
Arc
hive

 of
 S

ID

Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 5, No. 4, 2013 Article ID IJIM-00263, 17 pages

Research Article

Numerical solution of fuzzy differential equations under generalized

differentiability by fuzzy neural network

Maryam Mosleh ∗ †

————————————————————————————————–

Abstract

In this paper, We interpret a fuzzy differential equation by using the strongly generalized differen-
tiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method
based on learning algorithm of fuzzy neural network for the solution of differential equation with
fuzzy initial value is presented. Here neural network is considered as a part of large field called neural
computing or soft computing. The model finds the approximated solution of fuzzy differential equa-
tion inside of its domain for the close enough neighborhood of the fuzzy initial point. We propose a
learning algorithm from the cost function for adjusting of fuzzy weights.

Keywords : Fuzzy neural networks; Fuzzy differential equations; Feedforward neural network; Learning
algorithm.

—————————————————————————————————–

1 Introduction

P
roper design for engineering applications re-
quires detailed information of the system-

property distributions such as temperature, ve-
locity, density, etc. in space and time domain
[8, 9]. This information can be obtained by ei-
ther experimental measurement or computational
simulation. Although experimental measurement
is reliable, it needs a lot of labor efforts and
time. Therefore, the computational simulation
has become a more and more popular method
as a design tool since it needs only a fast com-
puter with a large memory. Frequently, those
engineering design problems deal with a set of

∗Corresponding author. mosleh@iaufb.ac.ir
†Department of Mathematics, Firoozkooh Branch, Is-

lamic Azad University, Firoozkooh, Iran.

differential equations (DEs), which have to nu-
merically solved such as heat transfer, solid and
fluid mechanics. Numerical methods of predictor-
corrector, Runge-Kutta, finite difference, finite
element, finite volume, boundary element, spec-
tral and collocation provide a strategy by which
we can attack many problems in applied math-
ematics, where we simulate a real-word problem
with a differential equation, subject to some ini-
tial or boundary conditions. In the finite differ-
ence and finite element methods we approximate
the solution by using the numerical operators of
the function’s derivatives and finding the solu-
tion at specific preassigned grids [56]. The lin-
earity is assumed for the purposes of evaluating
the derivatives. Although such an approximation
method is conceptually easy to understand, it has
a number of shortcomings. Obviously, it is diffi-

281

www.SID.ir

http://ijim.srbiau.ac.ir/

Arc
hive

 of
 S

ID

282 M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297

cult to apply for systems with irregular geome-
try or unusual boundary conditions. Predictor-
corrector and Runge-Kutta methods are widely
applied over preassigned grid points to solve or-
dinary differential equations [35]. In the spectral
and collocation approaches a truncated series of
the specific orthogonal functions (basis functions)
are used for finding the approximated solution of
the DE. In the spectral and collocation techniques
the role of trial functions as a basis function is
important. The trial functions used in spectral
methods are chosen from various classes of Ja-
cobian polynomials [22], still the discretization
meshes are preassigned. Neural network model
is used to approximate the solutions of DEs for
the entire domains. In 1990 the authors of [36]
used parallel computers to solve a first order dif-
ferential equation with Hopfield neural network
models. Meade and Fernandez [39, 40] solved lin-
ear and nonlinear ordinary differential equations
using feed forward neural networks architecture
and B1-splines. Leephakpreeda [37] applied neu-
ral network model and linguistic model as uni-
versal approximators for any nonlinear continu-
ous functions. With this outstanding capability,
the solution of DEs can be approximated by the
appropriate neural network model and linguistic
model within an arbitrary accuracy.

When a physical problem is transformed into a
deterministic initial value problem{

dy(x)
dx = f(x, y),

y(a) = A,
(1.1)

We usually cannot be sure that this modelling
is perfect. The initial value may not be known
exactly and the function f may contain unknown
parameters. If the nature of errors is random,
then instead of a deterministic problem (1.1) we
get a random differential equation with random
initial value and/ or random coefficients. But
if the underlying structure is not probabilistic,
e.g. because of subjective choice, then it may be
appropriate to use fuzzy numbers instead of real
random variables.

The topic of Fuzzy Differential Equations
(FDEs) has been rapidly growing in recent years.
The fuzzy initial value problem have been stud-

ied by several authors [1, 2, 6, 7, 10, 50, 42, 43,
41, 13, 17, 51]. The concept of fuzzy derivative
was first introduced by Chang and Zadeh [16], it
was followed up by Dubois and Prade [19] who
used the extension principle in their approach.
Other methods have been discussed by Puri and
Ralescu [49] and by Goetschel and Voxman [21].
Fuzzy differential equations were first formulated
by Kaleva [32] and Seikkala [52] in time depen-
dent form. Kaleva had formulated fuzzy differ-
ential equations, in terms of Hukuhara derivative
[32]. Buckley and Feuring [14] have given a very
general formulation of a fuzzy first-order initial
value problem. They first find the crisp solution,
make it fuzzy and then check if it satisfies the
FDE. In [48, 20], investigated the existence and
uniqueness of solution for fuzzy random differen-
tial equations with non-lipschitz coefficients and
fuzzy differential equations with piecewise con-
stant argument.

During the past few years, neural net-
works have received much attention Abbasbandy,
Mosleh and et al. [3, 44, 45, 47]. In this work
we propose a new solution method for the ap-
proximated solution of fuzzy differential equa-
tions under generalized differentiability using in-
novative mathematical tools and neural-like sys-
tems of computation. This hybrid method can
result in improved numerical methods for solv-
ing fuzzy initial value problems. In this proposed
method, fuzzy neural network model (FNNM) is
applied as universal approximator. We use fuzzy
trial function, this fuzzy trial function is a com-
bination of two terms. A first term is responsible
for the fuzzy initial while the second term con-
tains the fuzzy neural network adjustable param-
eters to be calculated. The main aim of this pa-
per is to illustrate how fuzzy connection weights
are adjusted in the learning of fuzzy neural net-
works by the back-propagation-type learning al-
gorithms [28, 31] for the approximated solution
of fuzzy differential equations. Our fuzzy neural
network in this paper is a three-layer feedforward
neural network where connection weights and bi-
ases are fuzzy numbers. The remaining part of
the paper is organized as follows. In Section 2,
we discuss some basic definitions. Also, we briefly

www.SID.ir

Arc
hive

 of
 S

ID

M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297 283

review relevant definition of the architecture of
fuzzy neural networks. Section 3 gives details of
problem formulation and the way to construct the
fuzzy trial function and training of fuzzy neural
network for finding the unknown adjustable co-
efficients. Also, training of partially fuzzy neural
network for finding the unknown adjustable coef-
ficients.

2 Preliminaries

In this section the most basic notations used in
fuzzy calculus are introduced. We start by defin-
ing the fuzzy number.

Definition 2.1 A fuzzy number is a fuzzy set u :
R1 −→ I = [0, 1] which satisfies

i. u is upper semi-continuous.

ii. u(x) = 0 outside some interval [a, d].

iii. There are real numbers b, c : a ≤ b ≤ c ≤ d
for which

1. u(x) is monotonic increasing on [a, b],

2. u(x) is monotonic decreasing on [c, d],

3. u(x) = 1, b,≤ x ≤ c.

The set of all the fuzzy numbers (as given by Def-
inition 2.1) is denoted by E1.

We briefly mention fuzzy number operations
defined by the extension principle [57, 58]. Since
input vector of feedforward neural network is
fuzzy in this paper, the following addition, mul-
tiplication and nonlinear mapping of fuzzy num-
bers are necessary for defining our fuzzy neural
network:

µA+B(z) = max{µA(x)∧µB(y)|z = x+y}, (2.2)

µAB(z) = max{µA(x) ∧ µB(y)|z = xy}, (2.3)

µf(Net)(z) = max{µNet(x)|z = f(x)}, (2.4)

where A, B, Net are fuzzy numbers, µ∗(.) de-
notes the membership function of each fuzzy
number, ∧ is the minimum operator and f(.) is
a continuous activation function (like sigmoidal
activation function) inside hidden neurons.

The above operations of fuzzy numbers are
numerically performed on level sets (i.e.,α-cuts).

The h-level set of a fuzzy number A is defined as

[A]h = {x ∈ R|µA(x) ≥ h} for 0 < h ≤ 1,
(2.5)

and [A]0 =
∪

h∈(0,1][A]h. Since level sets of fuzzy
numbers become closed intervals, we denote [A]h
as

[A]h = [[A]Lh , [A]
U
h], (2.6)

where [A]Lh and [A]Uh are the lower limit and the
upper limit of the h-level set [A]h, respectively.
From interval arithmetic [5], the above operations
of fuzzy numbers are written for h-level sets as
follows:

[A]h + [B]h = [[A]Lh + [B]Lh , [A]
U
h + [B]Uh], (2.7)

[A]h.[B]h = [min{[A]Lh .[B]Lh , [A]
L
h .[B]Uh ,

[A]Uh .[B]Lh , [A]
U
h .[B]Uh },max{[A]Lh .[B]Lh ,

[A]Lh .[B]Uh , [A]
U
h .[B]Lh , [A]

U
h .[B]Uh }], (2.8)

f([Net]h) = f([[Net]Lh , [Net]Uh]) =

[f([Net]Lh), f([Net]Uh)], (2.9)

where f is increasing function.

Definition 2.2 [21] For arbitrary fuzzy numbers
U, V, we use the distance

D(U, V) = sup0≤h≤1max{|[U]Lh − [V]|Lh ,
|U]Uh − [V]Uh |}

and it is shown that (E,D) is a complete metric
space.

Definition 2.3 Let U, V ∈ E. If there exists
W ∈ E, such that U = V +W, then W is called
the H-difference of U, V and it is denoted U ⊖ V.

In this paper the sign ⊖ always stands for
the H-difference, and let us remark that
U ⊖ V ̸= U + (−1)V. Usually we denote
U +(−1)V by U −V , while U ⊖V stands for the
H-difference. In what follows, we fix X = (a, b),
for a, b ∈ R.

Definition 2.4 Let f : X −→ E be a fuzzy func-
tion. We say f is differentiable at x0 ∈ X if there
exists an element f ′(x0) ∈ E such that the limits

www.SID.ir

Arc
hive

 of
 S

ID

284 M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297

limh−→0+
f(x0 + h)⊖ f(x0)

h

and

limh−→0+
f(x0)⊖ f(x0 − h)

h
,

exist and are equal to F ′(x0).

The above definition is a straightforward general-
ization of the Hukuhara differentiability of a set-
value function. From proposition 4.2.8 in [18],
it follows that a Hukuhara differentiable function
has increasing length of support. Note that this
definition of a derivative is very restrictive [12].
The authors of [12] introduced a more general def-
inition of a derivative for a fuzzy-number-valued
function. In this paper we consider the following
definition [15]:

Definition 2.5 Let f : X −→ E. Fix x0 ∈ X.
We say f is differentiable at x0, if there exists an
element F ′(x0) ∈ E such that

(1) for all h > 0 sufficiently close to 0, there
exist f(x0+h)⊖F (x0), f(x0)⊖f(x0−h) and the
limits (in the metric D)

limh−→0+
f(x0 + h)⊖ f(x0)

h
=

limh−→0+
f(x0)⊖ f(t0 − h)

h
= f ′(t0),

or
(2) for all h > 0 sufficiently close to 0, there

exist f(x0+h)⊖ f(x0), f(x0)⊖ f(x0−h) and the
limits (in the metric D)

limh−→0−
f(x0 + h)⊖ f(x0)

h
=

limh−→0−
f(x0)⊖ f(x0 − h)

h
= f ′(x0).

Remark 2.1 [12] This definition agrees with the
one introduced in [12]. Indeed, if f is differ-
entiable in the senses (1) and (2) simultane-
ously, then for h > 0 sufficiently small,, we
have f(x0 + h) = f(x0) + U1, f(x0) = f(x0 −
h) + U2, f(x0) = f(x0 + h) + V1 and f(x0) =
f(x0 + h) + v2, with U1, U2, V1, V2 ∈ E. Thus,
f(x0) = f(x0) + (U2 + V1), i.e.,U2 + V1 = χ{0},

which implies two possibilities: U2 = V1 = χ{0} if
f ′(x0) = χ{0}; or U2 = χ{a} = −V1, with a ∈ R,
if f ′(x0) ∈ R. Therefore, if there exists f ′(x0) in
the first form (second form) with f ′(x0) is not in
R, then f ′(x0) does not exist in the second form
(first form, respectively).

Remark 2.2 In the previous definition, case (1)
corresponds to the H-derivative introduced in [49],
so this differentiability concept is a generalization
of the H-derivative.

Remark 2.3 In [12], the authors consider four
cases for derivatives. Here we only consider the
two first cases od Definition 5 in [12]. In the other
cases, the derivative is trivial because it is reduced
to a crisp element (more precisely, f ′ ∈ R; for
details see Theorem 7 in [12]).

Definition 2.6 Let f : X −→ E. We say f is
(1)-differentiable on X if f is differentiable in the
sense (1) of Definition 7 and its derivative is de-
noted D1f , and similarly for (2)-differentiability
we have D2f .

The principal properties of defined derivatives are
well known and can be found in [12, 15]. In this
paper, we make use of the following Theorem [15].

Theorem 2.1 Let f : X −→ E and put
[f(x)]h = [[f(x)]Lh , [f(x)]

U
h] for each 0 ≤ h ≤ 1.

(i) If f is (1)-differentiable then [f(x)]Lh
and [f(x)]Uh are differentiable functions and
[D1f(x)]h = [[f ′(x)]Lh , [f

′(x)]Uh].
(ii) If f is (2)-differentiable then [f(x)]Lh and
[f(x)]Uh are differentiable functions and we have
[D2f(x)]h = [[f ′(x)]Uh , [f

′(x)]Lh].

Artificial neural networks are an exciting form
of artificial intelligence which mimic the learn-
ing process of the human brain in order to ex-
tract patterns from historical data [53, 4]. Sim-
ple perceptrons need a teacher to tell the network
what the desired output should be. These are su-
pervised networks. In an unsupervised net, the
network adapts purely in response to its inputs.
Such networks can learn to pick out structure in
their input. Fig. 1 shows typical three-layered

www.SID.ir

Arc
hive

 of
 S

ID

M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297 285

perceptron. Multi-layered perceptrons with more
than three layers, use more hidden layers [25, 33].
Multi-layered perceptrons correspond the input
units to the output units by a specific nonlinear
mapping [55]. From Kolmogorov existence the-
orem we know that a three-layered perceptron
with n(2n + 1) nodes can compute any contin-
uous function of n variables [26]. Before describ-

Figure 1: Multiple layer feed-forward
FNNM.

ing a fuzzy neural network architecture, we de-
note real numbers and fuzzy numbers by lower-
case letters (e.g., a, b, c, . . .) and uppercase letters
(e.g., A,B,C, . . .), respectively.

Our fuzzy neural network is a three-layer
feedforward neural network where connection
weights, biases and targets are given as fuzzy
numbers and inputs are given as real numbers.
For convenience in this discussion, FNNM with
an input layer, a single hidden layer, and an out-
put layer in Fig. 1 is represented as a basic struc-
tural architecture. Here, the dimension of FNNM
is denoted by the number of neurons in each layer,
that is n×m× s, where m,n and s are the num-
ber of neurons in the input layer, the hidden layer
and the output layer, respectively. The architec-
ture of the model shows how FNNM transforms
the n inputs (x1, . . . , xi, . . . , xn) into the s out-
puts (Y1, . . . , Yk, . . . , Ys) throughout the m hid-
den neurons (Z1, . . . , Zj , . . . , Zm), where the cy-
cles represent the neurons in each layer. Let Bj

be the bias for neuron Zj , Ck be the bias for neu-
ron Yk,Wji be the weight connecting neuron xi

to neuron Zj , and Wkj be the weight connecting
neuron Zj to neuron Yk.

2.1 Input-output relation of each unit

Let us consider a fuzzy three-layer feedforward
neural network with n input units, m hidden
units and s output units. Target vector, connec-
tion weights and biases are fuzzy and input vector
is real number. In order to derive a crisp learning
rule, we restrict connection weights and biases by
four types of (real numbers, symmetric triangu-
lar fuzzy numbers, asymmetric triangular fuzzy
numbers and asymmetric trapezoidal fuzzy num-
bers) while we can use any type of fuzzy numbers
for fuzzy targets. For example, an asymmetric
triangular fuzzy connection weight is specified by
its three parameters as Wkj = (wL

kj , w
C
kj , w

U
kj).

When an n-dimensional input vector
(x1, . . . , xi, . . . , xn) is presented to our fuzzy
neural network, its input-output relation can be
written as follows, where f : Rn −→ Es:
Input units:

oi = xi, i = 1, 2, . . . , n.

(2.10)

Hidden units:

Zj = f(Netj), j = 1, 2, . . . ,m,

(2.11)

Netj =
n∑

i=1

oi.Wji +Bj . (2.12)

Output units:

Yk = f(Netk), k = 1, 2, . . . , s,

(2.13)

Netk =

m∑
j=1

Wkj .Zj + Ck. (2.14)

www.SID.ir

Arc
hive

 of
 S

ID

286 M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297

The architecture of our fuzzy neural network is
shown in Fig. 1 where connection weights, bi-
ases, and targets are fuzzy and inputs are real
numbers. The input-output relation in Eqs.(2.1)-
(2.14) is defined by the extension principle [57] as
in Hayashi et al.[24] and Ishibuchi et al.[30].

2.2 Calculation of fuzzy output

The fuzzy output from each unit in Eqs.(2.1)-
(2.14) is numerically calculated for real inputs
and level sets of fuzzy weights and fuzzy biases.
The input-output relations of our fuzzy neural
network can be written for the h-level sets:
Input units:

oi = xi, i = 1, 2, . . . , n.

(2.15)

Hidden units:

[Zj]h = f([Netj]h), j = 1, 2, . . . ,m,

(2.16)

[Netj]h =

n∑
i=1

oi.[Wji]h + [Bj]h. (2.17)

Output unit:

[Yk]h = f([Netk]h), k = 1, 2, . . . , s,

(2.18)

[Netk]h =

m∑
j=1

[Wkj]h.[Zj]h + [Ck]h. (2.19)

From Eqs.(2.2)-(2.19), we can see that the h-level
sets of the fuzzy outputs Yk’s are calculated from
those of the fuzzy weights, fuzzy biases and crisp
inputs. From Eqs.(2.7)-(2.9), the above relations
are rewritten as follows when the inputs xi’s are
nonnegative, i.e., 0 ≤ xi:
Input units:

oi = xi. (2.20)

Hidden units:

[Zj]h = [[Zj]
L
h , [Zj]

U
h] =

[f([Netj]
L
h), f([Netj]

U
h)], (2.21)

where f is increasing function.

[Netj]
L
h =

n∑
i=1

oi.[Wji]
L
h + [Bj]

L
h , (2.22)

[Netj]
U
h =

n∑
i=1

oi.[Wji]
U
h + [Bj]

U
h . (2.23)

Output units:

[Yk]h = [[Yk]
L
h , [Yk]

U
h] =

[f([Netk]
L
h), f([Netk]

U
h)], (2.24)

where f is increasing function.

[Netk]
L
h =

∑
j∈a

[Wkj]
L
h .[Zj]

L
h+

∑
j∈b

[Wkj]
L
h .[Zj]

U
h + [Ck]

L
h ,

[Netk]
U
h =

∑
j∈c

[Wkj]
U
h .[Zj]

U
h+

∑
j∈d

[Wkj]
U
h .[Zj]

L
h + [Ck]

U
h , (2.25)

for [Zj]
U
h ≥ [Zj]

L
h ≥ 0, where a = {j | [Wkj]

L
h ≥

0}, b = {j | [Wkj]
L
h < 0}, c = {j | [Wkj]

U
h ≥

0},d = {j | [Wkj]
U
h < 0}, a ∪ b = {1, . . . ,m} and

c ∪ d = {1, . . . ,m}.

3 FDEs under generalized dif-
ferentiability

Let us consider the FDE

dy(x)

dx
= f(x, y) (3.26)

where y is a fuzzy function of x, f(x, y) a fuzzy
function of the crisp variable x and the fuzzy vari-
able y, and y′ is the fuzzy derivative of y. If an

www.SID.ir

Arc
hive

 of
 S

ID

M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297 287

initial value y(a) = A is given, we obtain a fuzzy
Cauchy problem of first order:{

dy(x)
dx = f(x, y), x ∈ [a, b],

y(a) = A,
(3.27)

where A is a fuzzy number in E with h-level sets

[A]h = [[A]Lh , [A]
U
h], 0 < h ≤ 1.

Theorem 3.1 [15] Let f : X × E −→ E be a
continuous fuzzy function such that there exists
k > 0 such that D(f(x, y), f(x, z)) ≤ kD(y, z),
∀x ∈ X, y, z ∈ E. Then problem (3.27) has two
solution (one (1)-differentiable and the other one
(2)-differentiable) on X.

Definition 3.1 Let y : X −→ E be a fuzzy func-
tion such that D1y or D2y exists. If y and D1y
satisfy problem (3.27), we say y is a (1)-solution
of problem (3.27). Similarly, if y and D2y sat-
isfy problem (3.27), we say y is a (2)-solution of
problem (3.27).

Let [y(x)]h = [[y(x)]Lh , [y(x)]
U
h]. If y(x) is (1)-

differentiable then D1y(x) = [[y′(x)]Lh , [y
′(x)]Uh],

and (3.27) translates into the following system of
ODEs:

[y′(x)]Lh = [f(x, y)]Lh , [y(a)]Lh = [A]Lh ,

[y′(x)]Uh = [f(x, y)]Uh , [y(a)]Uh = [A]Uh .
(3.28)

Also, if y(x) is (2)-differentiable then D2y(x) =
[[y′(x)]Uh , [y

′(x)]Lh], and (3.27) translates into the
following system of ODEs:

[y′(x)]Lh = [f(x, y)]Uh , [y(a)]Lh = [A]Lh ,

[y′(x)]Uh = [f(x, y)]Lh , [y(a)]Uh = [A]Uh ,
(3.29)

where [f(x, y)]h = [[f(x, y)]Lh , [f(x, y)]
U
h]. The au-

thors of [15] state that if we ensure that the so-
lution [[y(x)]Lh , [y(x)]

U
h] of the system (3.28) are

valid level sets of a fuzzy number valued func-
tion and if [[y(x)]Lh , [y(x)]

U
h] are valid level sets

of a fuzzy valued function, then by the stacking

Theorem [32], it is possible to construct the (1)-
solution of FDE (3.27). Also, for the (2)-solution,
we can proceed in a similar way.

The Characterization Theorem [11] states that
a FDE is equivalent to a system of ODEs under
certain conditions.

Theorem 3.2 [46] Let us consider the FDE
(3.27) where f : X × E −→ E is such that
(i) [f(x, y)]h =
[[f(x, [y]Lh , [y]

U
h)]

L
h , [f(x, [y]

L
h , [y]

U
h)]

U
h];

(ii) [f(x, [y]Lh , [y]
U
h)]

L
h and [f(x, [y]Lh , [y]

U
h)]

U
h are

equicontinuous;
(iii) there exists L > 0 such that

|[f(x, y1, z1)]Lh − [f(x, y2, z2)]
L
h |≤

Lmax{|y1 − y2|, |z1 − z2|}, ∀h ∈ [0, 1];

|[f(x, y1, z1)]Uh − [f(x, y2, z2)]
U
h |≤

Lmax{|y1 − y2|, |z1 − z2|}, ∀h ∈ [0, 1].

Then, for (1)-differentiability, the FDE (3.27)
and the system of ODEs (3.28) are equivalent and
in (2)-differentiability, the FDE (3.27) and the
system of ODEs (3.29) are equivalent.

Let us assume that a general approximation so-
lution to Eq.(3.27) is in the form yT (x, P) for yT
as a dependent variable to x and P , where P
is an adjustable parameter involving weights and
biases in the structure of the three-layered feed
forward FNNM (see Fig. 2). The fuzzy trial so-
lution yT is an approximation solution to y for the
optimized value of unknown weights and biases.
Thus the problem of finding the approximated
fuzzy solution for Eq. (3.27) over some colloca-
tion points in [a, b] by a set of discrete equally
spaced grid points

a = x1 < x2 < . . . < xg = b,

is equivalent to calculate the functional yT (x, P).
In order to obtain fuzzy approximate solution
yT (x, P), we solve unconstrained optimization
problem that is simpler to deal with, we define the
fuzzy trial function to be in the following form:

yT (x, P) = α(x) + β[x,N(x, P)], (3.30)

www.SID.ir

Arc
hive

 of
 S

ID

288 M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297

Figure 2: Three layer fuzzy neural network
with one input and one output.

where the first term in the right hand side does
not involve with adjustable parameters and satis-
fies the fuzzy initial condition. The second term
in the right hand side is a feed forward three-
layered fuzzy neural network consisting of an in-
put x and the output N(x, P). The crisp trial
function was used in [38]. In the next subsec-
tion, this FNNM with some weights and biases is
considered and we train in order to compute the
approximate solution of problem (3.27).

Let us consider a three-layered FNNM (see Fig.
2) with one unit entry x, one hidden layer consist-
ing of m activation functions and one unit output
N(x, P). In this paper, we use the sigmoidal ac-
tivation function s(.) for the hidden units of our
fuzzy neural network.

Here, the dimension of FNNM is 1×m× 1.

One drawback of fully fuzzy neural networks
with fuzzy connection weights is long computa-
tion time. Another drawback is that the learning
algorithm is complicated. For reducing the com-
plexity of the learning algorithm, we propose a
partially fuzzy neural network (PFNN) architec-
ture where connection weights to output unit are
fuzzy numbers while connection weights and bi-
ases to hidden units are real numbers [29, 42].
Since we had good simulation results even from
partially fuzzy three-layer neural networks, we do
not think that the extension of our learning algo-
rithm to neural networks with more than three
layer is an attractive research direction.

For every entry x the input neuron makes no
changes in its input, so the input to the hidden
neurons is

netj = x.wj + bj , j = 1, . . . ,m, (3.31)

where wj is a weight parameter from input layer
to the jth unit in the hidden layer, bj is an jth
bias for the jth unit in the hidden layer. The
output, in the hidden neurons is

zj = s(netj), j = 1, . . . ,m, (3.32)

where s(.) is the activation function which is nor-
mally nonlinear function, the usual choices of the
activation function [23] are the sigmoid transfer
function, and the output neuron make no change
its input, so the input to the output neuron is
equal to output

N = V1z1 + . . .+ Vjzj + . . .+ Vmzm, (3.33)

where Vj is a weight parameter from jth unit in
the hidden layer to the output layer. From Eqs.
(2.20)-(2.25), we can be rewritten for h-level
sets of the Eqs. (3.31)-(3.33). For reducing the
complexity of the learning algorithm, input x
usually assumed as non-negative in fully fuzzy
neural networks, i.e., 0 ≤ x [28]:
Input unit:

o = x. (3.34)

Hidden units:

zj = s(netj), j = 1, . . . ,m, (3.35)

netj = o.wj + bj . (3.36)

Output unit:

[N]h = [[N]Lh , [N]Uh] =

[
m∑
j=1

[Vj]
L
h .zj ,

m∑
j=1

[Vj]
U
h .zj]. (3.37)

A PFNN4 (partially fuzzy neural network with
crisp set input signals, crisp number weights and
biases to hidden units and fuzzy number weights
to output unit) solution to Eq. (3.27) is given in
Fig. 2. How is the PFNN4 going to solve the

www.SID.ir

Arc
hive

 of
 S

ID

M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297 289

fuzzy differential equations? The training data
are a = x1 < x2 < . . . < xg = b for input. We
propose a learning algorithm from the cost func-
tion for adjusting weights.

Consider the following fuzzy initial value prob-
lem for a first order differential equation (3.27),
the related trial function will be in the form

yT (x, P) = A+ (x− a)N(x, P), (3.38)

this solution by intention satisfies the initial con-
dition in (3.27). In [28], the learning of our
fuzzy neural network is to minimize the dif-
ference between the fuzzy target vector B =
(B1, . . . , Bs) and the actual fuzzy output vector
O = (O1, . . . , Os). The following cost function
was used in [28, 3] for measuring the difference
between B and O:

e =
∑
h

eh =
∑
h

h.{
s∑

k=1

([Bk]
L
h − [Ok]

L
h)

2/2

+
s∑

k=1

([Bk]
U
h − [Ok]

U
h)

2/2},

(3.39)

where eh is the cost function for the h-level sets of
B and O. The squared errors between the h-level
sets of B and O are weighted by the value of h in
(3). In [29], it is shown by computer simulations
that their paper, the fitting of fuzzy outputs to
fuzzy targets is not good for the h-level sets with
small values of h when we use the cost function in
(3). This is because the squared errors for the h-
level sets are weighted by h in (3). Krishnamraju
et al. [34] used the cost function without the
weighting scheme:

e =
∑
h

eh =
∑
h

{
s∑

k=1

([Bk]
L
h − [Ok]

L
h)

2/2

+

s∑
k=1

([Bk]
U
h − [Ok]

U
h)

2/2}.

(3.40)

In the computer simulations included in this pa-
per, we mainly use the cost function in (3) with-
out the weighting scheme.

The error function that must be minimized for
problem (3.28) is in the form

e1 =

g∑
i=1

e1i =

g∑
i=1

∑
h

e1ih =

g∑
i=1

∑
h

{eL1ih + eU1ih}, (3.41)

where

eL1ih =
([dyT (xi,P)

dx]Lh − [f(xi, yT (xi, P))]Lh)
2

2
,

eU1ih =
([dyT (xi,P)

dx]Uh − [f(xi, yT (xi, P))]Uh)
2

2
.

Also, the error function that must be minimized
for problem (3.29) is in the form

e2 =

g∑
i=1

e2i =

g∑
i=1

∑
h

e2ih =

g∑
i=1

∑
h

{eL2ih + eU2ih}, (3.42)

where

eL2ih =
([dyT (xi,P)

dx]Lh − [f(xi, yT (xi, P))]Uh)
2

2
,

eU2ih =
([dyT (xi,P)

dx]Uh − [f(xi, yT (xi, P))]Lh)
2

2
.

and {xi}gi=1 are discrete points belonging to the
interval [a, b] and in the cost functions (3.41) and
(3.42) eL1ih, e

L
2ih can be viewed as the squared er-

rors for the lower limits and eU1ih, e
U
2ih the upper

limits of the h-level sets. It is easy to express the
first derivative of N(x, P) in terms of the deriva-
tive of the sigmoid function, i.e.

∂[N]Lh
∂x

=

m∑
j=1

[Vj]
L
h .

∂zj
∂netj

.
∂netj
∂x

=

www.SID.ir

Arc
hive

 of
 S

ID

290 M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297

m∑
j=1

[Vj]
L
h .zj .(1− zj).wj , (3.43)

∂[N]Uh
∂x

=

m∑
j=1

[Vj]
U
h .

∂zj
∂netj

.
∂netj
∂x

=

m∑
j=1

[Vj]
U
h .zj .(1− zj).wj . (3.44)

Now differentiating from trial function yT (x, P)
in (3.42), we obtain

∂[yT (x, P)]Lh
∂x

=

[N(x, P)]Lh + (x− a).
∂[N(x, P)]Lh

∂x
,

∂[yT (x, P)]Uh
∂x

=

[N(x, P)]Uh + (x− a).
∂[N(x, P)]Uh

∂x
,

thus the expressions in (3.43) and (3.44) are ap-
plicable here. A learning algorithm is derived in
Appendix.

4 Example

In this section, we apply FNNM to an example.
Consider the following FDE

Example 4.1 Consider the nuclear decay equa-
tion {

dy(x)
dx = −λy(x),

y(0) = A,

where y(x) is the number of radionuclides present
in a given radioactive material, λ is the decay
constant and A is the initial number of radionu-
clides. In the model, uncertainty is introduced
if we have uncertain information on the initial
number A of radionuclides present in the mate-
rial. Note that the phenomenon of nuclear dis-
integration is considered a stochastic process, un-
certainty being introduced by the lack of informa-
tion on the radioactive material under study. In
order to take into account the uncertainty we con-
sider A to be a fuzzy number.

Let λ = 1, x ∈ [0, 0.1] and [A]h = [h− 1, 1−h].

By using the Eq. (3.28) we get the exact solu-
tion

[y1(x)]h = [(h− 1)ex, (1− h)ex],

that is a (1)-differentiable solution of the problem
(3.27). Using the Eq. (3.29) we get the exact
solution

[y2(x)]h = [(h− 1)e−x, (1− h)e−x],

is a (2)-differentiable solution of the problem
(3.27).

In the interval [0, 0.1] we consider a set of dis-
crete equally spaced grid points 0 = x1 < 0.01 <
... < 0.1 and for Eq. (3.28) and Eq. (3.29) the
approximate solutions are denoted by y1T (x, P)
and y2T (x, P), respectively.

Here, the dimension of PFNN is 1×5×1. The
error function for the m = 5 sigmoid units in
the hidden layer and for g = 11 equally spaced
points inside the interval [0, 0.1] is trained. In the
computer simulation of this section, we use the
following specifications of the learning algorithm.

(1) Number of hidden units: five units.

(2) Stopping condition: 100 iterations of the
learning algorithm.

(3) Learning constant: η = 0.1.

(4) Momentum constant: α = 0.2.

(5) Initial value of the weights and biases of
PFNN are shown in table 1, that we suppose Vi =

(v
(1)
i , v

(2)
i , v

(3)
i) for i = 1, . . . , 5.

We apply the proposed method to the approx-
imate realization of solution of problem (3.27).
A comparison between the exact and approximate
solutions at x = 0.1 is shown in the Figures 3
and 4. Now, if we consider the same differential
equation under Hukuhara differentiability, then
the (1)-solution (it exists and is unique by theo-
rems in [54]) has an increasing length of its sup-
port, which leads us to the conclusion that there
is a possibility that the radioactivity of the system
increases as time goes on and even a non-zero
possibility that it is negative. Fortunately, the real
situation is different, and the radioactivity of a
material always decreases with time and it can-
not be negative. So, the (2)-solution models the

www.SID.ir

Arc
hive

 of
 S

ID

M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297 291

Figure 3: Analytical solution y1 and ap-
proximate solution y1T .

Figure 4: Analytical solution y2 and ap-
proximate solution y2T .

radioactive decay better. Now, if we consider the
same differential equation under Hukuhara dif-
ferentiability, then the (1)-solution (it exists and
is unique by theorems in [54]) has an increas-
ing length of its support, which leads us to the
conclusion that there is a possibility that the ra-
dioactivity of the system increases as time goes on
and even a non-zero possibility that it is negative.
Fortunately, the real situation is different, and
the radioactivity of a material always decreases
with time and it cannot be negative. So, the (2)-
solution models the radioactive decay better.

heighti 1 2 3 4 5

v
(1)
i -0.5 -0.5 -0.5 -0.5 -0.5

v
(2)
i 0 0 0 0 0

v
(3)
i 0.5 0.5 0.5 0.5 0.5
wi 0 0 0 0 0
bi 0 0 0 0 0

Table 4.1. The initial values of weights

5 Conclusion

Solving fuzzy differential equations (FDEs) under
generalized differentiability by using universal ap-
proximators (UA), that is, FNNM is presented in
this paper. The problem formulation of the pro-
posed UAM is quite straightforward. To obtain
the ”Best-approximated” solution of FDEs, the
adjustable parameters of FNNM are systemati-
cally adjusted by using the learning algorithm.

In this paper, we derived a learning algo-
rithm of fuzzy weights of tree-layer feedforward
fuzzy neural networks whose input-output rela-
tions were defined by extension principle. The ef-
fectiveness of the derived learning algorithm was
demonstrated by computer simulation on numeri-
cal example. Since we had good simulation result
even from partially fuzzy three-layer neural net-
works, we do not think that the extension of our
learning algorithm to neural networks with more
than three layers is an attractive research direc-
tion. Good simulation result was obtained by this
neural network in shorter computation times than
fully fuzzy neural networks in our computer sim-
ulations.

Appendix

Derivation of a learning algorithm in
PFNN

Let us denote the fuzzy connection weight
Vj to the output unit by its parameter values

as Vj = (v
(1)
j , . . . , v

(q)
j , . . . , v

(r)
j). The amount of

modification of each parameter value for problem
(3.28) is written as [27]

v
(q)
j (t+ 1) = v

(q)
j (t) +△v

(q)
j (t),

www.SID.ir

Arc
hive

 of
 S

ID

292 M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297

△vqj (t) = −η

g∑
i=1

∂e1ih

∂v
(q)
j

+ α.△ v
(q)
j (t− 1),

and the amount of modification of each parameter
value for problem (3.29) is written as:

v
(q)
j (t+ 1) = v

(q)
j (t) +△v

(q)
j (t),

△vqj (t) = −η

g∑
i=1

∂e2ih

∂v
(q)
j

+ α.△ v
(q)
j (t− 1),

where t indexes the number of adjustments, η is
a learning rate (positive real number) and α is a
momentum term constant (positive real number).

Thus our problem is to calculate the derivatives
∂e1ih

∂v
(q)
j

and ∂e2ih

∂v
(q)
j

. Let us rewrite ∂e1ih

∂v
(q)
j

and ∂e2ih

∂v
(q)
j

as

follows:

∂e1ih

∂v
(q)
j

=
∂e1ih
∂[Vj]Lh

.
∂[Vj]

L
h

∂v
(q)
j

+
∂e1ih
∂[Vj]Uh

.
∂[Vj]

U
h

∂v
(q)
j

,

∂e2ih

∂v
(q)
j

=
∂e2ih
∂[Vj]Lh

.
∂[Vj]

L
h

∂v
(q)
j

+
∂e2ih
∂[Vj]Uh

.
∂[Vj]

U
h

∂v
(q)
j

.

In this formulation,
∂[Vj]

L
h

∂v
(q)
j

and
∂[Vj]

U
h

∂v
(q)
j

are easily

calculated from the membership function of the
fuzzy connection weight Vj .

On the other hand, the derivatives ∂e1ih
∂[Vj]Lh

,

∂e1ih
∂[Vj]Uh

, ∂e2ih
∂[Vj]Lh

and ∂e2ih
∂[Vj]Uh

are independent of the

shape of the fuzzy connection weight. They can
be calculated from the cost functions e1ih and e2ih
using the input-output relation of our fuzzy neu-
ral network for the h-level sets. When we use
the cost function with the weighting scheme in
(3.41) and (3.42), ∂e1ih

∂[Vj]Lh
, ∂e1ih
∂[Vj]Uh

, ∂e2ih
∂[Vj]Lh

and ∂e2ih
∂[Vj]Uh

are calculated as follows:
[Calculation of ∂e1ih

∂[Vj]Lh
]

∂e1ih
∂[Vj]Lh

= δL1 .[
∂[N(xi, P)]Lh

∂[Vj]Lh
+ (xi − a).

∂zj
∂x

−
∂[f(x, yT (xi, P))]Lh

∂[yT (xi, P)]Lh
.
∂[yT (xi, P))]Lh

∂[Vj]Lh
],

where

δL1 = ([
dyT (xi, P)

dx
]Lh − [f(xi, yT (xi, P))]Lh),

∂[yT (xi, P))]Lh
∂[Vj]Lh

] = (xi − a).zj ,

∂N(xi, P)]Lh
∂[Vj]Lh

= zj .

[Calculation of ∂e1ih
∂[Vj]Uh

]

∂e1ih
∂[Vj]Uh

= δU1 .[
∂N(xi, P)]Uh

∂[Vj]Uh
+ (xi − a).

∂zj
∂x

−
∂[f(x, yT (xi, P))]Uh

∂[yT (xi, P)]Uh
.
∂[yT (xi, P))]Uh

∂[Vj]Uh
],

where

δU1 = ([
dyT (xi, P)

dx
]Uh − [f(xi, yT (xi, P))]Uh),

∂[yT (xi, P))]Uh
∂[Vj]Uh

] = (xi − a).zj ,

∂N(xi, P)]Uh
∂[Vj]Uh

= zj .

[Calculation of ∂e2ih
∂[Vj]Lh

]

∂e2ih
∂[Vj]Lh

= δL2 .[
∂[N(xi, P)]Uh

∂[Vj]Lh
+ (xi − a).

∂zj
∂x

−
∂[f(x, yT (xi, P))]Lh

∂[yT (xi, P)]Lh
.
∂[yT (xi, P))]Lh

∂[Vj]Lh
],

where

δL2 = ([
dyT (xi, P)

dx
]Uh − [f(xi, yT (xi, P))]Lh),

∂[yT (xi, P))]Lh
∂[Vj]Lh

] = (xi − a).zj ,

∂N(xi, P)]Lh
∂[Vj]Lh

= zj .

[Calculation of ∂e2ih
∂[Vj]Uh

]

∂e2ih
∂[Vj]Uh

= δU2 .[
∂N(xi, P)]Lh

∂[Vj]Uh
+ (xi − a).

∂zj
∂x

−
∂[f(x, yT (xi, P))]Uh

∂[yT (xi, P)]Uh
.
∂[yT (xi, P))]Uh

∂[Vj]Uh
],

www.SID.ir

Arc
hive

 of
 S

ID

M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297 293

where

δU2 = ([
dyT (xi, P)

dx
]Lh − [f(xi, yT (xi, P))]Uh),

∂[yT (xi, P))]Uh
∂[Vj]Uh

] = (xi − a).zj ,

∂N(xi, P)]Uh
∂[Vj]Uh

= zj .

In our partially fuzzy neural network, the con-
nection weights and biases to the hidden units are
real numbers. The non-fuzzy connection weight
wj to the jth hidden unit is updated in the same
manner as the parameter values of the fuzzy con-
nection weight Vj as follows:

wj(t+ 1) = wj(t) +△wj(t),

△wj(t) = −η

g∑
i=1

∂eih
∂wj

+ α△ wj(t− 1).

The derivative ∂e1ih
∂wj

and ∂e2ih
∂wj

can be calcu-

lated from the cost function eih using the input-
output relation of our PFNN for the h-level sets.
When we use the cost function with the weighting
scheme, ∂e1ih

∂wj
and ∂e2ih

∂wj
are calculated as follows:

∂e1ih
∂wj

= δL1 .[
∂[N(xi, P)]Lh

∂wj
+ (xi − a).[Vj]

L
h .zj

+(xi − a).xi.[Vj]
L
h .zj(1− zj)wj

−(xi − a).[Vj]
L
h .z

2
j − 2(xi − a).xi.[Vj]

L
h .z

2
j

(1− zj)wj − (
∂[f(xi, yT (xi, P))]Lh

∂[yT (xi, P))]Lh

.
∂[yT (xi, P)]Lh

∂

w˙j+∂[f(xi, yT (xi, P))]Lh ∂[yT (x,P))]Uh .

∂[yT (xi, P)]Uh
∂wj

)] + δU1 .[
∂N(xi, P)]Uh

∂wj
+

(xi − a).[Vj]
U
h .zj + (xi − a).xi.[Vj]

U
h .zj

(1− zj)wj − (xi − a).[Vj]
U
h .z

2
j−

2(xi − a).xi.[Vj]
U
h .z

2
j (1− zj)wj−

(
∂[f(xi, yT (xi, P))]Uh

∂[yT (xi, P))]Lh
.
∂[yT (xi, P)]Lh

∂

w˙j+

∂[f(xi, yT (xi, P))]Uh
∂[yT (xi, P))]Uh

.
∂[yT (xi, P)]Uh

∂wj
)],

and

∂e2ih
∂wj

= δU2 .[
∂[N(xi, P)]Uh

∂wj
+ (xi − a).[Vj]

U
h .zj

+(xi − a).xi.[Vj]
U
h .zj(1− zj)wj

-(x˙i-a).

[Vj]
U
h .z

2
j − 2(xi − a).xi.[Vj]

U
h .z

2
j (1− zj)wj−

(
∂[f(xi, yT (xi, P))]Lh

∂[yT (xi, P))]Lh
.
∂[yT (xi, P)]Lh

∂

w˙j+

∂[f(xi, yT (xi, P))]Lh
∂[yT (x, P))]Uh

.
∂[yT (xi, P)]Uh

∂wj
)]+

δU2 .[
∂N(xi, P)]Lh

∂wj
+ (xi − a).[Vj]

L
h .zj + (xi − a).

xi.[Vj]
L
h .zj(1− zj)wj − (xi − a).[Vj]

L
h .z

2
j−

2(xi − a).xi.[Vj]
L
h .z

2
j (1− zj)wj−

(
∂[f(xi, yT (xi, P))]Uh

∂[yT (xi, P))]Lh
.
∂[yT (xi, P)]Lh

∂

w˙j

+
∂[f(xi, yT (xi, P))]Uh

∂[yT (xi, P))]Uh
.
∂[yT (xi, P)]Uh

∂

w˙j)],

www.SID.ir

Arc
hive

 of
 S

ID

294 M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297

where

∂[N(xi, P)]Lh
∂wj

=
∂[N(xi, P)]Lh

∂zj
.
∂zj
∂netj

.

∂netj
∂wj

= [Vj]
L
h .zj .(1− zj).xi,

∂[N(xi, P)]Uh
∂wj

=
∂[N(xi, P)]Uh

∂zj
.
∂zj
∂netj

.

∂netj
∂wj

= [Vj]
U
h .zj .(1− zj).xi,

∂[yT (xi, P))]Lh
∂wj

= (xi − a).
∂[N(xi, P)]Lh

∂wj
,

∂[yT (xi, P))]Uh
∂wj

= (xi − a).
∂[N(xi, P)]Uh

∂wj
.

The non-fuzzy biases to the hidden units are
updated in the same manner as the non-fuzzy
connection weights to the hidden units.

References

[1] S. Abbasbandy, J. J. Nieto, M. Alavi, Tuning
of reachable set in one dimensional fuzzy dif-
ferential inclusions, Chaos, Solitons & Frac-
tals 26 (2005) 1337-1341.

[2] S. Abbasbandy, T. Allaviranloo, O. Lopez-
Pouso, J. J. Nieto, Numerical methods for
fuzzy differential inclusions, Computers &
mathematics with applications 48 (2004)
1633-1641.

[3] S. Abbasbandy, M. Otadi, Numerical solution
of fuzzy polynomials by fuzzy neural network,
Appl. Math. Comput. 181 (2006) 1084-1089.

[4] S. Abbasbandy, M. Otadi, M. Mosleh, Numer-
ical solution of a system of fuzzy polynomials
by fuzzy neural network, Information Sciences
178 (2008) 1948-1960.

[5] G. Alefeld, J. Herzberger, Introduction to In-
terval Computations, Academic Press, New
York, (1983).

[6] T. Allahviranloo, E. Ahmady, N. Ahmady,
Nth-order fuzzy linear differential eqations,
Information Sciences 178 (2008) 1309-1324.

[7] T. Allahviranloo, N. Ahmady, E. Ahmady,
Numerical solution of fuzzy differential eqa-
tions by predictor-corrector method, Informa-
tion Sciences 177 (2007) 1633-1647.

[8] H. Md. Azamathulla, A. Ab. Ghani, N. A.
Zakaria, ANFIS based approach for predicting
maximum scour location of spillway, Water
Management, ICE London 162 (6) 399-407.

[9] H. Md. Azamathulla, C. C. Kiat, A. Ab.
Ghani, Z. A. Hasan, N. A. Zakaria, An
ANFIS-based approach for predicting the bed
load for moderately-sized rivers, Journal of
Hydro-Environment Research, Elsevier &
KWRA 3 (2009) 35-44.

[10] M. Barkhordari Ahmadi, N. A. Kiani, Dif-
ferential transformation method for solving
fuzzy differential inclusions by fuzzy par-
titions, International Journal of Industrial
Mathematics 5 (2013) 237-249.

[11] B. Bede, Note on ”Numerical solutions of
fuzzy differential equations by predictor cor-
rector method”, Information Sciences 178
(2008) 1917-1922.

[12] B. Bede, S. G. Gal, Generalizations of the
differentiability of fuzzy number value func-
tions with applications to fuzzy differential
equations, Fuzzy Sets and Systems 151 (2005)
581-599.

[13] B. Bede, I. J. Rudas, A. L. Bencsik, First
order linear fuzzy differential eqations under
generalized differentiability, Information Sci-
ences 177 (2007) 1648-1662.

[14] J. J. Buckley, T. Feuring, Fuzzy differential
equations, Fuzzy Sets and Systems 110 (2000)
69-77.

www.SID.ir

Arc
hive

 of
 S

ID

M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297 295

[15] Y. Chalco-Cano, H. Roman-Flores, On new
solutions of fuzzy differential equations, Chaos
Solitons & Fractals 38 (2008) 112-119.

[16] S. L. Chang, L. A. Zadeh, On fuzzy map-
ping and control, IEEE Trans. Systems Man
Cybemet 2 (1972) 30-34.

[17] M. Chen, C. Wu, X. Xue, G. Liu, On
fuzzy boundary value problems, Information
Sciences 178 (2008) 1877-1892.

[18] P. Diamond, P. Kloeden, Metric spaces of
fuzzy sets, World scientific, Singapore, (1994).

[19] D. Dubois, H. Prade, Towards fuzzy differ-
ential calculus: Part3, differentiation, Fuzzy
Sets and Systems 8 (1982) 225-233.

[20] W. Fei, Existence and uniqueness of solu-
tion for fuzzy random differential equations
with non-lipschitz coefficients, Information
Sciences 177 (2007) 4329-4337.

[21] R. Goetschel, W. Voxman, Elementary fuzzy
calculus, Fuzzy Sets and Systems 18 (1986)
31-43.

[22] D. Gottlieb, S.A. Orszag, Numerical anal-
ysis of spectral methods: theory and applica-
tions, CBMS-NSF Regional Conference Series
in Applied Mathematics 26, SIAM, Philadel-
phia, (1977).

[23] M. T. Hagan, H. B. Demuth, M. Beale, Neu-
ral Network Design, PWS publishing com-
pany, Massachusetts, (1996).

[24] Y. Hayashi, J. J. Buckley, E. Czogala, Fuzzy
neural network with fuzzy signals and weights,
Internat. J. Intelligent Systems 8 (1993) 527-
537.

[25] S. Haykin, Neural Networks:A Comprehen-
sive Foundation, Prentice Hall, New Jersey,
(1999).

[26] K. Hornick, M. Stinchcombe, H. White, Mul-
tilayer feedforward networks are universal ap-
proximators, Neural Networks 2 (1989) 359-
366.

[27] H. Ishibuchi, K. Kwon, H. Tanaka, A learn-
ing algorithm of fuzzy neural networks with
triangular fuzzy weights, Fuzzy Sets and Sys-
tems 71 (1995) 277-293.

[28] H. Ishibuchi, K. Morioka, I. B. Turksen,
Learning by fuzzified neural networks, Int. J.
Approximate Reasoning 13 (1995) 327-358.

[29] H. Ishibuchi, M. Nii, Numerical analysis of
the learning of fuzzified neural networks from
fuzzy if-then rules, Fuzzy Sets and Systems
120 (2001) 281-307.

[30] H. Ishibuchi, H. Okada, H. Tanaka, Fuzzy
neural networks with fuzzy weights and fuzzy
biases, Proc. ICNN 93 (1993) 1650-1655.

[31] H. Ishibuchi, H. Tanaka, H. Okada, Fuzzy
neural networks with fuzzy weights and fuzzy
biases, Proceedings of 1993 IEEE Interna-
tional Conferences on Neural Networks, 1993,
pp. 1650-1655.

[32] O. Kaleva, Fuzzy differential equations,
Fuzzy Sets and Systems 24 (1987) 301-317.

[33] T. Khanna, Foundations of Neural Net-
works, Addison-Wesly, Reading, MA, (1990).

[34] P. V. Krishnamraju, J. J. Buckley, K. D.
Relly, Y. Hayashi, Genetic learning algo-
rithms for fuzzy neural nets, Proceedings of
1994 IEEE International Conference on Fuzzy
Systems, 1994, pp. 1969-1974.

[35] J. D. Lamber, Computational Methods in
Ordinary Differential Equations, John Wiley
& Sons, New York, (1983).

[36] H. Lee, I. S. Kang, Neural algorithms for
solving differential equations, Journal of Com-
putational Physics 91 (1990) 110-131.

[37] T. Leephakpreeda, Novel determination of
differential-equation solutions: universal ap-
proximation method, Computational and Ap-
plied Mathematics 146 (2002) 443-457.

[38] A. Malek, R. Shekari Beidokhti, Numerical
solution for high order differential equations

www.SID.ir

Arc
hive

 of
 S

ID

296 M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297

using a hybrid neural network-Optimization
method, Appl. Math. Comput. 183 (2006) 260-
271.

[39] A. J. Meade Jr, A. A. Fernandez, The nu-
merical solution of linear ordinary differen-
tial equations by feedforward neural networks,
Mathematical and Computer Modelling 19
(1994) 1-25.

[40] A. J. Meade Jr, A. A. Fernandez, Solution
of nonlinear ordinary differential equations
by feedforward neural networks, Mathemati-
cal and Computer Modelling 20 (1994) 19-44.

[41] M. T. Mizukoshi, L. C. Barros, Y. Chalco-
Cano, H. Romn-Flores, R. C. Bassanezi,
Fuzzy differential equations and the extention
principle, Information Sciences 177 (2007)
3627-3635.

[42] M. Mosleh, M. Otadi, Simulation and eval-
uation of fuzzy differential equations by fuzzy
neural network, Applied Soft Computing 12
(2012) 2817-2827.

[43] M. Mosleh, M. Otadi, Minimal solution
of fuzzy linear system of differential equa-
tions, Neural Computing and Applications 21
(2012) 329-336.

[44] M. Mosleh, M. Otadi, S. Abbasbandy, Eval-
uation of fuzzy regression models by fuzzy neu-
ral network, Journal of Computational and
Applied Mathematics 234 (2010) 825-834.

[45] M. Mosleh, M. Otadi, S. Abbasbandy, Evalu-
ation of fuzzy polynomial regression model by
fuzzy neural network, Applied mathematical
modelling 35 (2011) 5400-5412.

[46] J. J. Nieto, A. Khastan, K. Ivaz, Numerical
solution of fuzzy differential equation under
generalized differentiability, Nonlinear Anali-
sis: Hybrid Systems 3 (2009) 700-707.

[47] M. Otadi, M. Mosleh, Simulation and eval-
uation of dual fully fuzzy linear systems by
fuzzy neural network, Applied mathematical
modelling 35 (2011) 5026-5039.

[48] G. Papaschinopoulos, G. Stefanidou, P.
Efraimidis, Existence, uniquencess and
asymptotic behavior of the solutions of a
fuzzy differential equation with piecewise
constant argument, Information Sciences 177
(2007) 3855-3870.

[49] M. L. Puri, D. A. Ralescu, Differentials
of fuzzy functions, J. Math. Anal. Appl. 91
(1983) 552-558.

[50] R. Rodriguez-Lopez, Comparison results for
fuzzy differential eqations, Information Sci-
ences 178 (2008) 1756-1779.

[51] O. Sedaghatfar, P. Darabi, S. Moloudzadeh,
A method for solving first order fuzzy differen-
tial equation, International Journal of Indus-
trial Mathematics 5 (2013) 251-257.

[52] S. Seikkala, On the fuzzy initial value prob-
lem, Fuzzy Sets and Systems 24 (1987) 319-
330.

[53] R. J. Schalkoff, Artificial Neural Networks,
McGraw-Hill, New York, (1997).

[54] S. Song, C. Wu, Existence and uniqueness
of solutions to the Cauchy problem of fuzzy
differential equations, Fuzzy Sets and Systems
110 (2000) 55-67.

[55] J. Stanley, Introduction to Neural Networks,
third ed., Sierra Mardre, (1990).

[56] J. Store, R. Bulirsch, Introduction to Nu-
merical Analysis, second ed., Springer-Verlag,
New York, (1993).

[57] L. A. Zadeh, The concept of a liguistic vari-
able and its application to approximate rea-
soning, Information Sciences 8 (1975) 199-
249.

[58] L. A. Zadeh, Is there a need for fuzzy logic?,
Information Sciences 178 (2008) 2751-2779.

www.SID.ir

Arc
hive

 of
 S

ID

M. Mosleh /IJIM Vol. 5, No. 4 (2013) 281-297 297

Maryam Mosleh borned in 1979 in
Iran. She received the B.S., M.S.,
and Ph.D. degrees in applied math-
ematics from Islamic Azad Univer-
sity, Iran, in 2001, 2003 and 2009,
respectively. She is currently an
Associate Professor in the Depart-

ment of Mathematics, Firoozkooh Branch, Is-
lamic Azad University, Firoozkooh, Iran. She
is actively pursuing research in fuzzy modeling,
fuzzy neural network, fuzzy linear system, fuzzy
differential equations and fuzzy integral equa-
tions. She has published numerous papers in this
area.

www.SID.ir

