
Arch
ive

 of
 SID

Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 5, No. 4, 2013 Article ID IJIM-00273, 9 pages

Research Article

Utilizing a new feed-back fuzzy neural network for solving a system of

fuzzy equations

A. Jafarian ∗ † , S. Measoomy Nia ‡

————————————————————————————————–

Abstract

This paper intends to offer a new iterative method based on artificial neural networks for finding
solution of a fuzzy equations system. Our proposed fuzzified neural network is a five-layer feed-
back neural network that corresponding connection weights to output layer are fuzzy numbers. This
architecture of artificial neural networks, can get a real input vector and calculates its corresponding
fuzzy output. In order to find the approximate solution of the fuzzy system that supposedly has a
real solution, first a cost function is defined for the level sets of the fuzzy network and target output.
Then a learning algorithm based on the gradient descent method is used to adjust the crisp input
signals. The present method is illustrated by several examples with computer simulations.

Keywords : System of fuzzy equations; Fuzzy feed-back neural network (FFNN); Cost function; Learn-
ing algorithm.

—————————————————————————————————–

1 Introduction

F
uzzy system are very useful for solving many
problems in several applied fields like eco-

nomics, finance, engineering and physics, because
these problems often boil down to the solution
of a fuzzy system. In recent years, various ap-
proaches for solving fuzzy systems have been re-
ported. For example, Friedman et al. [12] used
the embedding method and suggested a general
model for solving a fuzzy linear system. Al-
lahviranloo [6, 7, 8] used the iterative Jacobi
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and Gauss Siedel methods, the adomian method
and the successive over-relaxation method, re-
spectively. Theoretical aspects of a fuzzy linear
system were discussed by Dubois and Prade [11].
Dehgan et al. [10] employed iterative techniques
for solving fully fuzzy linear system. Linear and
nonlinear fuzzy systems were solved by [3, 1, 9].
Moreover, recently some different valid methods
for solving fuzzy systems have been developed.
One of the well known approaches is artificial neu-
ral networks approach in which has been applied
to approximate solution of these kinds of prob-
lems. Ishibuchi et al. [15] defined a cost func-
tion for every pair of fuzzy output vector and
its corresponding fuzzy target vector and then
proposed a learning algorithm of fuzzy neural
networks with triangular and trapezoidal fuzzy
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weights. Hayashi et al. [14] used the fuzzy delta
learning rule such that the input-output relation
of each unit was defined by the Zadeh extension
principle [18]. Abbasbandy et al. [4, 2] proffered
a structure of feed-forward fuzzy neural networks
to find a real solution of a fuzzy polynomials sys-
tem.
The main aim of this paper is to construct a new
algorithm with the use of feed-back neural net-
works to obtain an approximate real solution of
fuzzy equations system (if exist). It is mentioned
that in the purposed fuzzy feed-back neural net-
work, the connection weights and the fuzzy out-
put are fuzzy numbers, and also input signals are
crisp. So, we say to this neural network FFNN4.
The given algorithm enables the FFNN4 to ap-
proximate crisp solution of the fuzzy system that
has been described in above for any desired de-
gree of accuracy. This paper is organized as fol-
lows. First in Section 2, the basic notations and
definitions of fuzzy numbers and fuzzy derivative
are briefly presented. Section 3 describes how to
find a real solution of given fuzzy system using
FFNN4. Finally, some examples are collected in
Section 4.

2 Basic definitions and nota-
tions

In this section an overview of general concepts
and definitions is given that will be used in next
sections, repeatedly. The most basic used nota-
tions in fuzzy calculus and artificial neural net-
works, are briefly introduced here.

2.1 Operation on fuzzy numbers

Definition 2.1 A fuzzy number is a fuzzy set u :
R1 → I = [0, 1] which satisfies

i) u is upper semicontinuous,

ii) u(x) = 0 outside some interval [a, d],

iii) There is a real numbers b, c : a ≤ b ≤ c ≤ d
for which:

a) u(x) is monotonic increasing on [a, b],

b) u(x) is monotonic decreasing on [c, d],

c) u(x) = 1, b ≤ x ≤ c.

The set of all fuzzy numbers (as given by Defini-
tion 2.1) is denoted by E1 [13, 16]. An alternative
definition which yields the same E1 is given by
Kandel [19].

Definition 2.2 A fuzzy number u is a pair (u, u)
with functions u(r), u(r): 0 ≤ r ≤ 1. which sat-
isfy the following requirements:

i) u(r) is a bounded monotonic increasing left
continuous function,

ii) u(r) is a bounded monotonic decreasing left
continuous function,

iii) u(r) ≤ u(r): 0 ≤ r ≤ 1.

A popular fuzzy number is the triangular fuzzy
number u = (a, b, c) with membership function,

µu(x) =




x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0 , otherwise,

where a ≤ b ≤ c. It,s parametric form is:
u(r) = a+(b−a)α and ū(r) = c−(c−b)α, 0 ≤ r ≤
1. We briefly mention fuzzy number operations
defined by the Zadeh extension principle [18, 17],
as:

µA+B(z) = max{µA(x) ∧ µB(y)| z = x+ y},
µAB(z) = max{µA(x) ∧ µB(y)| z = xy},

where A, B are fuzzy numbers µ∗(.) denotes the
membership function of each fuzzy number and
∧ is the minimum operator.
The above operations on fuzzy numbers are nu-

merically performed on level sets (i.e. α-cuts).
For 0 ≤ r ≤ 1, a r-level set of a fuzzy number

A is defined as:

[A]r = {x| µA(x) ≥ r, x ∈ R},
[A]r = [[A]rl , [A]ru],

where [A]rl and [A]ru are the lower and the upper
limits of the r-level set [A]r, respectively.

For arbitrary u = (u, u) and v = (v, v) we de-
fine addition (u + v) and multiplication by k as
[13, 16]:
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(u+ v)(r) = u(r) + v(r),
(u+ v)(r) = u(r) + v(r),

(ku)(r) = k.u(r), (kv)(r) = k.u(r), if k ≥ 0,

(ku)(r) = k.u(r), (kv)(r) = k.u(r), if k < 0.

2.2 Calculation of fuzzy output in
FFNN4

In this part, we aim to give a short review on
learning of fuzzified feed-back neural networks.
First consider a five-layer FFNN4 with two input
units, n neuron in each hidden layer and one
output units. In given structure, we assume that
the corresponding connection weights to output
layer and target output are triangular fuzzy
numbers. In Fig. 1 the input vector (x0, y0),
the input-output relation of each unit in hidden
layers and the output Yp have been presented.
These relations can be written as following:

Input units:
The input neurons make no change in their
inputs, so:

o1 = x0 and o2 = y0. (2.1)

First hidden units:

Opj = fpj(o1), j = 1, ..., n.

Second hidden units:

O′
pj = gpj(o2).

Third hidden units:

Upj = netpj , netpj = Opj . O′
pj .

Output unit:

Yp = Netp, Netp =

n∑
j=1

Upj . Apj .

Using above equations the α-level sets of the
fuzzy output Yp can be written as following [5]:

[Yp]
α = [Netp]

α, (2.2)

[Netp]
α = [[Netp]

α
l , [Netp]

α
u ],

[Netp]
α
l =

∑
jεM

Upj . [Apj ]
α
l +

∑
jεC

Upj . [Apj ]
α
u ,

[Netp]
α
u =

∑
jεM

Upj . [Apj ]
α
u +

∑
jεC

Upj . [Apj ]
α
l ,

where M = {j| Upj ≥ 0}, C = {j| Upj < 0} and

M ∪ C = {1, ..., n}.

Figure 1: Schematic diagram of the pro-
posed FFNN4.

3 The general method

In this Section, first the system of fuzzy equations
is defined. Then we will concentrate on solving
below fuzzy system. Here, we consider the system
of fuzzy equations in following form:



A11f11(x)g11(y) + · · ·+A1nf1n(x)g1n(y) = A10,

A21f21(x)g21(y) + · · ·+A2nf2n(x)g2n(y) = A20,
(3.3)

where A10, ..., A1n, A20, ..., A2n are fuzzy num-
bers. Moreover, we assume that fpj and gpj
(for p = 1, 2 and j = 1, ..., n) are real functions
of the crisp variables x and y (if exist), respec-
tively. For simplify the fuzzy coefficient Apj will
always be considered real triangular fuzzy num-
ber. As observed in previous section to get an
approximate solution, an architecture of FFNN4
for fuzzy system (3.3) has been given in Fig. 1.
The modeling scheme is designed with the simple
and versatile fuzzy neural network architecture.
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3.1 Cost function

At first we assume that the real quantities x0 and
y0 are initialized at random values for unknown
variables x and y, respectively. In this subsection
we intend to introduce how to deduce a learning
algorithm to update the crisp parameters x0 and
y0. Let Ap0 be fuzzy target output corresponding
to the fuzzy coefficient vector (Ap = Ap1, ..., Apn).
After presenting these parameters into the pro-
posed network, we calculated the fuzzy output
by using relations which were introduced in sub-
section (3.1). Next we defined a cost function for
α-level sets of fuzzy output Yp and its correspond-
ing target output Ap0 as follows:

eαp = eαpl + eαpu, (3.4)

where

eαpl = α.
([Ap0]

α
l − [Yp]

α
l )

2

2
, (3.5)

eαpu = α.
([Ap0]

α
u − [Yp]

α
u)

2

2
, (3.6)

In the cost function (3.4), eαpl and eαpu can be
viewed as the squared errors for the lower lim-
its and the upper limits of the α-level sets of the
fuzzy output Yp and target output Ap0, respec-
tively. Then the total error of the given neural
network is obtained as [15]:

e =

2∑
p=1

∑
α

eαp . (3.7)

3.1.1 Learning algorithm of the FFNN4

Our main aim is adjusting the parameters x0 and
y0 with the using of learning algorithm which be
introduced in below. For crisp parameter y0 ad-
just rule can be written as follows:

y0(t+ 1) = y0(t) + ∆y0(t), (3.8)

∆y0(t) = −η
∂eαp
∂y0

+ γ∆y0(t− 1), (3.9)

where t is the number of adjustments, η is the
learning rate and γ is the momentum term con-

stant. The derivative
∂eαp
∂y0

can be calculated from

the cost function eαp using the input-output rela-
tion of our fuzzy neural network for the α-level

sets in (2.1)-(2.2). We calculate
∂eαp
∂y0

as follows:

∂eαp
∂y0

=
∂eαpl
∂y0

+
∂eαpu
∂y0

. (3.10)

Thus our problem is calculating of the derivatives
∂eαpl
∂y0

and
∂eαpu
∂y0

. Since they are calculated in the

same manner, we only show the calculate
∂eαpl
∂y0

.
So we have:

∂eαpl
∂y0

=
∂eαpl
∂[Yp]αl

.
∂[Yp]

α
l

∂[Netp]αl
.
∂[Netp]

α
l

∂y0

= −α . ([Ap0]
α
l − [Yp]

α
l ) .

∂[Netp]
α
l

∂y0
,

where

∂[Netp]
α
l

∂y0
=

n∑
j=1

(
∂[Netp]

α
l

∂gpj(y)
. g′pj(y)|y=y0).

If Upj ≥ 0

∂[Netp]
α
l

∂gpj(y)
= ([Apj ]

α
l . fpj(x0)),

otherwise

∂[Netp]
α
l

∂gpj(y)
= ([Apj ]

α
u . fpj(x0)).

Now we have:

∂eαp
∂y0

= −α.
∑
j ε M

{([Ap0]
α
l

− [Yp]
α
l ) . ([Apj ]

α
l . fpj(x0). g

′
pj(y)|y=y0)}

−α.
∑
j ε M

{([Ap0]
α
u

− [Yp]
α
u) . ([Apj ]

α
u . fpj(x0). g

′
pj(y)|y=y0)}

−α.
∑
j ε C

{([Ap0]
α
l

− [Yp]
α
l ) . ([Apj ]

α
u . fpj(x0). g

′
pj(y)|y=y0)}
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−α.
∑
j ε C

{([Ap0]
α
u

− [Yp]
α
u) . ([Apj ]

α
l . fpj(x0). g

′
pj(y)|y=y0)},

where M = {j| Upj ≥ 0} and C = {j| Upj < 0}.
Similarly, we can update the parameter x0 with
using of relations which applied for updating the
input signal y0. Now the learning algorithm can
be summarized as follows:

Learning process
Step 1: η > 0, γ > 0, Emax > 0 are chosen.
Then crisp quantities x0 and y0 are initialized at
random values.
Step 2: Let t := 0 where t is the number of
iterations of the learning algorithm. Then the
running error E is set to 0.
Step 3: Let t := t + 1. Repeat Step 5 for
α = α1, ..., αm.
Step 4: Repeat the following procedures for
p = 1, 2:

[i] Forward calculation: Calculate the α-level
set of the fuzzy output Yp by presenting the
α-level set of the fuzzy coefficients vector Ap.

[ii] Back-propagation: Adjust crisp parameters
x0 and y0 using the cost function (3.4) for
the α-level sets of the fuzzy output Yp and
the target output Ap0.

Step 5: Cumulative cycle error is computed by
adding the present error to E.
Step 6: The training cycle is completed. For E <
Emax terminate the training session. If E >
Emax then E is set to 0 and we initiate a new
training cycle by going back to Step 3.

4 Numerical examples

In this Section we apply this method on three
examples. For each example, the computed val-
ues of the approximate solution are calculated
over a number of iterations and then the cost
function is plotted. In the following simulations,
we use the specifications as follows:

1. Values of α = 0, 0.1, ..., 1.

2. Learning constant η = 0.001.

3. Momentum constant γ = 0.001.

4. Stoping conditions: Emax = 0.001.

Example 4.1 Consider the following system of
fuzzy equations:





(−1, 0,−1)ex−1(y + 1)2

+(−3, 0, 3)sin(x− 1).cos(y) = (−1, 0, 1),

(1, 2, 4)ex−1(y + 1)2

+(2, 5, 6)sin(x− 1)cos(y) = (1, 2, 4).

where x, y ε R and the exact solution is x = 1
and y = 0. In this example, we apply the proposed
method to approximate the solution of this fuzzy
system. The training starts with x0 = 0.5 and
y0 = 0.5. Table 1 shows the approximated solu-
tions over number of iterations and Figs. 2 and 4
show the accuracy of the solutions x0(t) and y0(t)
where t is the number of iterations.

Figure 2: The cost function for Example
4.1.
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Table 1: The approximated solutions with error analysis for Example 4.1.

t x0(t) y0(t) e t x0(t) y0(t) e

1 0.60601 0.48232 22.4739 42 0.99626 0.0057441 0.0032690
2 0.64331 0.44822 18.6951 43 0.99669 0.0050850 0.0025620
3 0.67040 0.41402 17.1529 44 0.99707 0.0045014 0.0020079
4 0.69603 0.38032 15.3804 45 0.99740 0.0039848 0.0015735
5 0.72100 0.34757 13.5776 46 0.99770 0.0035274 0.0012331
6 0.74515 0.31616 11.8196 47 0.99797 0.0031226 0.0009663

Figure 3: Convergence of the calculated so-
lutions for Example 4.1.

Example 4.2 Let fuzzy system




(1, 2, 3)xy

+(2, 3, 4)ex+1cos(y − 1) = (−1, 1, 3),

(2, 3, 4)xy2

+(3, 4, 5)x3sin(y − 1) = (−4,−3,−2).

with the exact solutions x = −1 and y = 1.
We trained the fuzzy neural network as described
in last example. Before starting calculations, we
assume that x0 = −1.5 and y0 = 0.5. Numerical
result can be found in Table 2. Figs. 5 and show
the accuracy of the solutions x0(t) and y0(t) where
t is the number of iterations.

Example 4.3 We consider the following fuzzy

Figure 4: The cost function for Example
4.2.

system




2 sin(Π2 (x+ 1)) cos3(y)+

(1, 3, 7) tan(Π4 (x+ 1)) lne(y+1)2 = (3, 5, 9),

(3, 7, 8) sin(Π2 (x+ 1)) cos3(y)+

3 tan(Π4 (x+ 1)) lne(y+1)2 = (6, 10, 11).

with the exact solutions x = 0 and y = 0. We
trained the fuzzy neural network as described in
previous examples. Before starting calculations,
we assume that x0 = 0.5, y0 = −0.5, η = 0.001
and γ = 0.001. Numerical result can be found in
Table 3. Figs. 6 and 7 show the accuracy of the
solutions x0(t) and y0(t) where t is the number of
iterations.
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Table 2: The approximated solutions with error analysis for Example 4.2.

t x0(t) y0(t) e t x0(t) y0(t) e

1 -1.1990 0.94837 91.1527 9 -1.0099 0.99594 0.03206490
2 -1.1365 0.95968 5.76155 10 -1.0068 0.99717 0.01535220
3 -1.0933 0.96933 2.75913 11 -1.0047 0.99803 0.00735863
4 -1.0638 0.97736 1.31074 12 -1.0033 0.99863 0.00353004
5 -1.0437 0.98362 0.62170 13 -1.0023 0.99905 0.00169440
6 -1.0301 0.98831 0.29528 14 -1.0016 0.99934 0.00081363

Table 3: The approximated solutions with error analysis for Example 4.3.

t x0(t) y0(t) e t x0(t) y0(t) e

1 0.06917 -0.04241 111.4537 160 0.03242 -0.02320 0.0010458
2 0.06731 -0.04392 0.022291 161 0.03034 -0.02115 0.0010358
3 0.06663 -0.04367 0.016967 162 0.02826 -0.02280 0.0010259
4 0.06598 -0.04322 0.016318 163 0.02600 -0.02225 0.0010162
5 0.06535 -0.04287 0.015722 164 0.02510 -0.02159 0.0010067
6 0.06473 -0.04233 0.015159 165 0.02453 -0.02094 0.00099727

Figure 5: Convergence of the calculated so-
lutions for Example 4.2.

5 Conclusion

In this paper, an architecture of feed-back neu-
ral networks has been proposed for approximat-
ing solution of a fuzzy equations system. we sug-
gested a FFNN4 model equivalent to the system
of fuzzy equations. The analyzed examples illus-
trated the ability and reliability of the present
method. The obtained solutions, in comparison
with exact solutions admitted a remarkable accu-
racy. Finally, we can conclude that for this kind

Figure 6: The cost function for Example
4.3.

of problems the introduced model presents good
performance than feed-forward samples. Because
the speed of convergence is increased which de-
pends on number of computations.
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