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Stagnation-point flow of a viscous fluid towards a stretching surface

with variable thickness and thermal radiation
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Abstract

In the present analysis, we study the boundary layer flow of an incompressible viscous fluid near the
two-dimensional stagnation-point flow over a stretching surface. The effects of variable thickness and
radiation are also taken into account and assumed that the sheet is non-flat. Using suitable trans-
formations, the governing partial differential equations are first converted to ordinary one and then
solved numerically by fourth and fifth order Runge-Kutta-Fehlberg method with shooting technique.
The influence of the various interesting parameters on the flow and heat transfer is analyzed and
discussed through graphs in detail. Comparison of the present results with known numerical results
is shown and a good agreement is observed. It is found that boundary layer is formed when λ > 1.
On the other hand, an inverted boundary layer is formed when λ < 1.

Keywords : Stagnation-point flow; Variable thickness; Stretching sheet; Thermal radiation; Numerical
solution.

—————————————————————————————————–

1 Introduction

T
he interest in the study of boundary layer
flows over a stretching sheet has been sig-

nificantly increased in view of their numerous ap-
plications in various fields of science and engi-
neering for example, the hot rolling, continuous
stretching, wire drawing, glass-fiber production,
the aerodynamic extrusion of plastic sheets, the
cooling process of metallic plate in cooling bath
and polymer industries, etc. The pioneering work
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in this area was conducted by Sakiadis [23] put
forward the very basic governing equation on the
continuous moving solid surface problem. Now
the literature is very rich in analyzing the vari-
ous aspects of Sakiadis’s problem. Crane [3] and
Gupta and Gupta [7] have discussed the contin-
uous moving surface problem with constant sur-
face temperature. There are several extensions
to this problem, which include consideration of
more general stretching velocity and the study of
heat transfer ([4] - [19]).

Flow near stagnation-point is very interesting
in fluid dynamics. Actually, the stagnation flow
takes place whenever the flow impinges to any
solid object and the local velocity of the fluid
at the stagnation-point is zero. It is an impor-
tant bearing on several industrial and technical
applications such as cooling of electronic devices
by fans, cooling of nuclear reactors during emer-
gency shutdown, heat exchangers placed in a low-
velocity environment, solar central receivers ex-
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Table 1: Comparison of the values of skin friction coefficient f ′′(0) for various values of m in the case of
λ = Pr = Nr = 0 and β = 0.5.

m Fang et al. [6] Present result

10 -1.0603 -1.06034
9 -1.0589 -1.05893
7 -1.0550 -1.05506
5 -1.0486 -1.04862
3 -1.0359 -1.03588
2 -1.0234 -1.02342
1 -1.0000 -1.00000
0.5 -0.9799 -0.97994
0.0 -0.9576 -0.95764

Table 2: Computations values of −θ′(0) for different values of Pr when β = 0.5,m = 0.2, Nr = 0 and λ = 0.0.

Pr −θ′(0)

0.72 0.64087
1 0.77462
2 1.14016
3 1.40436
4 1.61409
5 1.78925
6 1.94010
7 2.07269
8 2.19096
10 2.39469

posed to wind currents, and many hydrodynamic
processes.The two-dimensional flow of a fluid near
a stagnation point was first examined by Hiemenz
[8]. Later Chiam [5] analyzed steady two dimen-
sional stagnation-point flow of an incompressible
viscous fluid towards a stretching surface. Ma-
hapatra and Gupta [11] studied the stagnation-
point flow towards a stretching sheet taking dif-
ferent stretching and straining velocities. Var-
ious important aspects of the stagnation-point
flow over stretching sheet under were presented
by many investigators ([13] - [2]).

x x

y

U(x) U(x)

U (x)w U (x)wO

Stagnation�point

v

u

B B

Figure 1: Schematic diagram of the flow

At high operating temperature, radiation ef-

Figure 2: Effect of m on temperature profiles when
λ = 0.5,m = 2, Nr = 2 and Pr = 3.0.

fect can be quite significant. Many processes
in engineering areas occur at high temperature
and knowledge of radiation heat transfer becomes
very important for the design of the pertinent
equipment. Nuclear power plants, gas turbines
and the various propulsion devices for aircraft,
missiles, satellites and space vehicles are exam-
ples of such engineering areas. Pop et al. [16]
studied theoretically the steady two-dimensional
stagnation-point flow of an incompressible fluid
over a stretching sheet by taking into account of
radiation effects using the Rosseland approxima-

Arch
ive

 of
 SID

,m

Arch
ive

 of
 SID

,m = 0

Arch
ive

 of
 SID

= 0.

Arch
ive

 of
 SID

.2

Arch
ive

 of
 SID

2

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

posed to wind currents, and many hydrodynamic

Arch
ive

 of
 SID

posed to wind currents, and many hydrodynamic
processes.The two-dimensional flow of a fluid near

Arch
ive

 of
 SID

processes.The two-dimensional flow of a fluid near
a stagnation point was first examined by Hiemenz

Arch
ive

 of
 SID

a stagnation point was first examined by Hiemenz
] analyzed steady two dimen-

Arch
ive

 of
 SID

] analyzed steady two dimen-
sional stagnation-point flow of an incompressible

Arch
ive

 of
 SID

sional stagnation-point flow of an incompressible
viscous fluid towards a stretching surface. Ma-

Arch
ive

 of
 SID

viscous fluid towards a stretching surface. Ma-
hapatra and Gupta [

Arch
ive

 of
 SID

hapatra and Gupta [11

Arch
ive

 of
 SID

11

Arch
ive

 of
 SID

] studied the stagnation-

Arch
ive

 of
 SID

] studied the stagnation-
point flow towards a stretching sheet taking dif-Arch

ive
 of

 SID

point flow towards a stretching sheet taking dif-
ferent stretching and straining velocities. Var-Arch

ive
 of

 SID

ferent stretching and straining velocities. Var-
ious important aspects of the stagnation-pointArch

ive
 of

 SID

ious important aspects of the stagnation-pointArch
ive

 of
 SID

flow over stretching sheet under were presentedArch
ive

 of
 SID

flow over stretching sheet under were presented
by many investigators ([

Arch
ive

 of
 SID

by many investigators ([13
Arch

ive
 of

 SID

13

www.SID.ir

www.sid.ir


B. C. Prasanna Kumara et al, /IJIM Vol. 7, No. 1 (2015) 77-85 79

Table 3: Computations values of −f ′′(0) and −θ′(0) for different values of λ when β = 0.5,m = 0.2, Nr = 0
and Pr = 3.0.

λ −f ′′(0) −θ′(0)

0.0 1.02469 1.40436
0.2 0.95280 1.43499
0.4 0.802036 1.48348
0.5 0.702016 1.51094
0.6 0.587339 1.53960
0.8 0.317894 1.59893
1.0 0.0 1.659403
1.2 -0.361687 1.719941
1.4 -0.763560 1.779992
1.6 -1.202722 1.839253
1.8 -1.676789 1.897569
2.0 -2.183760 1.954864

Table 4: Values of skin friction coefficient −f ′′(0) and Nusselt number −θ′(0) for different values of the physical
parameters.

λ = 0.5 λ = 1.5
β Pr Nr m −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)

0.5 3 2 2 0.70201 0.80713 0.97863 1.04799
1.0 0.66180 0.73627 0.93571 0.97242
1.5 0.62391 0.67048 0.89445 0.90055
0.5 2 2 2 0.70201 0.64754 0.97863 0.87641

3 0.70201 0.80713 0.97863 1.04799
4 0.70201 0.93373 0.97863 1.18726

0.5 3 1 2 0.70201 1.01264 0.97863 1.27387
2 0.70201 0.80713 0.97863 1.04799
3 0.70201 0.68353 0.97863 0.91430

0.5 3 2 -0.25 0.38926 1.00692 0.15527 1.09113
2 0.70201 0.80713 0.97863 1.047992
4 0.72704 0.79427 1.02752 1.045913

Figure 3: Effect of m on temperature profiles when
λ = 0.5,m = 2, Nr = 2 and Pr = 3.0.

tion to model the radiative heat transfer. Pop
et al. [17] discussed the radiation effects on
the MHD flow near the stagnation point of a
stretching sheet. Pal [18] analyzed the heat and
mass transfer in stagnation point flow towards
a stretching sheet in the presence of buoyancy

Figure 4: Effect of β on velocity profiles when m =
2, Nr = 2 and Pr = 3.0.

force and thermal radiation. Incompressible wa-
ter based nanofluid flow over a stretching sheet
in the presence of transverse magnetic field with
thermal radiation and buoyancy effects are stud-
ied by Rashidi et al [20]. Recently Ramesh et
al. [22] examined the stagnation point flow of a

Arch
ive

 of
 SID

Arch
ive

 of
 SID(0) for different values of the physical

Arch
ive

 of
 SID(0) for different values of the physical

Arch
ive

 of
 SIDλ

Arch
ive

 of
 SIDλ = 1

Arch
ive

 of
 SID= 1

−

Arch
ive

 of
 SID

−θ

Arch
ive

 of
 SID

θ′

Arch
ive

 of
 SID

′(0)

Arch
ive

 of
 SID
(0)

Arch
ive

 of
 SID

0.80713

Arch
ive

 of
 SID

0.80713
0.66180

Arch
ive

 of
 SID

0.66180 0.73627

Arch
ive

 of
 SID

0.73627
0.62391

Arch
ive

 of
 SID

0.62391 0.67048

Arch
ive

 of
 SID

0.67048
0.70201

Arch
ive

 of
 SID

0.70201 0.64754

Arch
ive

 of
 SID

0.64754
0.70201

Arch
ive

 of
 SID

0.70201 0.80713

Arch
ive

 of
 SID

0.80713
0.70201

Arch
ive

 of
 SID

0.70201
0.70201

Arch
ive

 of
 SID

0.70201
0.70201

Arch
ive

 of
 SID

0.70201
0.70201

Arch
ive

 of
 SID

0.70201
-0.25

Arch
ive

 of
 SID

-0.25 0.38926

Arch
ive

 of
 SID

0.38926
2

Arch
ive

 of
 SID

2 0.70201

Arch
ive

 of
 SID

0.70201
4

Arch
ive

 of
 SID

4

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

www.SID.ir

www.sid.ir


80 B. C. Prasanna Kumara et al, /IJIM Vol. 7, No. 1 (2015) 77-85

Figure 5: Effect of β on temperature profiles when
λ = 0.5,m = 2, Nr = 2 and Pr = 3.0.

Figure 6: Effect of m on velocity profiles when m =
2, Nr = 2 and Pr = 3.0.

MHD dusty fluid towards a stretching sheet with
radiation and found that fluid particle is always
higher than the dust particles and they are paral-
lel to each other. In all these studies, the bound-
ary layer flow is investigated for a flat stretching
sheet only.

They are very few studies can be found on the
flow over a non-flatness stretching sheet. Study
of flow and heat transfer of viscous fluids over
stretching sheet with a variable thickness (non-
flatness) can be more relevant to the situation
in practical applications. For the first time Fang
et al. [6] obtain an elegant analytical and nu-
merical solution to the two-dimensional boundary
layer flow due to a non-flatness stretching sheet.
Further this problem was extended by Subhashini
et al. [24] by including the energy equation and
found that thermal boundary layer thicknesses for
the first solution were thinner than those of the
second solution. Numerical solution for the flow
of a Newtonian fluid over a stretching sheet with a
power law surface velocity, slip velocity and vari-
able thickness was studied by Khaddar et al [10].
Akbar et al. [?] obtained the numerical solution
for magnetohydrodynamics boundary layer flow
of tangent hyperbolic fluid over a stretching sheet
using fourth order Runga-Kutta method.

Figure 7: Effect of m on temperature profiles when
λ = 0.5,m = 2, Nr = 2 and Pr = 3.0.

Figure 8: Effect of Pr on temperature profiles when
λ = 0.5,m = 2, Nr = 2 and β = 0.5.

The purpose of current study is to analyze the
characteristics of radiative heat transfer on the
boundary layer stagnation-point flow of viscous
fluid over a non-flatness stretching sheet. This
work is extension of Subhashini et al. [24]. Sim-
ilarity transforms are used for this problem, and
non dimensionalized equations are solved numer-
ically. Graphical results for various values of the
parameters are presented to gain thorough insight
towards the physics of the problem. To the best of
our knowledge, this problem has not been studied
before.

2 Mathematical Analysis

Consider the flow of an incompressible viscous
fluid driven by a stretching surface located at

y = A(x + b)
1−m

2 with a fixed stagnation point
at x = 0 as shown in figure 1. We assume that
wall is impermeable, non-flat with a given pro-
file and the coefficient A being small so that the
sheet is sufficiently thin. The stretching velocity
Uw(x) and the ambient fluid velocity U(x) are as-
sumed to be thickness of the stretched sheet from
the stagnation point i.e., Uw(x) = U0(x+b)m and
U(x) = U1(x+b)m, where m is the velocity power
index. Due to the acceleration or deceleration of
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Figure 9: Effect of Nr on temperature profiles
when λ = 0.5,m = 2, P r = 3 and β = 0.5.

the sheet, the thickness of the stretched sheet may
decrease or increase with distance from the slot,
which is dependent on the value of the velocity
power index. With the above assumptions, the
boundary layer equations governing the flow and
temperature fields are given by [24],

∂u

∂x
+

∂v

∂y
= 0, (2.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= µ

∂2u

∂y2
− dp

dx
, (2.2)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
− ∂qr

∂y
(2.3)

where u and v are the velocity components of the
fluid along x and y directions respectively.µ, ρ, k
and cp are the co-efficient of viscosity of the fluid,
density of the fluid, thermal conductivity and spe-
cific heat of the fluid respectively. The associated
boundary conditions for the present problem are
(see([6],[24]))




u = Uw(x), v = 0,

Tw(x) = T∞ + T0(x+ b)
m
2

at y = A(x+ b)
1−m

2

u → U(x) T → T∞ as y → ∞

(2.4)

where Uw(x) = U0(x + b)m is the stretching ve-
locity, U0 and b are the physical parameter re-
lated with stretched surfaces. Tw and T∞ denote
the temperature at the wall and at large distance
from the wall respectively and T0 is the charac-
teristic temperature.

To employing the generalized Bernoulli’s equa-
tion, in the free stream U(x) = U1(x + b)m the
equation (2.2) reduces to

U
dU

dx
= −1

ρ

dp

dx
. (2.5)

Using (2.5) into (2.2) one can obtain

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= µ

∂2u

∂y2
+ U

dU

dx
(2.6)

Using the Rosseland approximation for radiation
[17], radiation heat flux is simplified as

qr = −4σ∗

3k∗
∂T 4

∂y
(2.7)

where σ∗ and k∗ are the Stefan-Boltzman con-
stant and mean absorption co-efficient, respec-
tively. Assuming that the temperature differences
within the flow such that the term T 4 may be ex-
pressed as a linear function of the temperature,
we expand T 4 in a Taylor series about T∞ and ne-
glecting the higher order terms beyond the first
degree in (T − T∞) we get

T 4 ∼= 4T 3
∞T − 3T 4

∞ (2.8)

Substituting equations (2.7) and (2.8) in equation
(2.3) reduces to

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
− 16σ∗T 3

∞
3k∗

∂2T

∂y2
.

(2.9)
The momentum and energy equations can be
transformed using the following similarity trans-
formation (see [6])




η =

√
(m+1)U0

2ν

[
y(x+ b)

m−1
2 −A

]

f = ψ√
2νU0
m+1

(x+bm+1)

θ = T−T∞
Tw−T∞

(2.10)

where η is the similarity variable and ψ is the
stream function defined as u = ∂ψ

∂y and v = ∂ψ
∂x

which identically satisfies equation (2.1). Em-
ploying the similarity variables (2.10), equations
(2.6) and (2.9) reduce to the following ordinary
differential equations

f ′′′(η) + f(η)f ′′(η)

+
2m

m+ 1
[λ2 − f ′2(η)] = 0 (2.11)

(
1 +

4

3
Nr

)
1

Pr
θ′′(η)

+f(η)θ′(η)− m

m+ 1
f ′(η)θ(η) = 0 (2.12)
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Subjected to the boundary conditions (2.4) which
becomes





f(η) = β
(
1−m
1+m

)
, f ′(η) = 1,

θ(η) = 1 at η = 0
f ′(η) = λ, θ(η) = 0 as η → ∞

(2.13)

In the above equations, primes denote differenti-

ation with respect to η and β = A

√
U0(m+1)

2ν is
the wall thickness parameter, m is the velocity
power index, λ = U1

U0
is the ratio of rates of veloc-

ities, Nr = 4σ∗T 3
∞

kk∗ is the radiation parameter and
Pr =

µcp
k is the Prandtl number.

3 Numerical Solutions

The analytical solutions of the set of differen-
tial equations given by (2.11) and (2.12) are
generally intractable because these equations are
highly non-linear. So we adopted the most ef-
fective shooting method with fourth and fifth-
order Runge-Kutta-Fehlberg integration scheme
to solve the boundary value problems. Important
factor of this method is to choose the appropriate
finite values of η Once the finite value of η is de-
termined then the coupled boundary value prob-
lem given by equations (2.11), (2.12) and (2.13)
are solved numerically using the method of su-
perposition ([15]). The coupled boundary value
problem of third-order in f(η) and second-order
in θ(η) has been reduced to a system of five simul-
taneous equations of first-order for five unknowns
as follows:




f ′ = p, p′ = q,
q′ = −fq − 2m

m+1 [λ
2 − p2]

θ′ = r,

r′ =
(

m
m+1

)
pθPr

1+4/3Nr −
frPr

1+4/3Nr

(3.14)

and the boundary condition becomes

{
f(0) = β

(
1−m
1+m

)
, p(0) = 1, θ(0) = 1

p(η∞) = λ, θ(η∞) = 0.
(3.15)

In this study, the boundary value problem is first
converted into an initial value problem (IVP).
Then the IVP is solved by appropriately guess-
ing the missing initial value f ′′(0) and θ′(0) using
the shooting method for several sets of parame-
ters. The step size is h = 0.1 used for the com-
putational purpose. The error tolerance of 10−6

is also being used. The results obtained are pre-
sented through tables and graphs, and the main
features of the problems are discussed and ana-
lyzed.

4 Result and Discussions

For the verification of accuracy of the applied nu-
merical scheme, a comparison with available re-
sults corresponding to the skin-friction coefficient
f ′′(0) for λ = Nr = Pr = 0 with the available
published results of Fang et al. [6] for various
values of m is made and presented in Table 1.
This shows a favorable agreement thus gives con-
fidence that the numerical results obtained are
accurate. Also we provide a sample of our results
for the −θ′(0) when Pr varies and other parame-
ters are fixed is presented in Table 2. Similarly in
Table 3 presented a computation values of −θ′(0)
when λ varies. Now move on to the discussion
part.

Figure 2 describes the velocity profiles for sev-
eral values of λ. It is found that when the stretch-
ing velocity is less than the free stream velocity
i.e., λ > 1, the flow has a boundary layer struc-
ture, physically saying that the straining motion
near the stagnation region increases so the ac-
celeration of the external stream increases which
leads to decrease in the thickness of the boundary
layer with increase in λ. When the stretching ve-
locity U0(x + b)m of the surface exceeds the free
stream velocity U1(x + b)m i.e., λ < 1 inverted
boundary layer structure is formed and for λ = 1
there is no boundary layer formation because the
stretching velocity is equal to the free stream ve-
locity. The temperature profiles for different val-
ues of λ with other fixed parameter are presented
in the figures 3. It is evident from the graph that
the boundary layer thickness decreases with in-
crease in λ.

Figure 4 exhibits the variation in the velocity
profiles for different values of β. This figure indi-
cates that if β increases the fluid velocity f ′(η) is
increases for a fixed value of λ < 1. On the other
hand when λ > 1 the fluid velocity decreases with
the increase of β. This is because for higher value
of β the boundary layer becomes thicker. The
temperature profile for different values of β for a
fixed value of λ is plotted in figure 5. As it can
be noticed, an increase in the wall thickness pa-
rameter results in an increase of the temperature
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of fluid. The graph of velocity profiles for differ-
ent values of m is depicted in figure 6. One can
clearly observed in equation (2.13) that when in-
crease of m, simultaneously β will also increases,
whereas m, β also decreases, therefore β is de-
pends on m. Figure 6 shows that when increase
of m from -0.25 to 2.0 we can see that decrease in
fluid velocity at λ < 1 and increase of velocity at
λ > 1. For a fixed value of λ = 0.5 temperature
increases with increase of m which is depicted in
figure 7. From equation (2.13), one knows that if
m = 1 the problem reduces to flat sheet problem.

Figure 8 depicts the effect of Prandtl number
Pr on temperature distributions for a fixed value
of λ(λ = 0.5). An increase in Prandtl num-
ber reduces the thermal boundary layer thick-
ness. Prandtl number signifies the ratio of mo-
mentum diffusivity to thermal diffusivity. Fluids
with lower Prandtl number will possess higher
thermal conductivities (thicker thermal bound-
ary layer structures) so that heat can diffuse from
the wall faster than for higher Pr fluids (thinner
boundary layers). Hence Prandtl number can be
used to increasethe rate of cooling in conducting
flows. The effect of thermal radiation on temper-
ature profiles is presented in figure 9. It is found
that temperature increases as the radiation pa-
rameter Nr increases. This is in agreement with
the physical fact that the thermal boundary layer
thickness increases with increasing Nr The ef-
fect of radiation in the thermal boundary layer
equation (2.12) is equivalent with an increased
thermal diffusivity, i.e.,

(
1 + 4

3Nr
)

1
Pr . Thus the

radiation should be at its minimum in order to
facilitate the cooling process.

From the above discussion, the physics of stag-
nation point flow over a non-flatness stretching
surface can be utilized as the basis for many
engineering and scientific applications with this
model. The findings of the present problem are
also of great interest in different areas of science
and technology, where the surface layers are being
stretched.

5 Conclusions

We have studied the effects of the wall thickness
parameter, velocity power index, ratio of rates of
velocities, radiation parameter and the Prandtl
number on the skin friction coefficient and the
local Nusselt number, which represents the heat

transfer rate at the surface, for the steady stagna-
tion point flow and heat transfer towards stretch-
ing surface. It is found that boundary layer is
formed when λ > 1. On the other hand, an
inverted boundary layer is formed when λ < 1.
Some results of thermal characteristics at the wall
are usually analyzed from the numerical results
and the same are documented in the Table 4.
From this table, it is found that increasing the
values of β and m is to decreases f ′′(0) and the
effect of increasing the values of Pr is to increase
the −θ′(0) while increasing the values of Nr is to
decrease the −θ′(0). Also one can observe that
there is no changes in f ′′(0) when Nr and Pr
vary.
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