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Abstract

In this paper a modification of He’s variational iteration method (VIM) has been employed to solve
Duffing and Riccati equations. Sometimes, it is not easy or even impossible, to obtain the first few
iterations of VIM , therefore, we suggest to approximate the integrand by using suitable expansions
such as Taylor or Chebyshev expansions.
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1 Introduction

T
he Duffing equation is a nonlinear equation of
applied science. In this paper, we consider

the nonlinear Duffing equation of the form{
u′′(t) + αu′(t) + βu(t) + γu3(t) = f(t)
u(0) = a, u′(0) = b.

(1.1)
where α, β, γ, a, b are real constants. Vahidi et
al. in [1] used the restarted Adomian’s decompo-
sition method to solve Duffing equation, also in
[2] they used homotopy perturbation method for
solving nonlinear Duffing equations.
The general form of Riccati equation is as follows:{

u′(t) = A(t) +B(t)u(t) + c(t)u2(t), 0 ≤ t ≤ T
u(t0) = d.

(1.2)

where A(t), B(t), C(t) are given functions and
d is an arbitrary constant. The Riccati equa-
tion plays an important role in some fields of

∗Corresponding author. fgoharee@yahoo.com
†Department of Mathematics, Science and Research

Branch, Islamic Azad University, Tehran, Iran.
‡Department of Mathematics, Science and Research

Branch, Islamic Azad University, Tehran, Iran.

applied sciences. Recently, Adomian’s decom-
position method has been employed for solv-
ing Riccati differential equations in [3]. Geng
[4] presented the piecewise VIM for solving Ric-
cati differential equations. Abbasbandy [5, 6, 7]
used He’s VIM, homotopy perturbation method
(HPM) and iterated He’s HPM to solve this equa-
tion. Here, we propose a modification of VIM and
show by some examples that using this modifica-
tion accurate solutions can be obtained.

2 Outline of VIM

Variational iteration method plays an important
role for solving different types of differential equa-
tions [8, 9, 10, 11, 12, 13, 14, 15, 16].
To illustrate the basic idea of the method we con-
sider the following nonlinear equation:

Lu(t) +Nu(t) = g(t), (2.3)

where L is a linear operator, N is a nonlinear op-
erator, and g is a known analytic function. Ac-
cording to VIM, we can construct the following
correction functional:
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un+1(t) =

un(t) +

∫ t

0
λ(t, x){Lun(x) +Nũn(x)− g(x)}dx.

(2.4)
where λ is a Lagrange multiplier, which can be
identified optimally via the variational theory,
and ũn is a restricted variation which means
δũn = 0. The successive approximation un(x);
n ⩾ 1, of the solution u(x) will be readily ob-
tained upon using the obtained Lagrange multi-
plier and by using selective function uo(x). Con-
sequently, the exact solution maybe obtained by
using

u(x) = limn→∞ un(x),

when un(x) has a limit as n → ∞.

3 Description of the Modified
VIM

In general the method of VIM only a few itera-
tions can be applied for Duffing and Riccati equa-
tions, because as we proceed the integrand in-
volved on the right hand side of (2.4) becomes
complicated. therefore, to achive a high accurate
solution we replace the integrand by Taylor and
Chebyshev expansions as follows:
1)Taylor expasion:

f(x) ≈
n∑

k=0

f (k)(0)

k!
xk. (3.5)

2)Chebyshev expansion:

f(x) ≈
∞∑
i=0

aiTi(x), ai =
2

π

∫ 1

−1

f(x)Ti(x)√
1− x2

(3.6)

Here, we assume that all integrands have Taylor
and Chebyshev expansions (3.5), (3.6).

4 Numerical Examples

In this section, we illustrate the proposed modi-
fication of the Variational iteration method with
three examples. All of the calculation have been
done with Maple 15 with 8 digits precision.In all
of examples, Chebyshev expansions, have been
obtained with tolerance 10−10 and for all exam-
ples only 10 terms of Taylor expansions have been
used.

Example 4.1 Consider the following Duffing
equation{

u′′(t) + 2u′(t) + u(t) + 8u3(t) = e−3t

u(0) = 1/2, u′(0) = −1/2,
(4.7)

with the exact solution u(t) = 1
2e

−t.

According to VIM, we can construct the correc-
tion functional of Eq. (4.7) as follows:

un+1(t) = un(t)+∫ t

0
λ{u′′

n(x)+2ũ′n(x)+ ũn(x)+8ũ3n(x)−e−3x}dx.

(4.8)
where λ is general Lagrange multiplier and
ũ′n(x), ũn(x), ũ

3
n(x) denote restricted variations,

i.e.

δũ′n(x) = δũn(x) = δũ3n(x) = 0.

The stationary conditions yields:

1− λ′(x)
∣∣∣
x=t

= 0, λ(x)
∣∣∣
x=t

= 0, λ′′(x)
∣∣∣
x=t

= 0,

hence, the Lagrange multiplier can be identified
as λ = x− t.
Therefore, the following iteration formula is
obtained:

un+1(t) = un(t)+∫ t

0
(x−t){u′′

n(x)+2u
′
n(x)+un(x)+8u3n(x)−e−3x}dx.

(4.9)
According to Eq. (4.7) initial approximation is
u0(t) = 1

2 − 1
2 t and the numerical results are

tabulated in Table 1, where by um(x) we mean
mth iteration of (4.9).
If we use VIM for (4.9), in the second iteration,
u2(t) is as follows:

−0.14139104t − 0.21682098t4 − 0.07206790t5 +
0.03271858e−3t + 0.06851851t6 − 0.03747795t7 −
0.09039351t8 + 0.05428240t9 + 0.00024691t10

−0.02451178t11+0.02002525t12−0.00912393t13+
0.00269230t14 − 0.00052380t15 + 0.00006250t16 −
0.00000367t17 − 0.26303155t2

+0.29526748t3 − 0.27942894te−3t −
0.16895290e−3tt4 − 0.12043895e−3tt5 −
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Table 1: Comparison of absolute errors for Example 4.1, using VIM, Taylor-VIM, Chebyshev-VIM.

VIM T-VIM Ch-VIM

x |u(x)−u3(x)| |u(x)− u10(x)| |u(x)− u21(x)|

0 2.74051056e-11 0 0
0.1 3.82492240e-07 1.03586530e-21 7.79833074e-14
0.2 1.35780260e-05 4.21070929e-18 6.04220827e-14
0.3 1.11556623e-04 5.42205514e-16 3.19601984e-13
0.4 4.99061610e-04 1.69888362e-14 4.81314341e-13
0.5 1.59340149e-03 2.45380307e-13 3.75338751e-13
0.6 4.10111698e-03 2.17165787e-12 2.60113143e-13
0.7 9.08665910e-03 1.37072466e-11 4.82600296e-14
0.8 1.80317934e-02 6.75571481e-11 3.30833025e-13
0.9 3.28882588e-02 2.75638222e-10 1.01409951e-12
1 5.61331105e-02 9.68918210e-10 1.82795567e-12

0.40938881e−3tt2 − 0.34202103e−3tt3

−0.04074074e−3tt6 − 0.01358024e−3tt8 +
0.00246913e−3tt9 + 0.00164609e−3tt7 −
0.00074074e−3tt10 + 0.00106691te−6t +
0.00137174e−6tt4

−0.00041152e−6tt5 − 0.00114311e−6tt2 −
0.00274348e−6tt3+0.47019847−0.00278158e−6t−
0.00013548e−9t.

It is easy to see that, next iterations have
more terms and become more complicated,
therefore to overcome this difficulty we re-
place the integrand by Taylor or Chebyshev
expansions.

Example 4.2 Consider the following Duffing
equation{

u′′(t) + 3u(t)− 2u3(t) = costsin2t
u(0) = 0, u′(0) = 1,

(4.10)

with the exact solution u(t) = sint.

Similar to example (4.1) the iteration furmula
for equation (4.10) is:

un+1(t) = un(t)+∫ x

0
(x−t){u′′

n(x)+3un(x)−2u3n(x)−cosxsin2x}dx.

(4.11)
According to Eq. (4.10) initial approximation is
u0(t) = t and the numerical results are tabulated
in Table 2.

Example 4.3 Consider the following Riccati
equation{

u′(t) = 1 + 2u(t)− u2(t), 0 ≤ t ≤ 1
u(0) = 0.48364861,

(4.12)

with the exact solution u(t) = 1+
√
2 tanh(

√
2t+

1
2 log

√
2−1√
2+1

).

According to the variational iteration method,
we can construct the correction functional of Eq.
(4.12) as follows:

un+1(t) = un(t)+∫ t

0
λ{u′

n(x)− 2un(x)− 1 + ũ2n(x)}dx. (4.13)

where λ is general Lagrange multiplier and ũ2n(x)
denote restricted variation, i.e. δũ2n(x) = 0. The
stationary conditions yields:

1 + λ(t, x)
∣∣∣
x=t

= 0, λ′(t, x) + 2λ(t, x) = 0.

these equations yield:

λ = −e2(x−t).

and the iteration furmula for the Riccati equation
is as follows:

un+1(t) = un(t)−∫ x

0
e2(x−t){u′

n(x)− 1− 2un(x) + u2n(x)}dx.

(4.14)
According to Eq. (4.12) initial approximation is
u0(t) = 0.48364861 and the numerical results are
tabulated in Table 3.
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Table 2: Comparison of absolute errors for Example 4.2, using VIM, Taylor-VIM, Chebyshev-VIM.

VIM T-VIM Ch-VIM

x |u(x)−u2(x)| |u(x)− u5(x)| |u(x)− u6(x)|

0 0 0 0
0.1 1.67707847e-04 1.60582791e-23 9.13801475e-15
0.2 1.34604752e-03 1.31530632e-19 1.54481934e-14
0.3 4.59073661e-03 2.55923337e-17 4.25219661e-14
0.4 1.10152497e-02 1.07688356e-15 1.56458755e-14
0.5 2.17671868e-02 1.95800091e-14 4.77034519e-14
0.6 3.79382391e-02 2.09383174e-13 1.19483205e-13
0.7 6.04001929e-02 1.55232085e-12 2.34465586e-13
0.8 8.95609796e-02 8.80170983e-12 6.43658653e-13
0.9 1.25042472e-01 4.06629542e-11 8.18536342e-13
1 1.65288637e-01 1.59828525e-10 1.30343939e-13

Table 3: Comparison of absolute errors for Example 4.3, using VIM, Taylor-VIM, Chebyshev-VIM.

VIM T-VIM Ch-VIM

x |u(x)−u4(x)| |u(x)− u10(x)| |u(x)− u16(x)|

0 1.00000000e-32 7.50244261e-33 7.50244261e-33
0.1 1.57791767e-03 1.64572643e-12 8.28464941e-13
0.2 1.13108402e-02 1.94795867e-09 1.59797683e-12
0.3 3.40115989e-02 7.69275634e-08 1.12606571e-12
0.4 7.14165795e-02 2.95520409e-07 2.30480803e-12
0.5 1.22860001e-01 8.16584070e-06 8.11013137e-13
0.6 1.85882248e-01 1.11179516e-04 1.72164485e-12
0.7 2.56627822e-01 7.38078875e-04 2.78548208e-12
0.8 3.30020860e-01 3.35349101e-03 3.02191031e-12
0.9 3.99870552e-01 1.18027878e-02 2.27106840e-12
1 4.59142274e-01 3.44098346e-02 1.63548247e-12

5 Conclusion

In this paper, we presented a modification of VIM
to solve Riccati and Duffing equations. This mod-
ification is based on replacing the integrand, in-
volved in the corresponding correction functional,
by its Taylor or Chebyshev expansions. Numeri-
cal experience show that using the proposed mod-
ification one can obtain more accurate solutions,
and the overall performance, when we use Cheby-
shev expansion, is better.
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