coincide with the exact solutions.

Example 4.1 Let consider the following FDE:{
y
′
(t) = y(t) + ã,

y(0; r) = [r, 2− r], ã = [r − 1, 1− r] 0 ≤ r ≤ 1.
(4.13)

Case I. Suppose that ỹ(t) is (I)-differentiable.
The exact solution of above system is:

ỹ(t) = [(2r − 1)et − r + 1,−(2r − 3)etr − 1].

Based on ODEs (3.8) and (3.9), we have:

y[0]
′
(t) = y[0](t)− 1,

y[0]
′

(t) = y[0](t) + 1,

y[0](0) = 0,

y[0](0) = 2,

(4.14)



y[1]
′
(t) = y[1](t),

y[1]
′

(t) = y[1](t),

y[1](0) = 1,

y[1](0) = 1.

(4.15)

By solving ODEs (4.16) and (4.17), we get:

y[0](t) = −et + 1, y[0](t) = 3et − 1,

y[1](t) = et, y[1](t) = et.

Finally, with substituting above solution in (3.4)
we have:

y(t) = (1− r)(−et +1)+ ret = et(2r− 1)− r+1,

y(t) = (1− r)(3et − 1) + ret = r− et(2r− 3)− 1,

and

ỹ(t) = [et(2r − 1)− r + 1, r − et(2r − 3)− 1],

where y(t) has valid level sets for t > 0 and
y(t) is (I)-differentiable on t > 0, then y(t) is a
solution for original problem on t > 0.

Case II. Suppose that ỹ(t) is (II)-
differentiable. The exact solution of above
system is:

ỹ(t) = [et−r+(2r−2)/et+1, r+et−(2r−2)/et−1].

Based on ODEs (3.8) and (3.9), we have:

y[0]
′
(t) = y[0](t) + 1,

y[0]
′

(t) = y[0](t)− 1,

y[0](0) = 0,

y[0](0) = 2,

(4.16)



y[1]
′
(t) = y[1](t),

y[1]
′

(t) = y[1](t),

y[1](0) = 1,

y[1](0) = 1.

(4.17)
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By solving ODEs (4.16) and (4.17), we get:

y[0](t) = et − r + (2r − 2)/et + 1,

y[0](t) = r + et − (2r − 2)/et − 1,

y[1](t) = et, y[1](t) = et.

Finally, with substituting above solution in (3.4)
we have:

y(t) = (1− r)(et − r + (2r − 2)/et + 1) +

ret − (1/2)e−t) = et − r + (2r − 2)/et + 1,

y(t) = (1− r)(r + et − (2r − 2)/et − 1) +

ret = r + et − (2r − 2)/et − 1

and

ỹ(t) = [et − r + (2r − 2)/et + 1,

r + et − (2r − 2)/et − 1].

where y(t) has valid level sets for [0, log(2)] and
y(t) is (II)-differentiable on t > 0, then y(t) is a
solution for the original problem on [0, log(2)].

Example 4.2 Let consider the following FDE:{
y
′
(t) = −y(t),

y(0; r) = [1 + r, 5− r], 0 ≤ r ≤ 1.
(4.18)

Case I. Suppose that ỹ(t) is (I)-differentiable.
The exact solution of above system is:

ỹ(t) = [3e−t + (r − 2)et, 3e−t − (r − 2)et].

Based on ODEs (3.11) and (3.12), we get:

y[0]
′
(t) = −y[0](t),

y[0]
′

(t) = −y[0](t),

y[0](0) = 1,

y[0](0) = 5,

(4.19)



y[1]
′
(t) = −y[1](t),

y[1]
′

(t) = −y[1](t),

y[1](0) = 2,

y[1](0) = 4.

(4.20)

By solving ODEs (4.21) and (4.22), we get:

y[0](t) = 3e−t − 2et, y[0](t) = 3e−t + 2et,

y[1](t) = 3e−t − et, y[1](t) = 3e−t + et.

Finally, with substituting above solution in (3.4)
we have:

y(t) = (1− r)(3e−t − 2et) + r(3e−t − et) =

3e−t + (r − 2)et,

y(t) = (1− r)(3e−t + 2et) + r(3e−t + et) =

3e−t − (r − 2)et

and

ỹ(t) = [3e−t + (r − 2)et, 3e−t − (r − 2)et],

where y(t) has valid level sets for t > 0 and
y(t) is (I)-differentiable on t > 0, then y(t) is a
solution for the original problem on t > 0.

Case II. Suppose that ỹ(t) is (II)-
differentiable. The exact solution of above
system is:

ỹ(t) = [(1 + r)e−t, (5− r)e−t].

Based on ODEs (3.11) and (3.12), we get:

y[0]
′
(t) = −y[0](t),

y[0]
′

(t) = −y[0](t),

y[0](0) = 1,

y[0](0) = 5,

(4.21)



y[1]
′
(t) = −y[1](t),

y[1]
′

(t) = −y[1](t),

y[1](0) = 2,

y[1](0) = 4.

(4.22)

By solving ODEs (4.21) and (4.22), we get:

y[0](t) = e−t , y[0](t) = 5e−t ,

y[1](t) = 2e−t , y[1](t) = 4e−t.
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Finally, with substituting above solution in (3.4)
we have:

y(t) = (1− r)e−t + 2re−t = (1 + r)e−t,

y(t) = 5(1− r)e−t + 4re−t = (5− r)e−t

and

ỹ(t) = [(1 + r)e−t, (5− r)e−t],

where y(t) has valid level sets for t > 0 and y(t) is
(II)-differentiable on t > 0, then y(t) is a solution
for original problem on t > 0.

5 Conclusion

A new method for solving first order fuzzy dif-
ferential equations FDE with fuzzy initial value
under strongly generalized H-differentiability was
considered. The idea of the presented approach
was constructed based on the extending 0-cut and
1-cut solution of original FDE. First, under H-
differentiability the solutions of fuzzy differential
equations in 0-cut and 1-cut cases were found
then convex combination of them was considered.
Then we found out the initial interval that 0-cut
of original problem was positive. The obtained
convex combination on this interval was a solu-
tion of FDE. Using 0-cut and 1-cut solutions we
show that the discussed method can be applied
to solve the fuzzy differential equation.
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