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Abstract

This paper proposes improvements and revisions to a recent approach in a voting system, and provides
an effective approach with a stronger discriminate power. For this purpose, the advantage of a
linear transformation is utilized to redefine a previously used concept of virtual worst candidate, by
incorporating the existing weight restrictions. Then, the best score of this virtual candidate is used as
a lower bound for the scores of the candidates in the models. It is shown that the proposed approach
overcomes some drawbacks in the existing models. The approach determines interval efficiencies which
can be used in ranking the candidates. Numerical examples illustrate some advantages of the proposed
approach.
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1 Introduction

V
oting is perhaps best known for its use in elec-
tions, where political candidates are selected

for public office. Voting can also be used to award
prizes, to select between different plans of action
(management policy), or by a computer program
to determine a solution to a complex problem.
Voting can be contrasted with consensus decision
making.
In a ranked voting system a voter selects a sub-
set of the candidates and places them in a ranked
order. The problem to be considered is how the
candidates are ranked and the winner is selected
using the number of first, second, third, etc. place
votes each candidate received. A well known
method for this purpose is to impose a predeter-
mined set of weights on each candidate’s standing
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and use the weighted sum of the votes as the total
score of the candidate. Then, the candidates are
ranked based on their total scores and the winner
is the one with the biggest total score.
To avoid the subjectivity in determining the
weights, Cook and Kress [3] proposed the follow-
ing DEA/AR [16] model:

Max Zi =
m∑
j=1

vijwj , (1.1)

s.t.
m∑
j=1

vijwj ≤ 1, i = 1, 2, . . . , n,

wj − wj+1 ≥ d(j, ϵ), j = 1, . . . ,m− 1,

wm ≥ d(m, ϵ),

in which, vij is the number of jth place votes
that candidate i (i = 1, 2, ..., n) receives, wj

(j = 1, 2, ...,m) is the sequence of weights given
to the jth place vote, and d(., ε) is referred to as a
discrimination intensity function that is nonneg-
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ative and monotonically increasing in a nonnega-
tive discriminating intensity factor ε and satisfies
d(., ε) = 0.
The choice of form for d(., ε) and the value of ε
are two existing issues in this model. Green et
al. [7] find that the objective of providing the
fairest possible treatment for each candidate is
compromised by a second objective of discrimi-
nating between the candidates in the proposed
method by Cook and Kress to maximize the gap
between the weights. They show that this is
equivalent to imposing a single set of weights on
all candidates and propose using the idea of cross-
evaluation in DEA, by selecting all d(., ε) equal to
zero. Hashimoto [8] also proposes using the DEA
exclusion model [1] with d(., ε) = ε, and some ad-
ditional restrictions on the weights, where ε is a
positive non-Archimedean infinitesimal. Noting
that these models are unstable with respect to
inefficient candidates, Obata and Ishii [14] pro-
posed another model that does not use any infor-
mation about inefficient candidates. This model
was extended and simplified [6] and was shown to
be equivalent to imposing a single set of weights
when L∞ norm is used ([5], [12]). Wang et al.
[18] proposed three models, that two of them are
linear and determine a common set of weights to
rank the candidates. To ameliorate some draw-
backs of existing models, new approaches for de-
termining a common set of weights were proposed
by Foroughi and Aouni [4]. By considering some
DEA ranking methods as voters and Decision
Making Units (DMUs) as candidates, some au-
thors have proposed to use a voting system for
ranking DMUs ([11], [20]).
In a recent paper, Wang and Chin [17] sug-
gested using the least relative total scores of the
candidates to discriminate efficient candidates in
the strong ordering DEA model developed by
Noguchi et al. [13]. Wang et al. [19] referred to a
drawback in [17] and proposed another approach
in which the scores are in the same range and
it may have stronger ability to identify efficient
candidates. In this paper, it will be shown that
there are some drawbacks in these approaches.
To overcome the problem, an effective revised ap-
proach will be proposed. The proposed approach
is simpler and improves the ability of identifying
efficient candidates, and determines interval effi-
ciencies for the candidates.
The rest of the paper has organized as follows.

In Section 2 we review two recent approaches for
obtaining the best and the least relative scores.
In Section 3, a linear transformation is utilized
to simplify the models. Using the advantages of
this simplification, some results are obtained that
also determine some disadvantages for the exist-
ing models. In Section 4, the revised approach
will be developed. Efficiency intervals and their
use in ranking the candidates are discussed in Sec-
tion 5. The numerical examples in Section 6 il-
lustrate the advantages of the proposed approach.
Finally, the conclusion is given in Section 7.

2 Preliminary discussions

Wang and Chin [17] suggested using the least
relative total scores of the candidates to dis-
criminate efficient candidates. For this purpose,
they first solve the following strong ordering DEA
model, to find DEA efficient candidates:

Max Zi =

m∑
j=1

vijwj , (2.2)

s.t.

m∑
j=1

vijwj ≤ 1, i = 1, 2, . . . , n,

w1 ≥ w2 ≥ . . . ≥ mwm,

wm ≥ ϵ,

The optimal value of (2.2) this model is named
the best relative total score. Then, they deter-
mine the least relative total score of each candi-
date by solving the following model:

Min Yi =

m∑
j=1

vijwj , (2.3)

s.t.

m∑
j=1

vijwj ≥ 1, i = 1, 2, . . . , n,

w1 ≥ w2 ≥ . . . ≥ mwm,

wm ≥ ϵ,

This model can be solved for all the candidates
or only for DEA efficient candidates. After that,
a DEA efficient candidate with the biggest least
relative total score is selected as the winner.

Wang et al. [19] proposed their approach based
on a virtual worst candidate (VWC) with the
votes vmin = (vmin

1 , . . . , vmin
m ), in which vmin

j =
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Mini{vij}, j = 1, 2, . . . ,m. The best relative to-
tal score of VWC is determined by solving the
following model:

Max α =

m∑
j=1

vmin
j wj , (2.4)

s.t.

m∑
j=1

vijwj ≤ 1, i = 1, 2, . . . , n,

w1 ≥ w2 ≥ . . . ≥ mwm,

wm ≥ ϵ,

Then, the following model is solved to obtain the
best relative total scores:

Max Y Max
i =

m∑
j=1

vijwj , (2.5)

s.t. α∗ ≤
m∑
j=1

vijwj ≤ 1, i = 1, 2, . . . , n,

w1 ≥ w2 ≥ . . . ≥ mwm,

wm ≥ ϵ,

And the following model is solved to obtain the
least relative total scores:

Min Y Min
i =

m∑
j=1

vijwj , (2.6)

s.t. α∗ ≤
m∑
j=1

vijwj ≤ 1, i = 1, 2, . . . , n,

w1 ≥ w2 ≥ . . . ≥ mwm,

wm ≥ ϵ,

The advantages of the later approach can be its
discrimination power and obtaining the scores in
the same range [19]. However, as it will be shown,
there are some drawbacks in the method when α∗

is not big enough. The following sections simplify
the models and propose an improved approach
which overcomes these drawbacks. In addition,
the proposed approach has more discrimination
power and obtains the scores in the same ranges.

3 Simplification of the models
and some discussions

Before some discussions about the previous
models, a linear transformation is utilized which

simplifies the results and helps to introduce more
convenient models. For this purpose, we define
new variables as follows:

uj = wj − j+1
j wj+1, j = 1, 2, . . . ,m− 1,

um = wm,
(3.7)

Or equivalently with matrix notation: u = Aw,
in which u and w are column vectors with com-
ponents uj and wj , respectively (j=1,2, . . . , m),
and A is the following m × m upper triangular
matrix:

A =



1 −2 0 . . . 0
0 1 −3/2 . . . 0
0 0 1 . . . 0

. . .
. . . −m

m−1

0 0 0 . . . 1


From relations (3.7), with back substitution,

we will get:

wj =

m∑
h=j

h

j
uh, j = 1, 2, . . . ,m (3.8)

Or, in matrix notation, w = A−1u in which A−1

is the inverse of the matrix A and can be written
as follows:

A−1 =



1 2 3 . . . m
0 1 3

2 . . . m
2

0 0 1 . . .
. . .

. . . m
m−1

0 0 0 . . . 1


With these definitions we have:

∑m
j=1 vijwj =

viw = vi(A
−1u) = (viA

−1)u = ṽiu =
∑m

j=1 ṽijuj
which vi is an m-row vector that shows the votes
of the ith candidate (i=1,2, . . . , n). Hence, by
replacing w with u and vi with ṽi = viA

−1, the
models of the previous section will be simplified.
Note that ṽi is obtained from a linear transfor-
mation of vi and its components can be obtained
as follows:

ṽij =

j∑
k=1

j

k
vik, (3.9)

For example, the linear programming model
(2.2) is equivalent to the following one:
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Max Zi =

m∑
j=1

ṽijuj , (T2)

s.t.
m∑
j=1

ṽijuj ≤ 1, i = 1, 2, . . . , n,

uj ≥ 0, j = 1, 2, . . . ,m− 1,

um ≥ ϵ,

Similarly, models (2.3), (2.4), (2.5) and (2.6)
can be transformed to their equivalent models
which are named (T3), (T4), (T5) and (T6), re-
spectively.

This transformation reduces the number of the
constraints, and is utilized to simplify the results
and improve the models. Now, consider the con-
straint

∑m
j=1 vijwj ≤ 1, which is transformed to∑m

j=1 ṽijuj ≤ 1, i = 1, 2, . . . , n. It is seen that

ṽimε ≤ ṽimum ≤
∑m−1

j=1 ṽijuj + ṽimum ≤ 1, for
all the i. Hence, the upper bound of the ε in the
models which contain these restrictions, will be
obtained as follows:

ε ≤ ε∗ = min
i
{ 1

ṽim
} = min

i
{ 1

m
∑m

k=1
vik
k

},

(3.10)

Where, the last equality has obtained from the
relation (3.9) for j = m. On the other hand, ε∗

is the smallest upper bound since um = ε∗ and
uj = 0, j = 1, 2, . . . ,m − 1 is a feasible solution
for the models (T2) and (T4). Indeed, it can be
said that the linear programming problems (2.2),
(2.4), (2.5), and (2.6) (or equivalently problems
(T2), (T4), (T5), and (T6)) are feasible if and
only if ε ≤ ε∗. Note that, it is assumed that the
same value of ε is used in the models (2.4), (2.5),
and (2.6).

To see some other roles of ε we consider some
special values of ε for which the optimal solutions
of some models can be obtained without solving
any problem.

Theorem 3.1 Let ε∗ = mini{ 1
ṽim

} = 1
ṽlm

=
1

m
∑m

k=1
vlk
k

Then, w∗
j = mε

j , j = 1, 2, . . . ,m,

or equivalently: u∗m = ε and u∗j = 0, j =
1, 2, . . . ,m − 1 in the transformed shape, is op-
timal for:

(a) Models (2.2), (2.4), and (2.5) if ε = ε∗ and
vl1 ̸= 0.

(b) Model (2.6) if ε∗ ≥ ε ≥ maxi{ α∗

ṽim
} =

maxi{ α∗

m
∑m

k=1
vik
k

}.

(c) Model (2.3) if ε ≥ maxi{ 1
ṽim

} =

maxi{ 1
m

∑m
k=1

vik
k

}.

Proof.

(a) Since vl1 ̸= 0 we have ṽlj =
∑j

k=1
j
kvlk ̸= 0

for all the values of j. Hence, it can be seen
that u∗m = ε∗ and u∗j = 0, j = 1, 2, . . . ,m−1,
is the only feasible solution for the trans-
formed shapes of the models so it is optimal.

(b) Note that if ε∗ ≥ ε ≥ maxi{ α∗

ṽim
} then we

have α∗ ≤ ṽimε ≤ 1, for all the i. Hence,
u∗m = ε and u∗j = 0, j = 1, 2, . . . ,m − 1, is
a feasible solution for the transformed shape
of the model (2.6). On the other hand, this
solution gives the minimum possible value of
the objective function so it is optimal.

(c) This can be proved similar to the previous
part. 2

Corollary 3.1 Let ε = maxi{ 1
ṽim

}. If u∗m = ε
and u∗j = 0, j = 1, 2, . . . ,m − 1, is optimal for
the transformation of problem (2.3) when ε = ε1,
then it is optimal for it when ε1 ≤ ε ≤ ε.

Proof. The transformation of problem (2.3) can
be obtained as follows:

Min Zi =
m∑
j=1

ṽijuj ,

s.t.

m∑
j=1

ṽijuj ≥ 1, i = 1, 2, . . . , n,

uj ≥ 0, j = 1, 2, . . . ,m− 1,

um ≥ ϵ,

If ε is increased in this problem then the feasi-
ble set becomes smaller so the optimal value will
not decrease. Hence u∗m = ε and u∗j = 0, j =
1, 2, . . . ,m− 1, is optimal for ε1 ≤ ε ≤ ε, since it
is feasible and has the minimum objective value
when ε = ε1. 2
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From the previous theorem and referring to the
models, it can be seen that if ε ≥ maxi{ α∗

ṽim
}

then models (2.2) and (2.5) are equivalent (the
constraints α∗ ≤

∑m
j=1 vijwj , i = 1, 2, . . . , n, in

model (2.5) are redundant). In this case, model
(2.2) is preferred to model (2.5), since it has fewer
constraints, and the model (2.6) has no value as
a DEA model since it is equivalent to imposing a
set of predetermined fixed weights. Indeed, to re-
tain the advantages of the approach proposed by
Wang et al. [19] we should have: ε < maxi{ α∗

ṽim
}

or equivalently ε
α∗ < maxi{ 1

ṽim
}. On the other

hand, since α∗ < 1, it is seen that the method of
Wang et al. [19] is more sensitive to the value of
ε, particularly when α∗ is very small.

The previous discussions can also show some
important roles of α∗ in the models. Indeed, it
is seen that very small values of α∗ can make
problem to the approach of Wang et al. [19]
(note that model (2.6) is not a real model when
α∗ ≤ ε

maxi{ 1
ṽim

}). The worst case is when VWC

has zero votes that is: vmin
j = Mini{vij} = 0, j =

1, 2, . . . ,m, and so α∗ = 0. As it will be seen,
this problem originates from the definition of the
virtual worst candidate (VWC), since it was de-
termined without considering the existing restric-
tions on the weights. In the following section a
revised approach will be proposed with consider-
ing the weights restrictions.

4 The improved models

To consider the weight restrictions, the trans-
formed data are utilized. The vector of votes
for the revised virtual worst candidate (RVWC)
is denoted by vmin

R = (vmin
R1 , . . . , vmin

Rm ), which
is determined based on its transformed vector
ṽmin
R = (ṽmin

R1 , . . . , ṽmin
Rm ), which is defined as fol-

lows:

ṽmin
Rj = Mini{ṽij}, j = 1, 2, . . . ,m, (4.11)

Note that the votes of RVWC are not neces-
sarily the least votes in each place among all the
candidates. Indeed, from the transformation ma-
trix A defined in the previous section, we have
vmin
R = ṽmin

R A. However, according to the defini-
tion, and by considering the weight restrictions,
RVWC is dominated by all the candidates and
has the smallest relative total score (Note that in

some cases RVWC can be a candidate (or can-
didates) that is (are) dominated by all the other
candidates, if such a candidate exists.) The best
relative total score of RVWC is denoted by α∗

R

and can be determined by solving the following
model:

Max αR =
m∑
j=1

ṽmin
Rj uj , (4.12)

s.t.

m∑
j=1

ṽijuj ≤ 1, i = 1, 2, . . . , n,

uj ≥ 0, j = 1, 2, . . . ,m− 1,

um ≥ ϵ,

The optimal value of this model (α∗
R) will be

utilized instead of α∗, to obtain the best and the
least relative scores from the models (2.5) and
(2.6). Hence, by using the defined linear trans-
formation, the following model is used to obtain
the best relative scores:

Max Y Max
i =

m∑
j=1

ṽmin
ij uj , (4.13)

s.t. α∗
R ≤

m∑
j=1

ṽijuj ≤ 1, i = 1, 2, . . . , n,

uj ≥ 0, j = 1, 2, . . . ,m− 1,

um ≥ ϵ,

And the following model is solved to obtain the
least relative total scores:

Min Y Min
i =

m∑
j=1

ṽmin
ij uj , (4.14)

s.t. α∗
R ≤

m∑
j=1

ṽijuj ≤ 1, i = 1, 2, . . . , n,

uj ≥ 0, j = 1, 2, . . . ,m− 1,

um ≥ ϵ,
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Table 1: The votes of six candidates (vij) and the virtual candidates (vmin
j and vmin

Rj ).

Candidate First place Second place Third place Fourth place

A 3 3 4 3
B 4 5 5 2
C 6 2 3 2
D 6 2 2 6
E 0 4 3 4
F 1 4 3 3
VWC 0 2 2 2
RVWC 0 4 3 4

Table 2: The transformed votes of the candidates (ṽij) and the virtual candidates (ṽmin
j and ṽmin

Rj ).

Candidate First place Second place Third place Fourth place

A 3 9 17.5 26.3333
B 4 13 24.5 34.6667
C 6 14 24 34
D 6 14 23 36.6667
E 0 4 9 16
F 1 6 12 19
VWC 0 2 5 8.6667
RVWC 0 4 9 16

Table 3: Results obtained for the six candidates by some approaches.

Candidate Wang and Chin [17] Wang et al. [19] This paper

Best scores Least scores Best scores Least scores Least scores

A 0.7376 - 0.7376 - 0.7182
B 1.0000 2.1667 1.0000 0.5121 0.9455
C 1.0000 2.1250 1.0000 0.5023 0.9273
D 1.0000 2.2917 1.0000 0.5417 1.0000
E 0.4364 - 0.4364 - 0.4364
F 0.5198 - 0.5198 - 0.5182

Table 4: The votes of four candidates (vij) and the virtual candidates (vmin
j and vmin

Rj ).

Candidate First place Second place Third place

A 6 0 2
B 5 4 0
C 0 10 7
D 3 6 4
VWC 0 0 0
RVWC 0 10 5

Note that these problems are feasible if and
only if ε ≤ ε∗ where ε∗ was defined in the rela-
tion (3.10). The following theorem shows some
advantages of the new models:

Theorem 4.1 Let α∗ be the optimal value of the
linear programming model (2.4), α∗

R be the opti-

mal value of the linear programming model (4.12),
and ε∗ be defined in the relation (3.10). Then:

(a) α∗ ≤ α∗
R.

(b) α∗
R ̸= 0, and for all feasible values of ε we

have: ε ≤ maxi{
α∗
R

ṽim
} which equality occurs

only if ε = ε∗.
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Table 5: The transformed votes of the candidates (ṽij) and the virtual candidates (ṽmin
j and ṽmin

Rj ).

Candidate First place Second place Third place

A 6 12 20
B 5 14 21
C 0 10 22
D 3 12 22
VWC 0 0 0
RVWC 0 10 20

Table 6: Results obtained for the six candidates by some approaches.

Candidate Wang and Chin [17] This paper

Best scores Least scores Best scores Least scores

A 1.0000 1.0000- 0.9937 -
B 1.0000 1.0303 1.0000 0.8995
C 1.0000 1.0000 1.0000 0.8730
D 1.0000 1.0454 1.0000 0.9127

Proof.

(a) From the definitions of VWC and
RVWC, and from relation (3.9), we have:
ṽmin
Rj = Mini{ṽij} = Mini{

∑j
k=1

j
kvik} ≥

Mini{
∑j

k=1
j
kv

min
k } =

∑j
k=1

j
kv

min
k = ṽmin

j ,

where ṽmin
j is the transformation of the

number of jth place votes for VWC,
j = 1, 2, . . .m. Hence, RVWC dominates
VWC and for every nonnegative values of
uj , j = 1, 2, . . .m we have:

∑m
j=1 ṽ

min
Rj uj ≥∑m

j=1(
∑j

k=1
j
kv

min
j )uj =

∑m
j=1 ṽ

min
j uj

This proves the result by considering the
defined transformation in section 3 and
comparing the models (2.4) and (4.12).

(b) It can be seen that um = ε∗ and uj = 0, j =
1, 2, . . .m − 1 is a feasible solution for the
model (4.12). Now, by comparing the opti-
mal value of model (4.12) with the objective
value corresponding to this solution, we get
α∗
R ≥ ε∗ṽmin

Rm . Note that there is no need
to consider candidate with all votes equal to
zero even if such a candidate exists. Indeed,
for every candidate i there exists at least
one k, k = 1, 2, . . . ,m for which vik ̸= 0.
Hence, for all i, ṽim =

∑m
k=1(

m
k )vik ̸= 0,

which shows ṽmin
Rm = mini{ṽim} ̸= 0. From

this discussion it is seen that α∗
R > 0 and

ε ≤ ε∗ ≤ α∗
R

ṽmin
Rm

= maxi{
α∗
R

ṽim
}. This also shows

that if ε ̸= ε∗ then we have: ε < maxi{
α∗
R

ṽim
}

which completes the proof. 2

From the previous theorem, it is seen that
model (4.13) is more discriminative than model
(2.5) and the existing problems in the Wang
et al. [19] approach do not exist in the re-
vised approach. Note that, from (a), the con-
straints α∗

R ≤
∑m

j=1 ṽijuj are stronger than α∗ ≤∑m
j=1 vijwj , i = 1, 2, . . . , n, and from (b), when

ε < ε∗ we have α∗
R > ε

maxi{ 1
ṽim

} , so the constraints

α∗
R ≤

∑m
j=1 ṽijuj , i = 1, 2, . . . , n, are not redun-

dant in the revised models.

5 Interval efficiencies and rank-
ing the candidates

The scores obtained by solving models
(4.13) and (4.14) define interval efficiencies
[Y Min

i , Y Max
i ], i = 1, 2, . . . , n, for the candidates.

Based on these intervals, the candidates can be
ranked and the winner can be selected. For ex-
ample, we may rank the candidates by using their
best scores (Y Max

i , i = 1, 2, . . . , n,) and then use
the worst scores (Y Min

i , i = 1, 2, . . . , n) to break
the ties, or conversely use the worst scores to
rank and the best scores to break the ties. A
weighted (convex) combination of the best and
the worst scores can be considered as a more gen-
eral method that covers two previous methods by
selecting the weight of the worst or the best scores
as small as possible, respectively. In addition,
there are several methods for ordering interval
numbers (see, for examples, Chanas and Kuchta
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[2], Hu and Wang [9], Ishihuchi and Tanaka [10],
and Sengupta and Pal [15]) that most of them
can be used for this purpose.

In this paper, as in Wang and Chin [17] and
Wang et al. [19], the worst scores are used to
discriminate between candidates with the same
best scores. In fact, the candidates are ranked by
using their best scores (Y Max

i , i = 1, 2, . . . , n,)
and then the worst scores (Y Min

i , i = 1, 2, . . . , n)
are used to break the ties. Hence, the worst scores
are calculated only for the candidates that their
best scores are equal.

6 Numerical examples

In this Section we illustrate the proposed ap-
proach with two numerical examples. For each
example, the votes of virtual candidates VWC
and RVWC, and their transformations, also are
calculated and added to the tables. Note that for
RVWC we should first determine the transformed
data as it was explained in Section 4.

Example 6.1 Consider the example investi-
gated in [3] (see also [4], [17], and [19]), in which
20 voters are asked to rank 4 out of 6 candidates
on a ballot. The votes of each candidate and their
transformations are shown in the Tables 1 and 2.

In this Example, ε∗ = mini{ 1
ṽim

} = ( 1
36.6667) =

0.02727, α∗ = 0.2364, and α∗
R = 0.4364, which

are obtained from relation (3.10) and the models
(2.4) and (4.12), respectively. We only consider
the value of ε = 0.005.

Table 3 compares the results obtained from two
recent approaches with the proposed approach
in this paper. Note that the least relative total
scores are utilized to break the ties, so they are
obtained only when there are candidates with the
same best scores.

It is seen that the same ranking is obtained by
three approaches but in the proposed approach of
this paper this ranking is obtained without any
need to use the least scores.

Note that, for this example, the least scores
obtained for the method of Wang and Chin [17]
are all equal to ṽimε, where ε = maxi{ 1

ṽim
} = 1

16 .
If we solve model (2.3) for ε = 0, the same re-
sults will be obtained. Hence, from the corollary,
model (2.3) for this example is equivalent to im-
posing a fixed set of weights. Indeed, the least
scores in that model (the optimal values of model

(2.3)) can be obtain by multiplying ε to the num-
bers in the last column of Table 2, when ε ≤ ε,
and by multiplying ε to the numbers in the last
column of Table 2, when ε ≥ ε.

Example 6.2 In this example, four candidates
are considered to be ranked which their votes are
shown in the Table 4.

In this Example, ε∗ = mini{ 1
ṽim

} = ( 1
22) =

0.04545, α∗ = 0, and α∗
R = 0.90909. Since

α∗ = 0, the best scores obtained from Wang et
al. [19] (model (2.5)) are equal to those obtained
from model (2.2) by Wang and Chin [17]. On the
other hand, the model of Wang et al. [19] (model
(2.6)) is equivalent to imposing a set of prede-
termined fixed weights for this example (indeed,
the optimal value of model (2.6) corresponding to
each candidate in this example can be obtained
by multiplying the ε to their correspond numbers
in the last column of Table 5). Hence, the mod-
els of Wang and Chin [17] are preferred for this
example.

Referring to the scores obtained in Table 6, it
can be seen that in the proposed method of this
paper three candidates have equal best scores of
one which all are discriminated from their least
scores. However, all candidates have the same
best scores of one in the method of Wang and
Chin [17], and their models fail to discriminate
between A and C.

Note that even if we assume ε ̸= 0 and use
the fixed weight mentioned in Theorem 3.1 as the
least scores in the method of Wang et al. [19], it
cannot discriminate between candidates C and D.

7 Conclusion

Increasing the discrimination property of data en-
velopment analysis is an important issue for rank-
ing the candidates, or selecting the winner, when
it is used in a voting system. In this paper, a
revised approach is proposed which has a strong
discrimination power. For this purpose a linear
transformation of the data is utilized which in ad-
dition to decreasing the complexity of the models
and simplifying the results, is used to redefine
the concept of virtual worst candidate. This vir-
tual candidate is named RVWC in this paper, and
since it is dominated by the other candidates, its
best score is used as a lower bound for the scores
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in the models. This does not affect on the fea-
sibility of the models and increases the discrim-
ination power of them. This method is simple,
has strong ability to identify efficient candidates,
measures the best and the least scores in the same
range and provides interval efficiencies, and has
some other advantages in comparing with some
existing methods. Numerical examples illustrate
the advantages of the approach. It is seen that
the proposed approach can provide a full ranking
of the candidates with less effort even in a case
that two recent approaches fail to provide this full
ranking.
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